| ICM-Br | owser & | Active | eICM | I Guide | v.3.8 | ••••• | ••••• | 1 | | | | |----------|----------------------|----------------|----------|----------|---------------------|---------|--------------------------|-----------------------------------------|-----------|--------------|----| | 1 Introd | | | | ••••• | | | | | | | | | | Features<br>Download | | | | | | | | | | | | 2 Help | Videos | on Y | οuΤι | ıbe | ••••• | •••••• | 5 | | | | | | 3 Refere | | | | | | | 7 | | | | | | | 3.1 Graph | | | erence | Guide . | | | 7 | _ | | | | | | Downlo | | and | Install | ICM- | Browser | | 7 | | | | | | How | to | use the | Graphi | cal | Display | ••••• | / | | | | | | How<br>How | to | Convert | rapnicai<br>Drotoin | Seie | ctions<br>Display | Uvdro | 9 | and | | | | | | ιο<br>Ri | nding | Pocket | 5, | | 11yu10g | gens | anu | | | | | How | to | change | Graphics | Eff | fects | | 9 | | | | | | How | to | add Lat | oels and | d Ann | otations | | 1 | 0 | | | | | How | to | Make H | igh Qua | lity | Publicatio | n I | mages | 10 | ) | | | 3.1.8 | How | to | Superimp | ose P | rotein | Structu | ires. | | 10 | | | | | How | | Measure | | | and Ang | gles | | 10 | | | | 3.2 Activ | _ | | ference | | | eate 3D | | | | | | | Documen | | or t | he Web | and Po | werPoir | nt | • • • • • • • • • • • • • • • • • • • • | 11 | | | | | Creating | 3D . | Docu | ments . | ls Straig | httorwa | ard<br> | 1.1 | 11 | | | | | 3.2.1 | How | to | Create | o Corios | of | Fully-In | .11<br>torootivo | | 3D | | | | | Slides. | | Create | | | | leractive | | שנ | | | | | How | | | | | 11<br>Ocuments | | 1 | 2 | | | | | How | to | Display | Molecu | ilar | Documen | ts in | PowerP | oint | 12 | | | 3.2.5 | How | to | Display | Molecu | ılar | Documen | ts on | the W | Veb | 12 | | | 3.3 Menu | Optio | on | Guide | | | Documen<br>Documen<br>13 | | | | | | | 3.3.1 | File | M | enu | | | 13 | | | | | | | | Edit | | enu | | | | | | | | | | | View | | enu | | | | | | | | | | | Windo | | | | | 21 | | | | | | | | | | Tab | | | | | | | | | | 3.4.1 | Light | ′ т | 1 ab | | | | | | | | | | | Labels | | | | | | | | | | | | | | | | | | | 23 | | | | | | | | | Tab | | | | | | | | | | | | | Tab | | | | | | | | | . ~ | <b>a</b> . | | | | | _ | _ | | | | | | 4 Gettin | g Star | ted . | ••••• | C .1 | | 2 | 25 | | | 25 | | | | 4.1 Ine | Basics | | of the | Graphical | CLU | er Interf | ace | | 25 | | | | | How | to | nponents | DDR Str | t GUI | | | 25<br>25 | | | | | | How | to | Move a | Structure | ir | <br>n the ( | Tranhical | 23<br>Dis | enlay | 26 | | | | How | to | Display | Molecu | iles | n the Cusing t | he ICN | 1 Works | space | 20 | | | | Panel | | | | | 27 | 1011 | 1 WOIR | эрисс | | | | | How | to | Make Se | elections | | | 29 | | | | | | 4.1.6 | How | to | Change | Protein | Rep | resentation | ı | | 30 | | | | | How | to | Color . | | | resentatior | | | | | | | | How | to | Display | a Binc | ling | Pocket | Surface | | 32 | | | | | How | to | Save ar | i ICM C | bject | | | 33 | | | | | | 0 How | to | Save | an ICM | Project | File | 2.4 | 32 | <del>ļ</del> | | | | | 1 How<br>2 How | to | Drag | ana Droj<br>Cliala | Optio: | ns | 34 | 21 | | | | | | 2 How<br>3 How | | | | | ns | | 34 | | | | | | | | | | | | | | | | | | 4.2 How | to se | earch | and | download | Prote | ein St | ructure. | Sec | uences. | | | | and Ch | | | | | | 39 | , | 200 | 1, | | | | | Search | | the PD | В | | 4 | 40 | | | | | | | | arch | the Pi | otein | Databa | nk and | Downl | oad | 40 | | | | | Search | | Pocketon | ne | | | 44 | | | | | | 4.2.3 | ChEMI | RL | Search | | | 4 | 6 | | | | | 4 Getting | Started | |-------------|------------------------------------------------------------------------------------------------------------------------------------------| | · Germg | 4.2.4 Search SureChEMBL 47 | | | 4.2.5 BLAST Search | | | 4.2.6 Search UniProt48 | | | 4.2.6 Search UniProt 48 4.2.7 Search PDB by Ligand Code 49 4.2.8 Search Drug Bank 49 | | | 4.2.8 Search Drug Bank | | | 4.2.9 Search PubChem50 | | 4.3 | Create New Objects51 | | 4.4 | Open and Read Files52 | | | 4.4.1 Open with Password52 | | | 4.4.2 Extract from icb file52 Saving Files53 | | 4.5 | Saving Files53 | | 4.6 | Making Selections54 | | | 4.6.1 Graphical Selection Tools55 | | | 4.6.2 Quick Selection55 | | | 4.6.3 How to Change the Selection Level and Mode56 | | | 4.6.4 How to check what is selected56 | | | 4.6.5 Orange Selection | | | 4.6.6 Clear Selection | | | 4.6.7 Changing a Selection 59 4.6.8 Filter Selection 60 | | | 4.6.8 Filter Selection60 | | | 4.6.9 Workspace Selections | | | 4.6.10 Workspace Navigation | | | 4.6.11 How to Select an Object62<br>4.6.12 How to select a Molecule62 | | | 4.6.12 How to select a Molecule | | | 4.6.13 How to select Residues | | | 4.6.14 Select All | | | 4.6.15 Selecting Neighbors | | | 4.6.10 Selecting Neighbors: Workspace 67 | | | 4.6.17 Select by Residue Number 68 | | | 4.6.19 Alignment and Table Selections | | | 4.6.20 Making Links | | | 4.6.21 Tags69 | | 47 | Preferences71 | | 1.7 | 4.7.1 Bonds Preferences | | | 4.7.2 Directories Preferences | | | 4.7.3 Graphics Preferences74 | | | 4.7.4 GUI Preferences76 | | | 4.7.5 GUI Preferences | | | 4.7.6 Image Preferences | | | 4.7.7 Label Preferences80 | | | 4.7.8 Plot Preferences | | | 4.7.9 Ribbon Preferences81 | | | 4.7.10 Shell Preferences 82 4.7.11 System Preferences 83 | | | 4.7.11 System Preferences83 | | | | | 5 Protein | Structure85 | | 5.1 | Convert to ICM Object85 | | | 5.1.1 Load a Protein Structure85 | | <i>5</i> 0 | 5.1.2 Converting PDB Files Into ICM Objects85 | | 5.2 | Pocket Display8/ | | | 5.1.1 Eoad a Flotchi Stutture | | | 5.2.2 Ligand Surface88 | | | 5.2.5 How to Display Hydrogen Bonds89 | | 5.2 | 5.2.4 Ligand Pocket Interactions92 | | 5.3 | Protein Superposition | | | 5.3.1 Select Proteins for Superposition94 | | | 3.3.2 Superinipose Dunon94 | | 6 Molecules | r Graphics97 | | 6 1 | Molecule Representation 97 | | 0.1 | Molecule Representation | | | 6.1.2 Stick and Ball (Xstick) Representation99 | | | 6.1.3 Ribbon Representation | | 6 Molecula | r Graphics | |------------|--------------------------------------------------------------| | | 6.1.4 Skin Representation | | | 6.1.5 CPK Representation102 | | | 6.1.6 Surface Representation | | | 6.1.7 Display and Undisplay Hydrogens103 | | | 6.1.8 Display Hydrogen Bond104 | | | 6.1.9 Display Formal Charges106 | | | 6.1.10 Ca (carbon alpha) Trace106 | | | 2 Multi-Windows106 | | 6.3 | 3 Meshes - Surface - Grobs107 | | | 6.3.1 Surfaces | | | 6.3.2 MolSkin | | | 6.3.3 Color Surface by Proximity | | | 6.3.5 Mashas 110 | | | 6.3.6 Google 3D Objects (Sketchup) 110 | | | 6.3.7 Display or Undisplay Meshes or Surfaces 110 | | | 6.3.8 Mesh Ontions 111 | | | 6.3.9 Mesh Clipping 113 | | | 6.3.9 Mesh Clipping113<br>6.3.10 Save Mesh113 | | | 6.3.11 Occlusion Shading113 | | 6.4 | 4 Coloring114 | | | 6.4.1 Coloring114 | | | 6.4.2 Color Background115 | | | 6.4.3 Background Image115<br>5 Lighting117 | | 6.5 | 5 Lighting117 | | | 53D Stereo117 | | 6.7 | 7 3D Printing118 | | 6.8 | 3 Labeling and Annotation118 | | | 6.8.1 Labeling | | | 6.0.2 Labeling Atoms | | | 6.8.4 Move Residue Label120 | | | 6.8.5 Label Variables 120 | | | 6.8.5 Label Variables | | | 6.8.7 Changing Label Colors 125 | | | 6.8.8 Customized Label 2D or 3D125 | | | 6.8.9 Undisplay Customized Label126 | | | 6.8.10 Labeling Distances126 | | | 6.8.11 (Un)display Origin128 | | 6.9 | 6.8.8 Customized Label 2D or 3D | | | 6.9.1 Display Distance Between I wo Atoms - the quick way129 | | | 6.9.2 Display Planar Angle129 | | | 6.9.3 Display Dihedral Angle129 | | C 1 | 6.9.2 Display Planar Angle | | 0.1 | 10 Graphics Effects | | | 6.10.1 Fog | | | 6.10.3 Flegant Ribbon & Ligand Sketch 130 | | | 6.10.3 Elegant Ribbon & Ligand Sketch | | | 6.10.5 Perspective | | | 6.10.6 Animate View | | 6.1 | 11 Graphics Shortcuts133 | | | 2 Molecule Move Buttons134 | | | 6.12.1 Rotation134 | | | 6.12.2 Custom Rotation134 | | | 6.12.3 Translation | | | 6.12.4 Zoom136 | | | 6.12.5 Center136 | | | 6.12.6 Torsion Angles | | | 6.12./ Connect (Move)13/ | | 6.1 | 13 Clipping Tools | | <i>C</i> 1 | 6.13.1 Mesh Clipping | | | 4 Graphic Layers | | n | тыны слингу вирисинов ниябех 139 | | 6 Molecular Graphics | |---------------------------------------------------------------------------------------------------------------------------------------------------| | 6.15.1 High Quality Image140 | | 6.15.1 High Quality Image140<br>6.15.2 Quick Image141 | | 6.15.3 Image Options141 | | | | 7 Slides & ActiveICM143 | | 7.1 Making Slides143 | | 7.2 Make a Movie from a Set of Slides149 | | 7.3 How to View and Navigate Slides149 7.3.1 View Slide Show149 | | 7.3.1 View Slide Show | | 7.3.2 Slide Navigation149 7.4 How to Edit Slides151 | | 7.4.1 Edit Slide | | 7.4.1 Edit Slide | | 7.4.2 Move Slide | | Between Slides153 | | 7.6 How to Make Molecular Documents - Link HTML Text to | | Slides | | 7.6.1 How to Add Text or Edit a Molecular Document154 | | 7.6.2 How to Make a Hyperlink Between Text and a Slide15 | | 7.6.3 Insert Image 157 | | 7.6.4 Insert Script | | 7.6.3 Insert Image | | 7.6.6 How to add a check box | | 7.6.7 Document Navigation162 | | 7.6.8 Protect Shell Objects From Deletion162 | | 7.6.7 Document Navigation 162 7.6.8 Protect Shell Objects From Deletion 162 7.7 ActiveICM 162 | | 7.8 How to Embed in Microsoft PowerPoint 2003 | | 7.9 How to Embed in Microsoft PowerPoint 2007164 | | 7.10 How to Embed in MicroSoft PowerPoint 2010165 | | / I I Embed in Web Browser 166 | | 7.12 How to Use ActiveICM in PowerPoint167 | | 7.13 How to Change ActiveICM Component Properties | | 7.14 Advanced use of activeICM: Macros to direct | | visualisation changes | | 7.14.1 PowerPoint Cache Errors173 | | 7.15 Background Images | | 7.16 ICM JavaScript (IcmJS)173 | | 8 Tutorials175 | | 8 1 Graphics Tutorials 176 | | 8.1 Graphics Tutorials176 Introduction176 | | 8.1.1 Change Molecule Representation and Color177 | | 8.1.2 Annotation180 | | 8.1.3 Labels181 | | 8.1.4 2D and 3D Labels184 | | 8.2 Creating Fully Interactive Slides for PowerPoint and | | the Web Tutorial187 | | Introduction187 | | Tutorial187 | | | Index ......195 # **ICM-Browser & ActiveICM Guide v.3.8** by Ruben Abagyan, Andrew Orry, Eugene Raush, and Maxim Totrov Copyright 2017 Sep 13 2018 Feedback. # 1 Introduction Welcome to the ICM-Browser and ActiveICM manual. ICM-Browser provides a biologist or a chemist with direct access to the treasures of structural biology and protein families. It reads a variety of file formats directly from the database web-sites including: PDB, chemical, electron density maps, sequence and alignment files. ICM-Browser provides a rich professional molecular graphics environment with powerful representations of proteins, DNA and RNA, and multiple sequence alignments. With the free ActiveICM plugin you can save fully interactive 3D files to display on the web or in Windows PowerPoint. You can also add and optimize hyrogens to PDB files, display hydrogen bonds, and display transparent ligand binding pocket property surfaces as well as other molecule sufaces. ### **Features** Please visit our product web pages for a full description of all the features in ICM-Browser and ActiveICM. ### **Download** Please follow the links below to download the software. | Getting Started: Download and Install ICM-Browser and ActiveICM. | | |------------------------------------------------------------------|----------------------| | Download ICM-Browser Distribution. | Download | | Install ICM-Browser Instructions. | Windows Linux<br>Mac | | Download ActiveICM Distribution. | Download | | Install ActiveICM. | Windows Linux<br>Mac | 1 Introduction 3 # 2 Help Videos on YouTube You can view webinars and how-to videos on many of the functions within ICM on YouTube. - Link to our YouTube Channel.Link to our Webinar Archives on YouTube. # 3 Reference Guide #### **Chapter Contents:** ICM-Browser Reference Guide ActiveICM Reference Guide - Create 3D Molecular Documents for the Web and PowerPoint #### Menu and Tab Reference Guide: Menu Option Guide Tab Guide # 3.1 Graphics Reference Guide Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Chemist | ICM-Pro For instructions on how to use ICM-Browser to make fully-interactive 3D slides and publish them in PowerPoint and the web please see the ActiveICM User Guide. ActiveICM is a free plugin for Windows PowerPoint and web browsers. Other related tutorials include: - Graphical Display: Molecule Representation, Coloring, Labeling and Annotation - Graphical Selections Tutorial - Creating Fully Interactive Slides for PowerPoint and the Web Tutorial ### 3.1.1 Download and Install ICM-Browser | Getting Started: Download and Install ICM-Browser and ActiveICM. | | | |------------------------------------------------------------------|----------------------|-------| | Download ICM-Browser Distribution. | Download | video | | Install ICM-Browser Instructions. | Windows Linux<br>Mac | | | Download ActiveICM Distribution. | Download | video | | Install ActiveICM. | Windows Linux<br>Mac | | ### 3.1.2 How to use the Graphical Display '; winRef.document.write(str); } | How to use the Graphical Display | | | |----------------------------------|--------------------|-------| | How to search the PDB. | HTML GUI<br>Manual | video | 3 Reference Guide 7 | How to Move a Structure in the Graphical Display. | HTML GUI<br>Manual | video | |--------------------------------------------------------------------|--------------------|-------| | How to use the Graphics window controls. | HTML GUI<br>Manual | | | How to use the ICM Workspace Panel | HTML GUI<br>Manual | video | | How to Display a Molecule. | HTML GUI<br>Manual | video | | How to Change Protein Representation. | HTML GUI<br>Manual | video | | How to Change Ribbon Representation. | HTML GUI<br>Manual | video | | How to color wire or xstick carbon atoms. | HTML GUI<br>Manual | video | | How to Display the Residues Surrounding the Ligand Binding Pocket. | HTML GUI<br>Manual | video | | How to remove chain breaks (dotted lines). | HTML GUI<br>Manual | video | | How to Color. | HTML GUI<br>Manual | video | | How to Change the Color of Molecule Representations. | HTML GUI<br>Manual | video | | How to Change the Background Color. | HTML GUI<br>Manual | video | | How to Display a Binding Pocket Surface | HTML GUI<br>Manual | video | | How to (Un)Display Hydrogens. | HTML GUI<br>Manual | video | | How to Save an ICM Object. | HTML GUI<br>Manual | video | | How to Save an ICM Project File. | HTML GUI<br>Manual | video | | How to Drag and Drop. | HTML GUI<br>Manual | | | How to: Right Click Options. | HTML GUI<br>Manual | | | How to Move Windows. | HTML GUI<br>Manual | video | | How to Arrange Windows | HTML GUI<br>Manual | video | # 3.1.3 How to make Graphical Selections | How to Make Selections. | HTML GUI Manual | | |---------------------------------------------|-----------------|-------| | How to Select an Object | HTML GUI Manual | video | | How to Select a Molecule | HTML GUI Manual | video | | How to Select Residues | HTML GUI Manual | video | | How to Select Atoms | HTML GUI Manual | video | | How to Make a Spherical Selection. | HTML GUI Manual | video | | How to Invert a Selection. | HTML GUI Manual | video | | How to Remove a Selection. | HTML GUI Manual | video | | How to Change the Selection Level and Mode. | HTML GUI Manual | video | | How to Check What is Selected. | HTML GUI Manual | | # 3.1.4 How to Convert Proteins, Display Hydrogens and Ligand Binding Pocket. | Convert Protein, Display Hydrogens and Ligand<br>Binding Pocket. | | | |------------------------------------------------------------------|--------------------|-------| | How to Convert a PDB Structure into an ICM Object. | HTML GUI<br>Manual | video | | How to Display Ligand Binding Pocket. | HTML GUI<br>Manual | video | | How to Display Hydrogen Bonds. | HTML GUI<br>Manual | video | # 3.1.5 How to change Graphics Effects | How to change Graphics Effects | | | |-------------------------------------|-----------------|-------| | How to display the FOG effect. | HTML GUI Manual | video | | How to display side-by-side stereo. | HTML GUI Manual | | | How to display Anaglyph stereo. | HTML GUI Manual | | | How to toggle full screen mode. | HTML GUI Manual | video | | How to adjust perspective. | HTML GUI Manual | | | How to change the lighting. | HTML GUI Manual | video | | How to display sketch accents. | HTML GUI Manual | video | ### 3.1.6 How to add Labels and Annotations | How to add Labels and Annotations | | | |----------------------------------------------|-----------------|-------| | How to Label Residues. | HTML GUI Manual | video | | How to Label Atoms. | HTML GUI Manual | video | | How to Label Variables. | HTML GUI Manual | video | | How to Display and Undisplay Sites. | HTML GUI Manual | | | How to Make and Display Sites (Annotations). | HTML GUI Manual | | | How to Make and Display 2D and 3D Labels. | HTML GUI Manual | video | # 3.1.7 How to Make High Quality Publication Images | How to Make High Quality Publication Images | | | |----------------------------------------------|-----------------|-------| | How to Toggle High Quality Display | HTML GUI Manual | video | | How to Toggle Antialiasing. | HTML GUI Manual | video | | How to Copy Image to ClipBoard | HTML GUI Manual | video | | How to Write an Image. | HTML GUI Manual | video | | How to Use the Advanced Write Image Options. | HTML GUI Manual | video | | How to Add an Image to the ICM Photo Album. | HTML GUI Manual | video | # 3.1.8 How to Superimpose Protein Structures. | How to Superimpose Protein Structures. | | | |----------------------------------------------------|-----------------|-------| | How to Superimpose Two or More Protein Structures. | HTML GUI Manual | video | # 3.1.9 How to Measure Distances and Angles. | How to Measure Distances and Angles. | | | |-------------------------------------------------|--------------------|-------| | How to Measure Distances Between Two Atoms. | HTML GUI<br>Manual | video | | How to Measure Distances From One Atom to Many. | HTML GUI<br>Manual | video | | How to Show Corresponding Distances in Two Objects. | HTML GUI<br>Manual | video | |-----------------------------------------------------|--------------------|-------| | How to Display the Ruler Bar. | HTML GUI<br>Manual | video | # 3.2 ActiveICM Reference Guide - Create 3D Molecular Documents for the Web and PowerPoint This guide is focused on how to make fully interactive 3D documents for Windows PowerPoint and the Web. For more information on the other features in ICM-Browser please see the ICM-Browser User Guide. # **Creating 3D Documents Is Straightforward** Creating fully interactive 3D documents for PowerPoint, the web, and standalone browser is straightforward. - Download ICM-Browser and the ActiveICM plugin. They are completely free! [video] - 2. Open the ICM-Browser and make a series of animated fully-interactive slides showing different colored and rendered views of your molecules. [video] - Add hyperlinked HTML text to annotate and link to your slides. [video] - 4. Save your file in ICM-Browser and then insert into PowerPoint or the web using the ActiveICM plugin. You can also share your documents in the standalone ICM-Browser. [video powerpoint] [video -web browser] ## 3.2.1 Getting Started | Getting Started: Download and Install ICM-Browser and ActiveICM. | | | |------------------------------------------------------------------|----------------------|-------| | Download ICM-Browser Distribution. | Download | video | | Install ICM-Browser Instructions. | Windows Linux<br>Mac | | | Download ActiveICM Distribution. | Download | video | | Install ActiveICM. | Windows Linux<br>Mac | | # 3.2.2 How to Create a Series of Fully-Interactive 3D Slides. | Creating Slides How to Create a Series of Fully-Interactive 3D Slides. | video | |------------------------------------------------------------------------|--------------------| | How to Make Fully Interactive 3D Slides | HTML GUI<br>Manual | <sup>&#</sup>x27;; winRef.document.write(str); } | How to Animate Slides | HTML GUI<br>Manual | |----------------------------------------------------------------------|--------------------| | How to View and Navigate Slides in the ICM-Browser. | HTML GUI<br>Manual | | How to Edit Slides. | HTML GUI<br>Manual | | How to Add Smooth Blending and Transition Effects<br>Between Slides. | HTML GUI<br>Manual | ### 3.2.3 How to Create Molecular Documents | How to Create Molecular Documents: Linking Slides to HTML Text. | video | |-----------------------------------------------------------------|--------------------| | How to Create an HTML Document. | HTML GUI<br>Manual | | How to Edit an HTML Document. | HTML GUI<br>Manual | | How to Make a Hyperlink Between HTML Text and a Slide. | HTML GUI<br>Manual | # 3.2.4 How to Display Molecular Documents in PowerPoint | How to Display Molecular Documents in PowerPoint | video | |--------------------------------------------------------------------|--------------------| | How to Embed in Microsoft PowerPoint 2003 | HTML GUI<br>Manual | | How to Embed in Microsoft PowerPoint 2007 | HTML GUI<br>Manual | | How to Use ActiveICM in PowerPoint | HTML GUI<br>Manual | | How to Change ActiveICM Component Properties in PowerPoint | HTML GUI<br>Manual | | Advanced use of ActiveICM: Macros to direct visualisation changes. | HTML GUI<br>Manual | # 3.2.5 How to Display Molecular Documents on the Web | How to Display Molecular Documents in Web Browsers | video | |----------------------------------------------------|-----------------| | How to Display Molecular Documents in Web Browsers | HTML GUI Manual | # 3.3 Menu Option Guide **Note:** Click **Next** (top right hand corner) to navigate through this chapter. Headings are listed on the left hand side (web version) or by clicking the **Contents** button on the left-hand-side of the help window in the graphical user interface. Here we describe all the options in the drop down graphical user interface menus. #### 3.3.1 File Menu #### 3.3.1.1 New This option allows you to create new peptides, dna, sequences etc... and is described in the Create New Objects chapter. #### 3.3.1.2 New ICM Session File/New ICM Session This option allows you to generate a new clear ICM session or clone the current one. #### 3.3.1.3 Open File/Open This option is described in the Open and Read chapter. #### 3.3.1.4 Open with Password File/Open with Password This option is described in the Open and Read chapter. #### 3.3.1.5 Extract from ICB File/Extract from ICB This option is described in the Open and Read chapter. #### 3.3.1.6 Load Options contained within the menu File/Load #### PDB - read PDB from FTP, http, and local PDB From Multiple Object File - A multiple object file will have a file extension \*.ob and you can select which member of the multiple object is displayed. PFam Alignment - PFam is a collection of multiple sequence alignments enter FASTA ID SwissProt - Download SwissProt sequence. All Images from Dir - Read into ICM multiple image files png or jpg. Electron Density Map - Download electron density map from Uppsala electron density server http://eds.bmc.uu.se/eds/ #### 3D Mesh in KMZ or COLLADA Format from Google - see http://sketchup.google.com/3dwarehouse/ to download KMZ or COLLADA. #### 3.3.1.7 Save Project This is described in the Save File chapter. #### 3.3.1.8 Save Project As This is described in the Save File chapter. #### 3.3.1.9 Save Project Compatible with ICM 3 5 #### File/Save Project Compatible with ICM 3\_5 Use this option to save a version of your ICM project compatible with an older version of ICM. Version 3.5 or older. If you have an ICM license you can update your version of ICM by visiting our support site at www.molsft.com/support #### 3.3.1.10 Save with Password To save a project which is protected by a password: - File/Save with Password - Enter a file name or browse for a previously saved project. - Enter a password - Determine whether you want the file to be **Fully Protected**, read only or Read Only and Allow Comments . #### 3.3.1.11 Export as ActiveICM Html To embed in a web browser. - Download ActiveICM from here http://www.molsoft.com/getbrowser.cgi?product=activeicm&act=list (it is free!). - Create an HTML page in ICM (File/New/Html). - Add a series of slides. - File/Export As ActiveICM Html.. 14 3.3.1 File Menu #### 3.3.1.12 Close Project To close a project: #### File/Close Project #### 3.3.1.13 Quick Image See the High Quality Publication Image chapter. #### 3.3.1.14 Write Image See the High Quality Publication Image chapter. #### 3.3.1.15 Preferences Preferences are described in the Preferences chapter. #### 3.3.1.16 Recent Files Recently viewed projects and files can be easily downloaded from the "Recent Files" option. To access this: - Select File/Recent Files. - Select the desired project by clicking on it once. #### 3.3.1.17 Recent PDB Codes Quickly retrieve and display PDB structures that have recently been viewed. - Select File/Recent PDB Codes - Select desired PDB code by clicking on it once and it will be loaded into the graphical display. #### 3.3.1.18 Quit Need to close down ICM - no problem. You do one of the following: - 1. Select File/Quit. ICM will quit without saving files. - 2. Save and Click **X** at the upper right corner of the ICM window. - 3. Type quit in the terminal window. **NOTE:** You may want to save the icm session as an ICM Project file before quiting. #### 3.3.2 Edit Menu #### 3.3.2.1 Delete This option will delete anything that is selected. #### 3.3.2.2 Delete All This option will delete everything e.g. sequences, structures, tables ... Use with care! 3.3.1 File Menu 15 #### 3.3.2.3 Select All This option will select everything e.g. sequences, structures, tables... #### 3.3.2.4 Search in Workspace This option allow you to search for a particular text in the workspace #### 3.3.2.5 Selection This option allows you to make a precise selection either by neighbors or specifying a particular atom or neighbor. Click on the tabs to jump between selection levels. #### 3.3.2.6 Invert Selection This option will select everything that is not currently selected. #### 3.3.2.7 Clear Selection This option will remove all selections. For more information on selections see the Making Selections Chapter. #### 3.3.2.8 Neighbor Selection This option will allow you to select neighboring atoms. For more information see the Select Neighbors section in the Selections Chapter. #### 3.3.2.9 Undo Due to the complexities of working in an internal coordinates environment not everything can be undone or redone. Certain things like coloring and representations can be undone or redone. #### 3.3.2.10 Redo Due to the complexities of working in an internal coordinates environment not everything can be undone or redone. Certain things like coloring and representations can be undone or redone. #### 3.3.2.11 Restore Recent Backup ICM periodically makes a backup of your ICM project. If for whatever reason you lose an ICM session and you want to load the backup for the file use: #### **Edit/Restore Recent Backup** #### 3.3.2.12 PDB Search See PDB Search Tab #### 3.3.2.13 PDB Search by Field See PDB Search Tab 16 3.3.2 Edit Menu #### 3.3.2.14 PDB Search by Identity See PDB Search Tab #### 3.3.2.15 PDB Search by Homology See PDB Search Tab #### 3.3.2.16 PDB Search with External Sequence See PDB Search Tab #### 3.3.2.17 Ligand Tools See the ligand editor section of the manual. #### 3.3.2.18 Ligand Editor Preferences See the ligand editor section of the manual. ### 3.3.3 View Menu 3.3.2 Edit Menu 17 #### 3.3.3.1 Undisplay All #### To undisplay everything currently displayed in the graphical display View/Undisplay All **Note** For more details on displaying structures please see the GUI Overview chapter. #### 3.3.3.2 Clear Display & Planes #### To clear the display and planes • View/Clear Display and Planes **NOTE:** For more details on planes please see the sections on clipping tools and mesh clipping. #### 3.3.3.3 Selection Level There are four levels of selection - atom, residue, molecule and object. For more details on selections please see the Making Selections section. #### 3.3.3.4 Selection Mode There are four different ways to make selections - new, add, remove and toggle. For more details on selections please see the Making Selections section. #### 3.3.3.5 Fog Fog Toggle(Ctrl + D): this feature creates a fog-like environment for your object, so that the part of your structure that is closer appears clear and the distant parts are faded as if they are in fog. The clipping planes control the point at which the fog begins. • View/Fog #### 3.3.3.6 Side-by-Side Stereo **Side-by-side stereo toggle**(Ctrl + S): this feature allows you to view your structure in 3D form without any 3D goggles. View/Side-by-Side Stereo #### 3.3.3.7 Hardware Stereo **Hardware stereo toggle**(Alt + S) - if you have 3D goggles and you wish to view your structure in 3D form, this feature will allow you to do so. View/Hardware Stereo #### 3.3.3.8 Full Screen **Full screen toggle**Alt\_F - this makes your graphical display fill the entire screen. If you wish to exit this mode, press escape. 18 3.3.3 View Menu View/Full Screen #### 3.3.3.9 Perspective **Toggle perspective Ctrl\_P** this will add perspective to your structure, enhancing depth in the graphical display. • View/Perspective #### 3.3.3.10 Full Scene Antialias Anti-aliasing is the technique of minimizing the distortion artifacts known as aliasing when representing a high-resolution signal at a lower resolution. Always use this option before making high resolution images. • View/Full Scene Antialias #### 3.3.3.11 High Quality **Toggle High Quality**: this option will give your ICM object better resolution and higher quality. The change in quality is most visible at a high magnification. However, if your object is very large, this feature could slow down your program. Always use this option before making high resolution images. • View/High Quality #### 3.3.3.12 Easy Rotate **Toggle easy rotation**: this feature is necessary if your structure is very large or perhaps your computer cannot quickly rotate it. It will prevent your structure from fully loading each time you rotate it, therefore speeding up the process. · View/Easy Rotate #### 3.3.3.13 Sketch Accents #### To make images as shown below use: • View/Sketch Accents See Graphics Effects chapter. #### 3.3.3.14 Animate View This tool is described in more detail in the Molecular Animations and Transitions section. #### 3.3.3.15 Drag Res Labels #### To change the location of your residue label: - Select View/Drag res labels. - If your mouse has a middle mouse button, then click on handle (as shown) of the label you wish to move, and drag it to your desired area. 3.3.3 View Menu 19 • If your mouse does not have a middle mouse button, then click on the Translation icon on the toolbar, and click on the handle (as shown) of the label you wish to move, and drag it to your desired area The +/- buttons on the side of the Residue and Atom buttons will shift the label. There are also other **residue label move** options available when you click and hold the residue label button. These options include **Shift to Sidechain Tips, Shift to Calphas**, and **Restore Positions** #### 3.3.3.16 Antialias Lines Use this option to activate antialias lines. It is recommended to leave this option selected. View/Antialias Lines #### 3.3.3.17 Color Background #### To change the background color - View/Color Background - Select a color from the panel and press OK. This option is also in the more convenient display tab. #### 3.3.3.18 Save Viewpoint It is possible to store a current view using the button shown below. Click on the button and the current view will be stored so that you can view it later. A data entry box will be displayed asking you to name the view. All stored views can be found in the ICM workspace as shown below. • Double click on the view in the ICM Workspace to display it. A number of view display options are available by right clicking on the view in the ICM workspace as shown below. 20 3.3.3 View Menu Store current view right click menu The option in the right click menu called "set view smooth" returns to the view slowly showing the trajectory between the original view and the current one. #### 3.3.3.19 Center #### To center on an object displayed in the graphical display - Make a selection on the region on which you wish to center on. - Tools/Center (or use the center button on the right hand-side of the graphical display). #### 3.3.3.20 Select by Purple 3D Box An alternative way to make a make-selection{selection} is to use the purple 3D box. To do this: - Select the **display** tab and the purple box button - View/ Select by Purple 3D Box - The atoms contained within the purple box will be selected. #### 3.3.4 Windows Menu This menu allows you to choose the windows you wish to display. The windows which open automatically when you first open GUI are shown in the Getting Started section. Other windows can be displayed by selecting the windows menu. For example, if you have loaded a table but cannot see it in the GUI it may be because the Tables option in the window menu hasnt been selected. To add or remove windows from the GUI display select the 'window menu'. Other windows not included in the default display such as tables and alignments can be added. 3.3.3 View Menu 21 I have windows open everywhere - Please bring some order. To return to the default display option select the 'Default layout' option in the windows menu. #### OR Click the default layout icon. ### 3.4 Tab Guide In this section we describe the contents of the tabs in the graphical user interface. 22 3.3.4 Windows Menu ### 3.4.1 Display Tab The display tab contains tools for a variety of functions including - structural representations, coloring, labeling and superposition. This tab is shown below. #### 3.4.2 Light Tab The options in this tab are described in the Lighting Section. #### 3.4.3 Labels Tab The options in this tab are described in the labels section of this manual. #### 3.4.4 PDB Search Tab Instructions on how to use this tab can be found in the Search PDB section. ### 3.4.5 Ligedit Tab Instructions on how to use the options in this tab can be found in the How to use the 3D Interactive Ligand Editor section. 3.4 Tab Guide 23 ### 3.4.6 Meshes Tab Click on the tab button entitled 'meshes' and three different graphical display tools are available for you to use. The three displays are surface, meshes and macroshape and are collectively referred to as meshes. The benefits and applications of each display are described in the section. 24 3.4.5 Ligedit Tab # 4 Getting Started #### **Chapter Contents:** - The Basics of the Graphical User Interface - How to search and Download Protein Structure, Sequences, and Chemicals - How to create new Objects - How to open files - How to save files - How to Make Selections - Changing Preferences # 4.1 The Basics of the Graphical User Interface Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist ### 4.1.1 The Components of the GUI The **Graphical User Interface** (GUI) has many components. When you first use the GUI the default window layout is displayed as shown below. #### 4.1.2 How to load a PDB Structure There are three main ways to read in a PDB file. - 1. Using the command line. - 2. Using File/Open button - 3. Using the PDB Search tab Other PDB search options are described in more detail in the PDB Search section of this manual. 4 Getting Started 25 # **4.1.3** How to Move a Structure in the Graphical Display Available buttons and options for moving molecules around the graphical display window. This is described in more detail in the section entitled Move Buttons. #### How to use the Graphics window controls In the graphics window you can use various tools described elsewhere but it is helpful to know the following things: - **Picking a tool**: the left mouse button will function according to the selected tool - Popup menus: right click on an atom gives a pop-up menu - Selecting in the rotation mode: the right mouse button will select atoms - Translating in the rotation mode: the middle mouse button will translate the scene - Zooming and moving clipping planes in the rotation mode: the left, top and right margins of the graphics window are reserved for other actions, zoom, z-rotation, and clipping plains, respectively. That means that even if you are picking atoms, by pressing control you can still rotate your molecule with the left-mouse-button. - Rotating in any non-rotation mode: if you press Control in any mouse mode, e.g. zoom, pick etc., it will temporarily switch to rotation - Escaping from the connect and continuous movement modes: pressing Escape helps to get out of certain modes, such as Full Screen, Continuous rotation or rocking, the Connect mode. - Global rotation in the Connected mode: pressing Shift will temporarily switch to the global rotation/translation mode. # **4.1.4 How to Display Molecules using the ICM Workspace Panel** The workspace panel (located on the left hand side panel of the gui) is an important place within the graphical user interface because it displays which sequences, structures, objects, tables and alignments are currently loaded into ICM. From the ICM Workspace panel you can make graphical selections and display and undisplay molecules. Once a structure has been loaded into ICM the individual components of that structure (i.e. amino acids, metal ions, binding sites etc) are listed in the ICM workspace. To display every component of the object except for binding sites and water atoms: Click on the white box next to the word object at the top of the ICM workspace. This box will be colored blue once the structure is displayed To display the whole structure in wire, ribbon, cpk, skin, surface and xstick representations: Right click on the blue box next to the word object. A menu will be displayed. Select which representation you desire for your structure by clicking on the appropriate word. A check mark indicates the representation currently displayed. To un-display a particular representation click on the word again. In order to clear your graphical display: • Select View/Undisplay All If you only wish to display part of the structure then click in the boxes further down the tree in the ICM workspace. To display selected regions of the molecule in wire, ribbon, cpk, skin, surface and xstick representations: • Right click on the appropriate box in the **ICM** workspace. A menu will be displayed and select the representation you would like to use (e.g. wire, ribbon etc...) #### 4.1.5 How to Make Selections Making selections in ICM is an important skill to master (e.g. you may want to select a binding pocket for docking or a region of a molecule for coloring). The four levels of selection are: - 1. Atoms - 2. Residues - 3. Molecules - 4. Objects (multiple molecules comprising a PDB entry) There are several ways of making selection in ICM. The simplest is to interact directly with the graphics window - **right-click**, **hold and drag** around the area of the screen you want to select. Alternatively, in the workspace window, expand the tree of molecules and chains until the relevant protein sequences is displayed. Then left click and drag to mark residues to form a selection. See the chapter entitled Making Selections for more information. ### 4.1.6 How to Change Protein Representation To change the representation of the protein, make a selection and then use the tools in the display tab. There are 6 main types of representation: - Wire: Wires connecting covalently bound atoms of a molecule. This representation has no defined thickness as such will not make shadows. Useful for showing the chemical structure of a small molecule. - Xstick: Covalent bonds are represented as cylinders whilst atoms are represented as small spheres. - CPK: Atoms are represented as spheres with their respective van der Waals radius and coloured according to a standard defined by Corey, Pauling and Kultun. - Surface: Solvent accessible surface. This is the center of water sphere as a water probe rolls over the molecule. - **Skin:** A Connolly molecular surface over the selection. This is a smooth envelope touching the van der Waals surface of atoms as a water probe rolls over the molecule. - Ribbons: Cartoon representation of protein and DNA secondary structure. Protein residues marked as alpha-helices ('H') are shown as a flat, helical ribbon, those marked as beta-sheets ('E') are shown as a flat ribbon with an arrow-head, and the rest are shown as a cylindrical "worm". If secondary elements are not defined everything will be shown as a cylindrical worm. ICM can automatically assign secondary structure: Tools/3D predict /Assign Helices and Strands # 4.1.7 How to Color To change the color of the representation you need to use the buttons in the display tab. Changing the colour of a representation works in much the same way as displaying the representation itself. The selection rationale is the same followed by clicking on a colour in the palette in the display tab. It is also possible to colour different representations of the same selection independently by clicking and holding on the representation buttons in the display tab. 4.1.7 How to Color 31 # 4.1.8 How to Display a Binding Pocket Surface To display the surface of a small molecule ligand or peptide binding pocket: - Load the PDB of interest. - Convert PDB to ICM object. If you do not convert you will not get the properties of the pocket displayed on the surface. - Right click on the small molecule or peptide in the ICM Workspace and select Ligand Pocket. # 4.1.9 How to Save an ICM Object Any ICM object such as a structure, sequence, or alignment, can be saved for use at a later time. To save an object: - Right click on the object name in the ICM workspace or ICM alignment editor and a menu will be displayed. - Click on the **Save As...** option. - Enter the unique name you wish to call your object in the box labeled **File name:** - Choose which folder or directory you wish to save your object by clicking scrolling down in the box labeled **Save in:** - Choose which file type you would like to save your object as by scrolling down in the box labeled Save as type. ICM structure objects should have the file ending yourfilename.ob and alignments yourfilename.ali - Once the appropriate information has been entered click on the Save button in the bottom right hand section of the window. - The object is now saved. To save an ICM object or PDB file right click and select SaveAs.. # 4.1.10 How to Save an ICM Project File All objects contained within an ICM session can be saved in a single file with the extension .icb. The file can then be read into ICM and the exact layout of the file will be preserved. To save a project file go to the **File** menu and select **Save Project**. # 4.1.11 How to Drag and Drop **NOTE:** "Drag and Drop" is a useful way of moving objects and sequences around the graphical user interface. Sequences and objects can be moved around the graphical user interface by dragging and dropping them. All loaded sequences and objects are always displayed in the workspace panel. Select the desired object or sequence from the workspace panel by clicking and holding, move the selection to the desired location and release. This is a useful application in the graphical user interface. For example, you may have an alignment displayed and you wish to add another sequence to the alignment. This can simply be accomplished by dragging a loaded sequence from the workspace panel into the alignment display panel. Or, you can quickly view an object by dragging and dropping it from the workspace panel into the 3D graphics window. # 4.1.12 How to: Right Click Options **NOTE:** If you right click on any object you will see a new menu of options related to that object. The right click mouse option can be used throughout the graphical user interface. It is a very useful means of opening up a whole new world of menus and options. Most of these options are described in this book. However, when using the graphical user interface it is always a good idea to try right clicking the mouse on an object and seeing which extra options that are available for you to use. ### 4.1.13 How to Move Windows Is your graphical user interface looking a bit messy? Do you have tables, alignments, plots all over the place? Here we show you how to arrange everything to make a clearer GUI environment. 1. Too many windows in your GUI? You can move them around to make viewing easier. **2.** Click and drag on a window title bar to move it. 3. Drop one window on another one to dock it. **4.** You can access each window by clicking on the tabs. **5.** In this example we have the table, alignment, and terminal all in the same panel **6.** There is a quick way to return the windows to their original location. 7. You can also move a window to any part of your screen. **NOTE:** To return to the default display option select the 'Default layout' option in the windows menu. OR Click the default layout icon. Some options can be accessed at the bottom of the GUI. OR Double click on the window header. ### 4.1.13.1 How to Arrange Windows Sometimes when using ICM you may have many items displayed such as structures, alignments and tables. As a default the graphical display is the largest and centered in the middle of the ICM graphical user interface. However if you wish to work on an alignment or table you can place the alignment or table as the main display by clicking on the buttons shown below. The larger display generally makes it easier to manipulate the alignment or table. There are ofcourse other ways to alter the layout such as tier the windows but this option is just a simple click and can sometimes come in useful. ### 4.1.14 How to Make a Picture There are several ways of taking a picture of the contents of the 3D graphical display window see the write image section. However the easiest way is to simply click on the button in the view tools panel (see image below). # quick high quality image Or select /File/Quick Image The picture will be automatically saved as a PNG file in the directory from which you loaded ICM. The default picture name is icm[n].png, where n is the number of pictures taken in one ICM session. To save in other picture formats and to change the file name see the write image section. # 4.2 How to search and download Protein Structure, Sequences, and Chemicals Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist The **Search** tab allows you to search and download content from the following databases: - The Protein Databank www.wwpdb.org search for protein and - The Pocketome Database http://pocketome.org/ - BLAST search the NCBI sequence database - The UniProt Sequence database http://www.uniprot.org/ - Search the PDB by ligand code. - Search Drug Bank http://www.drugbank.ca/ - Search PubChem https://pubchem.ncbi.nlm.nih.gov/ - Search ChEMBL https://www.ebi.ac.uk/chembl/ - Search SureChEMBL https://www.surechembl.org/search/ - Search the Crystallography Open Database http://www.crystallography.net/ Click on the search tab and then use the drop down menu to identify the database you would like to search and download from. ### 4.2.1 Search the PDB ### How to Search the Protein Databank and Download The **PDB** search tab provides easy access to the PDB database. You can use keyword searching or type in the PDB code you are interested in. An asterisk (\*) wildcard can be used to list all the pdb files currently available in the protein databank. Different fields can be searched by using the drop down arrow as shown below. More advanced PDB search tools and how to use the PDB search result table are described in the section entititled Searching the PDB. Once a search is complete a table of PDB files relating to your search query will be displayed. To view the PDB file in 3D in the graphical display double click on a row in the PDBSearchResults table. ### To Search the PDB and Download a Structure: - Click on the search tab and enter a search string or PDB code. - A table containing the results will be displayed. - Double click on a row to load the PDB file. Read more about PDB search here. NOTE: If you have a PDB structure already saved you can read it into ICM by going to the File Menu and selecting Open. PDB files that have been viewed previously can be loaded using File/ Recent PDB Codes. # 4.2.1.1 How to Search the Protein Databank by Chemical Substructure **Step 1:** Click on the molecule editor button inside the search tab. Sketch the substructure you are interested in. **Step 2:** A table containing the results will be displayed. Double click on a row to load the PDB file. # 4.2.1.2 How to Query the PDB by Sequence There are a number of ways to search the PDB by sequences. - BLAST search the NCBI datase using the option "Sequences from PDB". - 2. Search by **Sequence Pattern** using the option in the Edit menu. - 3. Search by **Identity** using the option in the Edit menu. - 4. Search by **Homology** using the option in the Edit menu. # 4.2.1.3 How to Query PDB by PDB Field # To query the PDB by field (Author, Compound, PDB Header, Experiment Type, Resolution or Ligand Code - Select Edit/PDB search by field. - Enter the search string or value - Click **OK** and a list of related PDB entries based on your search will be displayed in the PDBSearchResults table of the graphical user interface. ### 4.2.1.4 Load and Display NMR Structures Use the PDB Search tab to load NMR structures from the PDB. You can use the drop down button shown below to determine how you want to display your NMR structure. You can choose to display and download the first NMR model, all models in the PDB file or all models in the PDB in a stack. If you choose the stack option the the stack will be stored in the object as described here. Click for drop down m ### 4.2.1.5 Occupancy Display You can use the options in the PDB Search tab to control if and how the partial or zero atom occupancies are displayed. You can choose to circle or label the poor occupancy atoms. >>load-pdb-hyperlinks{pdb search hyperlinks} h4-- Hyperlinks to PDB Website and UniProt {Hyperlinks to Databases} In the PDB Search Results Table you will see blue hyperlinks that will take you directly to the PDB website or Uniprot website. # 4.2.1.6 Display PDB Header To display the PDB Header for a PDB file. - First load a PDB file into ICM (see Search PDB) - Double click on the word header in the ICM Workspace. - The PDB Header information will be displayed. - Click on the blue hyperlinked text to link to external web pages for additional information if needed. ### 4.2.1.7 Direct link to PubMed When you search for a PDB file and load it into ICM you will see an icon (shown below) next to your protein name in the ICM Workspace. Click the icon and you will be taken directly to the PubMed primary reference relating to the structure. ### Direct access to PubMed # 4.2.2 Search Pocketome The Pocketome (www.pocketome.org) is an encyclopedia of conformational ensembles of all druggable binding sites that can be identified experimentally from co-crystal structures in the Protein Data Bank. **Step 1:** Click on the search tab and choose the Pocketome option. Check a field you would like to search e.g. Protein Name, Family, domain... **Step 2:** A table of pocketome hits will be displayed. Browse the results and double click to load a pocketome entry. 4.2.2 Search Pocketome 45 # 4.2.3 ChEMBL Search ChEMBL (https://www.ebi.ac.uk/chembl/) is a manually curated chemical database of bioactive molecules with drug-like properties. It is maintained by the European Bioinformatics Institute (EBI), of the European Molecular Biology Laboratory (EMBL), based at the Wellcome Trust Genome Campus, Hinxton, UK. To search and download data from ChEMBL: - Click on the Search tab. - Choose ChEMBL from the drop down button. - Enter a search string or search by chemical sketch by clicking on the editor button in the panel. - Select a field to search e.g. Protein Name. - Select whether you wish to return just activity data or all data. - Click the search button. A table will be displayed as shown below. The table contains the original activity data without merging or aggregation. For instance, Chemical 1, Protein 1, Activity 1 Chemical 1, Protein 1, Activity 2 Chemical 1, Protein 2, Activity 1 Chemical 2, Protein 1, Activity 1 Click on the button **Get Best Activity** to display the best activity for each chemical, protein pair. For instance, Chemical 1, Protein 1, Best(Activity 1, 2, 3, ...) Chemical 1, Protein 2, Best(Activity 1, 2, 3, ...) Chemical 2, Protein 1, Best(Activity 1, 2, 3, ...) Click on the button **Get Ligand Summary** to display a list of chemicals with all activities found in ChEMBL. For instance, 46 4.2.3 ChEMBL Search ### Chemical 1, Protein 1, Activity 1 Protein 1, Activity 2 Protein 2, Activity 1 Protein 3, Activity 1 # Chemical 2 Protein 1, Activity 1 Protein 2, Activity 1 Protein 2, Activity 2 ### 4.2.4 Search SureChEMBL SureChEMBL (https://www.surechembl.org/search/) provides free access to chemical data extracted from the patent literature. To search SureChEMBL: - Click on the **Search** tab. - Choose SureChEMBL from the drop down button. - Enter a search string or search by chemical sketch by clicking on the editor button in the panel. - Select a field to search e.g. Protein Name. - Select whether you wish to return just activity data or all data. - Click the search button. ### 4.2.5 BLAST Search To BLAST search the NCBI sequence database: **Step 1:** Load a sequence into ICM. Select the Search tab and choose the BLAST option. Drag and drop the sequence into the search field, use the drop down menu or type the sequence name. **Step 2:** A fully interactive table and plot of sequence conservation will be displayed. Double click to load a sequence. ### 4.2.6 Search UniProt 48 4.2.5 BLAST Search **Step 1:** Click on the search tab and select **Uniprot** from the drop down menu. Enter the UniProt code. The sequence will be loaded directly into ICM and you will see it in the ICM workspace. # 4.2.7 Search PDB by Ligand Code To find structures containing a particular ligand in the PDB. **Step 1:** Click on the search tab and select **Ligand Code** from the drop down menu. Enter the Ligand code and a table of hits will be displayed. # 4.2.8 Search Drug Bank To search Drug Bank (http://www.drugbank.ca/) 4.2.6 Search UniProt 49 **Step 1:** Click on the search tab and select **Drug Bank** from the drop down menu. Enter a search string and a table of results will be displayed. The table contains the original activity data without merging or aggregation. For instance, Chemical 1, Protein 1, Activity 1 Chemical 1, Protein 1, Activity 2 Chemical 1, Protein 2, Activity 1 Chemical 2, Protein 1, Activity 1 Click on the button **Get Ligand Summary** to display a list of chemicals with all activities found in Drug Bank. The button is located in the extra panel (click on hammer - top right of table panel). For instance, **Chemical 1, Protein 1, Activity 1** Protein 1, Activity 2 Protein 2, Activity 1 Protein 3, Activity 1 ### Chemical 2 Protein 1, Activity 1 Protein 2, Activity 1 Protein 2, Activity 2 # 4.2.9 Search PubChem To search PubChem (https://pubchem.ncbi.nlm.nih.gov/): - Click on the search tab and select **PubChem** from the drop down menu. - Enter a search string and a table of results will be displayed or click on the chemical sketch button and sketch a substructure. When you close the chemical sketch window the smiles string will be added to the keyword search panel. Click on the "binocular" button and run the search. - A table of hits will be displayed. # 4.3 Create New Objects Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist In the File menu there is an option called New. This option can be used to create new objects of the following types: - Peptide - Unusual Peptide - Compound - DNA and RNA - Sequence - Script - HTML - Table - Arrow - Box - Sphere/Ellipsoid 4.2.9 Search PubChem 51 # 4.4 Open and Read Files Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist Any file that ICM can understand can be opened by: • Selecting File/Open. A file with an extension .icb is an ICM binary file and can be viewed in the GUI. A .icb file can contain many objects such as sequences, meshes, protein objects, alignments, tables etc... # 4.4.1 Open with Password To open a file that is password protected: • File/Open with Password # 4.4.2 Extract from icb file An **icb** file is an icm project file, in some instances you may want to take objects saved in an icb file and load it in your current ICM session. This option allows you to view a tabulated list of what a icb file contains and load individual object files from it. - File/ Extract from ICB. - Locate the saved icb file. - A table as shown below will be displayed - Double-click on any of the entry to extract that object from the icb file. # 4.5 Saving Files Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist Anything you have displayed in an ICM graphics session can be conveniently stored in a single file called an .icb file. To do this: • File/Save Project or • File/Save Project As # A .icb file can be password protected by: - File/Save with Password - Enter a file name or browse for a previously saved project. - Enter a password - Determine whether you want the file to be Fully Protected, read only or Read Only and Allow Comments. # Any object (e.g. protein,table, alignment...) inside the ICM GUI can be saved by: - Right click on the name of the object in the ICM Workspace. - Select "Save As" - Choose the file format from the "Save as Type" drop down dialog. # 4.6 Making Selections Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist **Note:** Click **Next** (top right hand corner) to navigate through this chapter. Headings are listed on the left hand side (web version) or by clicking the **Contents** button on the left-hand-side of the help window in the graphical user interface. There will be many occasions when you will have to make selections. For example, if you want to display a particular region or molecule contained within your protein structure or if you want to select residues around a binding pocket. If you have a molecule displayed in the graphics window, then selections will be displayed as green crosses. The selection you have made is also displayed at the top of the ICM Workspace. It is always a good idea to keep an eye on what is selected and what isnt. There are four basic levels of selection - Object (eg a PDB structure or ICM object) - 2. Molecule - 3. Residue - 4. Atom You can make selections in: - The Graphics Display - The ICM Workspace (Selections are highlighted in blue) - Tables - Sequences - Plots 54 4.5 Saving Files • Alignments # 4.6.1 Graphical Selection Tools The following buttons can be used to make a selection once a structure is displayed. **NOTE:** All selection tool buttons are colored green. Graphical selections are represented as green crosses. # 4.6.2 Quick Selection To make a quick selection the following buttons can be used. ### To select parts of your structure: Click on the Rectangular selection icon and click and drag around the part of the structure you wish to select. OR • Click on the **Lasso selection icon** and click and drag your mouse around the area of the structure you wish to select, forming a lasso around it. # To pick individual atoms: • Click on the 'pick atom' button 4.6 Making Selections 55 # 4.6.3 How to Change the Selection Level and Mode It is possible to change the level of selection before or during the building of a selection. The selection level drop-down button can be used to do this (see image below). For example, a C-alpha of a residue is selected but one would like to select all atoms in the residue. You can change the level to **Residues.** This selection can then be changed into all atoms of the residue by then selecting the **Atoms** level again. Or you can use the **Propagate Selection to all Atoms** button (see image below). Click on the Select objects, Select molecules, Select residues, or Select atoms icon, depending on which part of the structure you wish to be highlighted. It is also important to observe the selection mode that is being used. There are four modes: - New: new selection replaces everything selected before - Add: new selection is added to previous selection(s), if any - Remove: previously selection (part or whole of it), if included in the new selection will be unselected. - Toggle: within the new selection, everything that has been selected is unselected and everything that hasni; the been selected, wilbe selected ### 4.6.4 How to check what is selected. All selections are displayed as green crosses in the graphical display and blue in the ICM Workspace. All green selections are returned to a variable called as\_graph. # 4.6.5 Orange Selection Sometimes it is necessary to have two different selections. The Orange selection allows you to do this it is useful for such operations as superposition and more technical procedures such as designing a protein loop. The orange selection is returned to a variable called as 2\_graph. # 4.6.6 Clear Selection # To unselect everything you have previously selected: • Simply click on the **Clear Selection** button on the selection toolbar. OR • Right click and drag away from the displayed structure. # 4.6.7 Changing a Selection Once you have made a selection you may wish to add or remove parts of the selection. The buttons shown below allow you to accomplish this. ### To add or remove from your current selection: - Click on the Selection mode: add or Selection mode: remove icon on the toolbar. - Click and drag around the part of your structure you wish to add or remove. # You may also wish to invert your selection in a specific part of the structure. The parts that are currently selected will become unselected, and the unselected parts will become selected. In order to invert a selection: • Click on the **Invert** icon on the toolbar. 4.6.6 Clear Selection 59 If you wish to select and unselect certain regions of a selection the toggle selection button is very useful. - Click on the Toggle selection button. - Right click around the selections you wish to select or unselect. **NOTE:** The selection you have made is recorded at the top of the ICM workplace. Any selection is stored in the variable as\_graph. # 4.6.8 Filter Selection You may want to be very specific about a selection you want to make. For example you may only want to select protein backbone atoms or you might want to just select the charged residues. The button shown below enables you to filter your selection: Or Right click on a selection and a menu as shown below will be displayed. - Select the Filter Selection option. - A dialog box will be displayed as shown below. - Select what level of selection you want e.g. atom or residue. # 4.6.9 Workspace Selections In the default GUI layout the workspace panel is located to the left of the 3D graphics display. It is a great tool for keeping track of all your sequences, pdb structures, objects, tables and alignments. As you will see in this section it also provides a way of making selections. 4.6.8 Filter Selection 61 # 4.6.10 Workspace Navigation Once you have mastered how to navigate the ICM workspace making a selection will become easier. Each object is divided into 3 levels: - Object Level Shown in red if it is the current object. Holds details about the structure name, X-ray, NMR, resolution etc. Importantly it will state whether the structure is an ICM object or a structure straight from the PDB. To learn how to convert a PDB into an ICM object go to the section on converting a PDB. - Molecular Level Shows the individual subunits, ligands and hetatoms of a molecule. - 3. Residue Level Shows the sequence. Click to expand tree **NOTE:** You can expand each level of the ICM workspace by clicking the "+" button as shown above. # 4.6.11 How to Select an Object ### To select the whole object: • Double click on the object level. Use the CTRL button to select multiple non-contiguous objects or if they are continuous you can use double click and hold the tab button. ### 4.6.12 How to select a Molecule ### To select a molecule(s): • Double click on the molecule in the ICM workspace. Use the CTRL button to select multiple non-contiguous molecules or if they are continuous you can use double click and hold the tab button. # 4.6.13 How to select Residues There are different options to select residues: ### **OPTION 1:** Click and drag over the residues you wish to select in the ICM workspace. Selected residues will be highlighted in dark blue in the workspace and with green crosses in the graphical display. ### Selection information is recorded here Any selection is highlighted in the workspace as well as in the 3D graphics window if the structure is displayed. ### **OPTION 2:** - Click on the rectangular selection icon or lasso selection icon on the toolbar. - Click and drag around the residues you wish to select. Selected residues will be displayed by green crosses on the graphical display and blue in the ICM workspace. - Use the propagate selection to residue level button. ## **OPTION 3:** • Right click on the a residue in the graphical display and a menu as shown here will be displayed. - Click on **Select** and a further menu will be displayed. - Click on Residue, Molecule or Object. ### **OPTION 4:** Use the select residue button. # 4.6.14 Select All Ctrl + A will select everything in the ICM workspace, and Ctrl + Shift + A will unselect your objects. **NOTE:** The selection you have made is always recorded at the top of the ICM workplace. If you are familiar with using the ICM terminal (See language manual) the atoms, residues, molecules or objects selected interactively in the graphics window are automatically s # 4.6.15 Selecting Neighbors In some instances you may only want to display or select only a subset of a structure. For example you may only wish to display the residues surrounding a ligand (as shown below (ligand red; graphical selection green crosses). The "Selecting Neighbors" option selects the residues within a shpere of a defined radius. There are two ways of selecting neighbours to a particular atom or residue in ICM. Either by right clicking on the atom or residue in the graphical display or by right clicking in the ICM workspace. 4.6.14 Select All 65 # 4.6.16 Selecting Neighbors: Graphical To select neighboring atoms or residues around a sphere of a certain radius: - First select the residue(s) or atom(s) around which you wish to select neighbors. (See the Selection Toolbar Section) - Right click on the selection and a menu as shown below will be displayed or choose Tools/Geometry/Neighbors. Select the Neigbors option and a data entry box as shown below will be displayed. This option will allow you to make a spherical selection. The window will open as displayed as below: - Select the molecule you wish to select neighbors around. For example you can select a ligand in the ICM Workspace and then choose the **Graphical Selection** option in the "Select Neighbors For" dialog entry box. Or alternatively you can select the object by clicking on the drop down button next to the "Select Neighbors For" dialog entry box. - Enter the radius in Angstroms for the neighbor selection. e.g. 5. - Type this option is important. This option relates to what is going to be selected. For example if you leave this option as visible and you only have ribbon representation displayed for your receptor (e.g. when selecting neighbors for a ligand) then only backbone atoms will be selected. ## Selection **Type** option includes: - visible will select all atoms displayed within the radius selected. - **visible sidechains** will select all visible side-chains not backbone atoms. - **same\_object\_other\_chains** will select all atoms in other chains in the same object as the original selection. - other objects will select atoms in objects other than the original selection. - same object will select atoms in the same object as the original selection. - all objects will select atoms in all objects - **choose\_from\_list** will allow you to select the object you wish to include in the neighbors selection. - **exclude source** if checked will not include your original selection in the spherical selection. - unselect water if checked will not select water molecules - Undisplay Beyond Selection will only display the atoms selected. **NOTE:** The selection you have made is always recorded at the top of the ICM workplace. If you are familiar with using the ICM terminal (See language manual) the atoms, residues, molecules or objects selected interactively in the graphics window are automatically saved in the variable as\_graph. Graphical selections are shown in green (crosses) or highlighted in blue in the ICM Workspace. ## 4.6.17 Selecting Neighbors: Workspace To select neighboring atoms or residues around a sphere of a certain radius from a residue in the ICM workspace: - First select the residue in the ICM workspace around which you wish to select neighbors. (See the Residue Selection) - Right click on the selection and a menu as shown below will be displayed. - Select the Neigbors option and a data entry box as shown below will be displayed. - Follow the instructions in the previous section. **NOTE:** The selection you have made is always recorded at the top of the ICM workplace. If you are familiar with using the ICM terminal (See language manual) the atoms, residues, molecules or objects selected interactively in the graphics window are automatically s ## 4.6.18 Select by Residue Number #### To select by residue number: - Right click on the molecule you wish to make the selection in and choose Select/Res Number... - Enter the residue numbers e.g. 3,7:12,30 Colon indicates range. ## 4.6.19 Alignment and Table Selections Descriptions on how to make selections in Alignments and Tables are in the sections entitled Making Selections in Alignments and Making Table Selections. ## 4.6.20 Making Links It is sometimes necesary to make links between sequences objects and alignments. A link enables you to make selections in one environment such as an alignment and then these selections are transferred to the object such as the PDB structure displayed. If a link is made then a symbol will be displayed next to the object in the ICM workspace. In the example shown below subunit\_a of the X-ray structure 1ql6 is linked to the sequence 1ql6\_a and the alignment called 'alig'. # Linked to alignment 'alig' ightharpoonup objects (2 items) ighth #### Linked to sequence 1ql6\_a If an object is linked to an alignment a symbol as shown below will be displayed. To link a sequence from an object - extract the sequence from the object. - Right click on the object in the ICM workspace. - Select extract sequence. To link a sequence and object to an alignment. Use the extracted sequence as described above to build your alignment. In addition a link can be made between a structure and alignment by: - Bioinfo/Link to Structure. - Enter alignment name. - OK # 4.6.21 Tags It is sometimes convenient to tag selections so you can come back and use them at a later date. To do this: **Step 1.** Select the region you wish to tag. 4.6.20 Making Links 69 **Step 2.** Right click on the selection and choose Annotation/Add a Tag. **Step 3.** Give the tag a name and choose the selection level (atom, residue, molecule, or object). 70 4.6.21 Tags **Step 4.** You will see the tag in the ICM Workspace. You can toggle the display on or off or select the tag by double clicking on it in the ICM Workspace. # 4.7 Preferences ## Your ICM preferences can be changed by: • Select File/Preferences. **NOTE:** There is a "Reset to Default" button in case you make any changes you are not happy with and also a search option. 4.7 Preferences 71 ## 4.7.1 Bonds Preferences To change Bond Preferences: - Select File/Preferences. - Choose the Bonds tab. **GRAPHICS.ballStickRatio** - A default ratio of ball and stick radii. This ratio is applied when the styles are switched from the GUI xstick toolbar. Default (1.4) **GRAPHICS.hbond Ball Period** - Default (3) **GRAPHICS.hbondMinStrength** - parameter determines the hbond strength threshold for hbond display. The strength value is between 0. and 2. By changing 1. to 0.2 you will see more weak hydrogen bonds. Default: (1). **GRAPHICS.hbondStyle** - determines the style in which hydrogen bonds are displayed. Here hbond-Donor, Hydrogen, and hbond-Acceptor atoms will be referred to as D, H and A, respectively, **GRAPHICS.hetatmZoom** - The default ball and stick radii of a ligand can be different by the GRAPHICS.hetatmZoom factor. This makes a better ligand view since the ligand stands out from the surrounding protein atoms. **GRAPHICS.stickRadius** - radius (in Angstroms) of a cylinder displayed as a part of stick or xstick graphical representation of a molecule. Individual (residue-wide) control of stick radii. **GRAPHICS.xstick Backbone Ratio** - Default (1.2) GRAPHICS.xstick Style - xstick style wireBondSeparation the distance between two parallel lines representing a chemical double bond if wireStyle = "chemistry". Default (0.2 Angstroms). GRAPHICS.distance Label Drag - enable distance label dragging **GRAPHICS.hbondAngleSharpness** determines how the strength depends on the D-H...A(lone pair) angle. The preference can be found the general Preferences menu Default (1.7) GRAPHICS.hbond Ball Style even, by atom size, by energy or telescopic **GRAPHICS.hbond Rebuild** GRAPHICS.hbondWidth relative width of a displayed hbond. **GRAPHICS.hydrogenDisplay** determines the default hydrogen display mode for the display command. ``` GRAPHICS.hydrogenDisplay = "polar" 1 = "all" # all hydrogens are shown 2 = "polar" <-- current choice # polar displayed, the non-polar hidden 3 = "none" # no hydrogens are displayed</pre> ``` **GRAPHICS.wire Width** - relative width of wire Default (1) **GRAPHICS.xstick Hydrogen Ratio** - Default (0.5) **GRAPHICS.xstick Vw Ratio** - Default (0.6) Wire Style - change the default wire style ## 4.7.2 Directories Preferences #### **DIRECTORIES TAB:** To change Directory Preferences: - Select File/Preferences. - Choose the **Directories** tab. Within this tab you can select the default directories for: **FILTER.gz, FILTER.uue, FILTER.Z, Filter.zip** allows you to read compressed files .gz, .uue, .Z, and, .zip files automatically leaving the compressed file intact. **PDB Directory Style** - The style of your Protein Data Bank directory/directories. ICM will understand all of the listed styles, including distributions with compressed \*.gz , \*.bz2 and \*.Z fil es **BlastDB Directory** - return directory with Blast-formatted sequence files for ICM sequence searches. You can download Blast formatted databases from here ftp://ftp.ncbi.nih.gov/blast/db/ **Dock Directory** - Default directory for storing docking files. **CCP4 Directory** Editor - Select a default text editor **Inx Directory** - location of stored index (\*.inx) files. **Log Directory** - when you quit an icm-session, a \_seslog.icm file is automatically stored. If the s logDir variable is empty, it is stored to the s\_userDir + "/log/" directory. However one can redirect it to the current working directory (".") or any other directory. ## **Output Directory -** **PDB Directory** - directory containing the PDB database of 3D structures. These files can also be easily downloaded directly from the PDB site if the variables are set as in the example below. PDB distributions can exist in several styles (all files in the same directory, or divided etc.). ## **PDB Directory FTP** #### PDB Directory Web Projects Directory - Select the default location for storing ICM projects. Save your data in an ICM project. It is a convenient way of keeping all your structures, alignments, tables, docking results etc... in one place. A description on how to save an ICM project is described in the GUI Basics section of this manual. **Prosite Dat** - location of the prosite dat file a dictionary of protein sites and patterns, (Copyright by Amos Bairoch, Medical Biochemistry Department, University of Geneva, Switzerland). Ps Viewer - Select a postscript viewer **Swissprot Dat** - location of swissprot.dat file **Temp Directory** - scratch directory for temporary files ( some montecarlo files will be saved there ). Uniprot Dat - location of uniprot.dat file **XPDB Directory** - Path to the ICM XPDB database of compact binary ICM objects which are annotated with the site information. The advantage of the XPDB database is the speed of reading and smaller size than PDB. XPDB entries are read about 80 times faster! ## TOOLS.default ChemDB ## **TOOLS.eds Directory** #### **TOOLS.pdb Read Nmr Models** ``` 1. = "first" : reads only one model from a multi-model (e.g. NMR) pdb file 2. = "all" : reads all models from a multi-model (e.g. NMR) pdb file and creates a separate 3. = "all stack" : creates one object and loads all other models as a stored cartesian stac ``` # 4.7.3 Graphics Preferences To change Graphics Preferences: - Select File/Preferences. - Choose the **Graphics** tab. **Atom Single Style** - display style of isolated atoms in the wire mode. - 1. "tetrahedron" - 2. "cross" - 3. "dot" **GRAPHICS.clash Style** - choose clash length, strain or length. **GRAPHICS.clip Grobs** - enable grob clipping. **GRAPHICS.clip Static -** **GRAPHICS.grobLineWidth** - relative width of displayed lines of 3D meshes (grobs). Also affects the interatomic distance display. **GRAPHICS.lightPosition** - X ,Y and Z position of the light source in the graphics window. The X and Y coordinates are usually slightly@@ beyond the [-1. 1] range where [-1.,1.] is the size of the window, and the Z position is perpendicular to the screen and is set to 2. (do not make it negative). **GRAPHICS.occupancyDisplay** preference controlling if and how the partical or zero atom occupancies are displayed. The abnormal occupanices are shown as circles around atoms. These following values are allowed. ``` = "none" # nothing is displayed = "circle" # a circle is displayed = "label" # a circle and a lable with the value (zero values are not shown) ``` **GRAPHICS.quality** - integer parameter controlling quality (density of graphical elements) of such representations as cpk, ball, stick, ribbon . Do not make it larger than about 20 or smaller than 1. **GRAPHICS.ruler Style** - change ruler from center to side **GRAPHICS.stereoMode** - 1. "up-and-down", 2. "line interleaved" 3. "in-a-window" - a simple hardware stereo mode for workstations with a horizontal frame splitter. - In the "up-and-down" mode a longer frame with two stereo images on top of each other is generated and the two halves are then superimposed with the splitter. This mode does not require anything from a graphics card, but does require a frame splitter. A frame splitter box was connected between a monitor and a graphics card output. This mode has an unpleasant side effect, the rest of the screen (beyond the OpenGl window) becomes stretched and the lower part of the screen is superimposed on the top half. - The "line interleaved" mode can be used with a new type of frame splitter at the line level. In this case the odd lines from one stereo-image are interleaved with the even lines of another. The side-effect of this mode is that the intensity is reduced in half since at each moment one sees only one half of the lines. The splitter device for this mode can be purchased from Virex (www.virex.com). This mode produces a dark stereo image but is easily available (requires stereo goggles, e.g. from Virex). The "in-a-window" mode is used in SGI workstations and in a Linux - The "in-a-window" mode is used in SGI workstations and in a Linux workstation with an advanced graphics card supporting a quad graphics buffer. In this mode the hardware stereo regime applies only to an OpenGI window. This is the best mode but it requires an expensive graphics card (plus the stereo goggles). **GRAPHICS.surfaceDotDensity** - Determines the number of dots per square Angstrom on the graphical solvent accessible surface. **GRAPHICS.surfaceProbeRadius** - An increment to the van der Waals radii of atoms at thich the dotted atomic surface is calculated. It is used by the display surface command to display dotted van der Waals surface. If the GRAPHICS.surfaceProbeRadius is set to 1.4 the surface becames equivalent to the solvent accessible surface with a probe of 1.4A **GROB.arrowRadius** - a real arrow radius in Angstoms used by the Grob( "ARROW", R\_) function. Default: 0.5. **GROB.contourSigmaIncrement** - a real increment in the sigma level used to re-contour an electron density map using the make grob m\_eds add r\_increment command. This parameter is used in the GUI when plus and minus are pressed. **GROB.relArrow Size** - a real ratio of the arrow head radius to the arrow radius. This parameter is used by the Grob( "ARROW", R\_) function. Default: 3.0. **shineStyle** - defines how solid surfaces of cpk , skin and grobs reflect light. Possibilities: ``` 1. "white" <- default ``` 2. "color" The first option gives a more shiny and greasy look. **GRAPHICS.center Follows Clipping** - determine the function of center button. **GRAPHICS.clashWidth** - relative width of a displayed clash. **GRAPHICS.clip Skin** - enable skin clipping. **GRAPHICS.displayMapBox** - controls if the bounding box of a map is displayed **GRAPHICS.light** - a rarray of 13 elements between 0. and 1. which controls the main properties of lighting model in GL. **GRAPHICS.mapLineWidth** - relative width of lines and dots of a displayed map. **GRAPHICS.occupancy Radius Ratio** - preference controlling the radius of the partical or zero atom occupancies #### **GRAPHICS.resize Keep Scale** **GRAPHICS.selectionStyle** - preference for the style in which the graphical selection is shown. The preference may have the following values. **GRAPHIC.store Display** - maintains representation and coloring for an object. **GRAPHICS.surfaceDotSize** - Determines the size of the dot on the solvent accessible graphical surface. **GRAPHICS.transparency** - Two parameters regulating the transparency of grobs. **GROB.atomSphereRadius** - default radius (in Angstroms) which is used to select a patch on the surface of a grob. **GROB.relArrowHead** - a real ratio of the arrow head radius to the arrow radius. **lineWidth** - the real width of lines used to display the wire representation of chemical bonds. #### 4.7.4 GUI Preferences #### **GUI TAB:** The options contained within the Preferences/Gui tab are described below. **GRAPHICS.** alignment Rainbow - This option controls how alignments are colored by default. **GRAPHICS.NtoC Rainbow** - Controls the coloring of structural representation from the N-terminal to the C-terminal **GRAPHICS.rocking** - Controls default rocking motion. **GRAPHICS.rocking Speed** - Controls rocking or rotation speed. **GUI.auto Save Interval** - Controls auto save period (minutes) GUI.table Row Mark Colors - Controls colors used for marking tables. **GUI.workspaceTabStyle** - Controls the style of ICM-object tabs created in the workspace panel of ICM GUI. **Movie.fade Nof Frames** - Controls number of frames for the fade out option in screenshot movie making. Movie.quality - Controls the resoltuion of the movie **SEQUENCE.site Colors** - Controls coloring of squence sites. **SLIDE.ignore Fog** - Fog representations can be ignored in slide preparation if desired. **GRAPHICS. discrete Rainbow -** **GRAPHICS.rainbow Bar Style** - determines if and where the color bar will appear after a molecule is colored by an array. **GRAPHICS.rocking Range** - real value of rocking range. GUI.auto Save - auto save on or off GUI.max Sequence Length - maximum sequence length displayed in ICM GUI.workspace Folder Style - Workspace folder style. **MOVIE.frame Grab Mode** - with screenshot movie making you can choose either fixed frame time or real time. **Movie.quality Auto** - with screenshot movie making you can allow ICM to control the movie resolution. ${\bf SLIDE.ignore\ Background\ Color}$ - Ignore background color when you are making a slide. #### 4.7.5 GUI Preferences To change GUI Preferences: - Select File/Preferences. - Choose the **GUI** tab. **Quality** - controls the quality (density of graphical elements) of such representations as cpk, ball, stick, ribbon. Do not make it larger than about 20 or smaller than 1. We recommend to make this parameter at least 15 if you want to make a high quality image. You can also increase the number of image resolution by making the image window 2,3,4 times larger (in the example below it is 2 times larger) than the displayed window. Wire Style - Four different wire styles are available. **Hydrogen Display** - Select whether you always want all hydorgens displayed or just-polar hydrogens or no hydrogens at all. **Rainbow Scale** - determines if and where the color bar will appear after a molecule is colored by an array. Coloring by an array is one of the options of the display and color commands. ``` 1. = "left" <- default choice 2. = "right" 3. = "no text" 4. = "no bar"</pre> ``` **Ball Ratio** - The ratio of ball and stick radii. This ratio is applied when the styles are switched to xstick from the GUI xstick toolbar. **Selection Style** - Change the graphical display of your selections. Default is a green cross. Clash Threshold - a clash is defined as an interatomic distance less than a sum of van der Waals radii of two atoms of interest multiplied by the clashThreshold parameter. For hydrogen bonded atoms, the distance threshold is additionally reduced by 20%. Default = 0.82 **DotSurfaceRadiusIncrement** - adius of a probe sphere used to display a dotted surface of a molecule. All van der Waals radii are expanded by this value. vwExpand=0 corresponds to the CPK surface, vwExpand=1.4 corresponds to the water-accessible surface. Be aware of the difference between the waterRadius and vwExpand parameters: waterRadius is used in - show energy "sf" - show [area|volume] skin - display skin while vwExpand is used in - show [area|volume] surface - display surface Default (1.4). **H Bond Style** - How do you wish your H-Bonds to be displayed by default? Dashes, Bond Length, Bond Length and Angle. **grobLineWidth** - relative width of displayed lines of 3D meshes ( grobs ). Also affects the interatomic distance display. general line with - the real width of lines used to display the wire representation of chemical bonds. See also IMAGE.lineWidth parameter which controls line thickness in molecular images generated by the write postscript command, and the PLOT.lineWidth which controls the width for the plot command. Default (1.0) **single atom as** - display style of isolated atoms in the wire mode. ``` "tetrahedron" "cross" "dot" ``` The size of the first two representation is controlled by the GRAPHICS.ballRadius parameter an **xstickhetatomzZoom** - The default ball and stick radii of a ligand can be different. This makes a better ligand view since the ligand stands out from the surrounding protein atoms. solid shine style - choose either white or color **Stick Radius** - radius (in Angstroms) of a cylinder displayed as a part of stick or xstick graphical representation of a molecule. Individual (residue-wide) control of stick radii. Stereo Mode - Select a default stereo mode **Display Style** - A default display style can be chosen using a combination of styles. **Water Radius** - radius of water sphere which is used to calculate an analytical molecular surface (referred to as skin) as well as the solvent-accessible surface (centers of water spheres). clashWidth - relative width of a displayed clash. hbondWidth - relative width of hydrogen bond display mapLineWidth - relative width of lines and dots of a displayed map. ## 4.7.6 Image Preferences To change Image Preferences: - Select File/Preferences. - Choose the **Image** tab. IMAGE.color - logical to save color or black\_and\_white ('bw') images. **IMAGE.gammaCorrection** - real variable to to lighten or darken the image by changing the gamma parameter. A gamma value that is greater than 1.0 will lighten the printed picture, while a gamma value that is less that 1.0 will darken it. **IMAGE.lineWidth** - this real parameter specifies the default line width for the postscript lines. **IMAGE.orientation** - image orientation. **IMAGE.previewer** - a string parameter to specify the external filter which creates a rough binary (pixmap) postscript preview and adds it to the header of the ICM-generated high resolution bitmap or vectorized postscript files saved by the write image postscript, and write postscript , respectively . **IMAGE.print** - unix command for printer. **IMAGE.scale** - real variable. If non zero, controls the image scale with respect to the screen image size. **IMAGE.stereoBase** - real variable to define the stereo base (separation between two stereo panels) in the write image postscript and write postscript command. **IMAGE.writeScale** - an integer parameter used to increase the image resolution in the Quick Image Write tool. **IMAGE.bondLength2D** - real length of a chemical bond (in inches) in chemical 2D drawings upon the Copy Image command. **IMAGE.compress** - logical to toggle simple lossless compression, standard for .tif files. This compression is required to be implemented in all TIFF-reading programs. **IMAGE.generateAlpha** - logical to toggle generation of the alpha (opacity) channel for the SGI rgb, tif and png image files to make the pixels of the background color transparent. **IMAGE.lineWidth2D** - integer thickness of bonds in chemical 2D drawing upon the Copy Image command. This is useful for cutting and pasting from ICM to external documnents. **IMAGE.paper Size** - specify paper size. **IMAGE.previewResolution** - integer resolution of the rough bitmap preview added to the vectorized postscript file in lines per inch. **IMAGE.printerDPI** - this integer parameter the printer resolution in Dot Per Inch (DPI). Important for the write image postscript command. **IMAGE.stereoAngle** - real variable to define stereo angle (relative rotation of two stereo images) in the write image postscript and write postscript command. **IMAGE.stereoText** - logical to make text labels for only one panel or both panels of the stereo diagram. ## 4.7.7 Label Preferences To change Label Preferences: - Select File/Preferences. - Choose the Labels tab. atomLabelStyle style of atom labels invoked by clicking on an the atom label button. **GRAPHICS.** displayLineLabels - enables/disables the display of edge lengths (inter-point distances) of a grob generated with the Grob( "distance" .. ) function. **GRAPHICS.font Line Spacing** - Change the spacing between lines in labels. **GRAPHICS.resLabelDrag** - if yes, enables dragging of the displayed residue labels with the middle mouse button. **GRAPHICS. site Arrow** - Highlight sites with an arrow yes or no. **Show Res Code In Selection** - When you make a selection the icm selection language will be displayed when you right click on the selection. Res Label Style - Default residue label style. SITE.label Style - Default label sites style. Var Label Style - Default label variable style. **GRAPHICS.atomLabelShift** - a non-negative integer number of spaces preceding an atom label. This parameter is useful for displaying labels next to a solid representation, GRAPHICS.fontColor - set font color **GRAPHICS.font Scale** - set font size **GRAPHICS.site Label Shift** - GRAPHICS.resLabelShift a non-negative integer number of spaces preceding a site label. **GRAPHICS. site Label Drag** - if yes, enables dragging of the displayed site labels with the middle mouse button. **Res Label Shift** - a non-negative integer number of spaces preceding a residue label. This parameter is useful for displaying residue labels next to a solid **SITE.labelOffset** - (default 5. A) the real offset of the site label with respect to the residue label atom. **SITE.wrap Comment** - Number of characters per comment line. #### 4.7.8 Plot Preferences To change Plot Preferences: - Select File/Preferences. - Choose the Plot tab. **PLOT.color** - logical to generate a color plot. Usually it does not make sense to switch it off because your b/w printer will interpret the color postscript just fine anyway. PLOT.draw Tics logical yes or no **PLOT.fontSize** real font size. Any reasonable number from 3. (1 mm, use a magnifying glass then) to 96. **PLOT.lineWidth** - real line width for graphs (not the frame and tics) **PLOT.markSize** - real mark size in points. Allowed mark types: line, cross, square, triangle, diamond, circle, star, dstar, bar, dot, SQUARE, TRIANGLE, DIAMOND, CIRCLE, STAR, DSTAR, BAR. Uppercase words indicate filled marks. **PLOT.paper Size** - preference to specify plor paper size **PLOT.rainbowStyle** - preference defining the color spectrum used by the plot area command. **PLOT.Yratio** - real aspect ratio of the ICM plot frame. Using link option of the plot command is equivalent to setting this variable to 1.0. If PLOT.Yratio is set to 0., the ratio will be set automatically to fill out the available box optimally. [PLOT.date] - display date on plot **PLOT.font** - preference for the title/legend font. **PLOT.labelFont** - preference for the data point label font. **PLOT.logo** - logical switch for the ICM-logo on the plot. **PLOT.orientation** - preference for the plot orientation. PLOT.previewer - command to local ps viewer **PLOT.seriesLabels** - preference to indicate position of a series/color legend inside the plot frame. ## 4.7.9 Ribbon Preferences To change Ribbon Preferences: - Select File/Preferences. - Choose the **Ribbon** tab. Combo Display Style - select ribbon-cpk, atoms, ribbon-ligand, chemical **GRAPHICS.dnaRibbonRatio** - real ratio of depth to width for the DNA ribbon . **GRAPHICS.dnaRibbonWorm** - logical which, if yes, makes the DNA backbone ribbon round, rather than rectangular. Default: no ${f GRAPHICS.dnaWormRadius}$ - real radius of the worm representing bases in DNA ribbon . 4.7.8 Plot Preferences 81 **GRAPHICS.ribbonWidth** - real width of the protein ribbon. **GRAPHICS.wormRadius** - radius of coiled segments (i.e. those where the secondary structure is marked as "\_") of a polypeptide chain in ribbon representation. Default (0.3). **Ribbon Style** - specifies default style when ribbon is displayed. **GRAPHICS.**dnaBallRadius - DNA bases in ribbon representation are shown as balls controlled by this real parameter. **GRAPHICS.dnaRibbonWidth** - real width (in Angstroms) of the DNA ribbon. **GRAPHICS.dnaStickRadius** - real radius of the sticks representing bases in DNA ribbon . $\mbox{\bf GRAPHICS.ribbonRatio}$ - real ratio of depth to width for the protein ribbon . **GRAPHICS.ribbonWorm** - logical parameter, if yes, makes the ribbon round, rather than rectangular. #### ribbonColorStyle - ``` - sets the ribbon coloring scheme. 1 = "type" default. colors by secondary structure type or explicit color 2 = "NtoC" colors each chain gradually blue-to-red from N- to C- (or from 5' to 3' for DN 3 = "alignment" if there is an alignment linked to a protein, color gapped backbone regions gr 4 = "reliability" 3D gaussian averaging with selectSphereRadius of alignment strength in If ribbonColorStyle equals to 4, the conserved areas will be colored blue, while the most dive ``` ## 4.7.10 Shell Preferences To change Shell Preferences: - Select File/Preferences. - Choose the **Shell** tab. **Clash Threshold** - a clash is defined as an interatomic distance less than a sum of van der Waals radii of two atoms of interest multiplied by the clashThreshold parameter. **Map Sigma Level** - (in Rmsd values over the mean value). Margin value used for making graphical objects contouring the 3D density map. **Mnconf** - maximal number of conformations in the conformational stack . The stack stops growing after this number is achieved and starts replacing representative conformations with higher energy values by new conformations with superior energies, if the latter are found. **Icm Prompt** - defines the ICM-prompt string. **Select Min Grad** - default minimal gradient vector length for gradient atom selection (a\_//G). This parameter is also used by the montecarlo fast command, which requires a value of 2. to 10. for optimal performance. **Map Atom Margin** - Margin in Angstoms around selected atoms. The margin is added to the positional boundaries to define a submap index box in the Map ( map\_source , as\_ ) function. maxColorPotential - local electrostatic potential in kcal/e.u.charge units at which the surface element is colored by extreme red or extreme blue. All higher values will have the same color. This absolute scaling is convenient to develop a feeling of electrostatic properties of molecular surfaces. **mnSolutions** - this parameter limits the number of hits retained by the program after a search. Real Format - format of real numbers Water Radius - radius of water sphere which is used to calculate an analytical molecular surface ## 4.7.11 System Preferences To change System Preferences: - Select File/Preferences. - Choose the **System** tab. #### FTP.createFile - **FTP.proxy** - string path to the proxy server for connections through firewall. Default: "" (empty string). GUI.max Nof Recent Files - maximum number of recent files stored. GUI.splash Screen Image - path to splash image displayed on startup HTTP. support Cookies - http support cookies yes or no **HTTP.user Agent** - client application used within a particular network protocol for www Beep - warning beep yes or no Max File Size Mb - Maximu file size in MegaBytes that can be loaded into ICM. **USER.friends** #### **USER.**organization $\label{eq:FTP.keepFile} \textbf{FIP.keep File} \text{ - (default no ). If yes, the temporary file is kept in the s\_tempDir directory. Otherwise the file is deleted.}$ **GUI.enumberation Memory Limit** - memory limit for enumeration operations. **GUI.splash Screen Delay** HTTP.proxy - string for HTTP server for connection through firewall HTTP.timeout - timeout in seconds Http Read Style icm or lynx Force Auto Bond Typing - yes/no USER.email, USER.full Name, USER.phone # **5 Protein Structure** ## **Chapter Contents:** - How to Convert Proteins and Chemicals to ICM Objects. - Binding Site Display Tools. - Crystallographic Analysis Tools. - Protein Superposition. - Protein Structure Analysis. - Protein Structure Prediction Tools e.g. ICM Pocket Finder. # 5.1 Convert to ICM Object Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro | ICM-Chemist #### 5.1.1 Load a Protein Structure There are a couple of ways to read into ICM a protein structure. - 1. Search the PDB using the Search Tab. - Load in a PDB file that you have saved on your computer using File/Open. # 5.1.2 Converting PDB Files Into ICM Objects If you are going to make any type of energy calculation in ICM (eg docking, display H-bonds, display electrostatic and binding property surfaces etc..) it is necessary to convert a protein or chemical into an ICM object. Be aware that upon conversion ICM adds missing side-chain atoms (but wont try to build missing loops) due to the nature of the internal-coordinate system. The list of residues/ atoms added is presented in the command line shell and can be reviewed. For reference, the original PDB entry is kept in the system. See the command line manual for a more complete description of what the conversion process does. **NOTE:** Before converting a protein structure to an ICM object make sure that the chemicals contained within the structure (e.g. ligands) are correct. If an error is found you can edit the ligand as described here. To convert a PDB structure into an ICM object follow the steps shown below: 5 Protein Structure 85 - Right click on the name of the protein you wish to convert in the ICM Workspace. - A dialog box will be displayed as shown below. - If you want to delete the water molecules select Delete Waters - If you want to optimize hydrogen atoms (recommended for important work) select **Optimize Hydrogens**. This option performs global optimization of hydrogens to find the best hydrogen bonding network - If you want to optimize the orientation of His, Pro, Asn, Gln, Cys residues then choose **optimizeHisProAsnGlnCys**. The following residues will be further optimized: His three protonation states and two rotations will be tried and the residue will be renamed according to its subtype: hie (epsilon tautomer) or hip (+). Asn and Gln (a 180 deg. flip will be tried). Cys in the vicinity of Zn, Cu, Fe and Co to cym. - If you want to keep a copy of your PDB file uncheck the option replace original. - The converted structure can be displayed immediately by checking display the result - Uncheck the box hide missing side chains if you want ICM to build missing heavy atoms that are not reported in the PDB (due to the lack of density), they will be added according to the residue name and assigned zero occupancies. Check this box if you want residues missing heavy atoms to be hidden. If your object is an ICM object it will display **ICM** next to the molecule in the ICM Workspace. # 5.2 Pocket Display Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro ## 5.2.1 Receptor Pocket Surface. ## To display the Receptor Pocket Surface: - As an example we will use the PDB structure 1STP. Type 1STP in the pdb search tab and press return. - Convert the protein to an ICM object. If you do not convert a generic surface will be displayed that is not colored by binding property. - Right click on the ligand "abtn" and select Pocket/Receptor Pocket. - Select whether you would like to display side-chain hydrogen bonds and label. - The receptor pocket will be displayed colored by binding property White=aromatic lipophilic, Green=non-aromatic other (mostly aliphatic) lipophilic surface, Red=hydrogen bonding acceptor potential, Blue=hydrogen bond donor potential. - The surface can be toggled on and off by selecting in the ICM Workspace in the meshes section. 5.2 Pocket Display 87 ## 5.2.2 Ligand Surface. The Ligand Surface option allows you to visualize cavities that are open for ligand modifications. To display the Ligand Surface: - As an example we will use the PDB structure 1STP. Type 1STP in the pdb search tab and press return. - Convert the protein to an ICM object. If you do not convert a generic surface will be displayed that is not colored by binding property. - Right click on the ligand "abtn" and select **Pocket/Ligand Surface**. - The Ligand Surface will be displayed colored by binding property White=aromatic lipophilic, Green=non-aromatic other (mostly aliphatic) lipophilic surface, Red=hydrogen bonding acceptor potential, Blue=hydrogen bond donor potential. ## 5.2.3 How to Display Hydrogen Bonds **NOTE:** The method by which hydrogen bonds are calculated is described here in the command line manual. The GRAPHICS.hbondMinStrength parameter determines the hbond strength threshold for hbond display. The strength value is between 0. and 2. By changing 1. to 0.2 you will see more weak hydrogen bonds. - In order to display energy related properties we need to convert the PDB file into an ICM object. Convert 1STP into an ICM object. In this example, the option "Replace the Original" was selected. - Display the receptor in wire format and the ligand in xstick. - Right click on the ligand and select "Neighbors" Enter 3 Angstroms and Type = Visible. Do not exclude source (the ligand) therefore remove tick from box entitled "exclude source". - Select the display tab and then select the Display H-Bond button. 5.2.2 Ligand Surface. 89 **NOTE:** Different options for displaying the H-bond can be accessed by clicking and holding on the H-bond button in the "Display" tab. The coloring of the H-bonds are red (strong - thick spheres) to blue (weak - thin spheres). Once the hydrogen bonds have been displayed they can be displayed and undisplayed in the 3D labels section of the ICM Workspace (left hand side of graphical window). ## 5.2.3.1 Edit Hydrogen Bond Label #### To edit a hydrogen bond label - Right click on the label. - Choose Edit Label. - Make changes in the dialog box and press OK. ## 5.2.3.2 Move Hydrogen Bond Label ## To move a hydrogen bond label - Right click on the label. - Click on the label using the middle mouse button. • Hold the middle mouse button down and drag. ## 5.2.4 Ligand Pocket Interactions To view the ligand pocket interactions. - Right click on the ligand and choose Pocket. - Choose Ligand Pocket Interactions. Hydrogen bonds, key waters and neighboring residues will be displayed. # **5.3 Protein Superposition** Available in the following product(s): ICM-Browser-Pro | ICM-Pro Superimpose Button One or more proteins can be superimposed. Simply select the molecules or parts of the molecules you wish to superimpose and then use the selection of protein superimpose tools described in this section. A convenient superimpose button can be found in the Display tab (see image of button (left). #### **Chapter Contents:** - Select Proteins for Superposition - Superimpose Button Superimpose by 3D - Superimpose Multiple Proteins - Arrange as Grid - Superimpose Sites by Atomic Property Fields ## 5.3.1 Select Proteins for Superposition Before any superposition operation can be undertaken you need to select the protein structures you wish to superimpose. One way to do this is by selecting in the ICM workspace. For other selection tools please see the Making Selections section of the manual. Select both receptors by double clicking on the name of the molecule in the ICM Workspace. To select two molecules use the Ctrl button or use the shift button to select a range of objects in the ICM Workspace. A receptor which is selected will be highlighted in blue in the ICM Workspace and with green crosses in the graphical display. Once the molecules are selected you can then superimpose them using the options described in the next section of this manual. # 5.3.2 Superimpose Button A convenient way to superimpose two molecules is by using the superimpose button in the **display** tab, ICM will calculate the Ca-atom, backbone atom and heavy atom differences between the two structures. More advanced superimpose options can be found in the Tools/Superimpose menu. #### To superimpose: 94 - First load the two structures into ICM. - Select which parts or all of the two structure you wish to superimpose (see the chapter on Selections or the description protein-superposition-select{here}.). - Select the **display** tab (previously called Advanced tab) at the top of the GUI. 5.3.1 Select Proteins for Superposition Select the superimpose button. The rmsd will be displayed in the terminal window as shown below: ``` icm/ly6> superimpose ( Res( as_graph ) & a_.//ca,c,n,o ) & Obj( as_graph )[1] Warning> [110] skipped 4 atom pairs with zero occupancies Info> 64 atoms superimposed, rmsd=1.381643 icm/ly6> RMSD displayed here ``` **NOTE:** You do not need to select the whole molecule, the superimpose button will work on small selections e.g the loop regions or domains. # **6 Molecular Graphics** In this chapter we describe how to make beautiful graphical representations of molecules and manipulate them in the 3D graphics window. This includes how to change color, light, representations, clipping planes, and how to use built in graphics effects. We also teach how to label and annotate molecules displayed in the graphical user interface. #### **Chapter Contents:** - Molecule Representation - Meshes-Surface-Grobs - Coloring - Lighting - Labeling and Annotation - Display Distances and Angles - Graphics Effects - Graphics Shortcuts - Molecule Move Buttons - Clipping Tools - Graphic Layers - High Quality Publication Images - Movies # **6.1 Molecule Representation** Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro To change the molecule display representation: - Select the atoms, residues, molecules, or objects you wish to change in the graphical display or in the ICM Workspace. - Then use the molecule representation (e.g. wire, ribbon) options in the Display Tab. The display tab contains tools for a variety of functions including - structural representations, coloring, labeling and superposition. There are six main types of structural representation in ICM. They are wire, ball and stick (Xstick), ribbon, skin, CPK and dot envelope (surface). #### To display one of these representations: • Click on the representation button you desire in the **display** tab. 6 Molecular Graphics 97 To remove a displayed representation or to toggle between display and undisplay: • Click on the corresponding representation button in the **display** tab. **Identify which representations are displayed:** The button display will change appearance (shaded blue) when selected. This makes it easier to identify which representations are currently being displayed. Change the display and size of the representations Many characteristics of the graphical representation such as color can be changed by clicking and **holding** on the button. The size can be changed by clicking the plus(+) and minus(-) buttons next to them. # 6.1.1 Wire Representation Click and hold on the **wire representation** button. A menu will be displayed as shown below. ## To change the wire style: • Click and hold on the wire representation button and then click on wire, chemistry or tree. ## To change the size of the wire representation: • Click and hold on the **wire representation** button and then click on **thin. normal** or **thick.** **NOTE:** Clicking on the +/- next to the **wire representation** button also changes the thickness of the wire representation. ## To undisplay representations other than wire: Click and hold on the wire representation button and then click on undisplay other representations. If you make a mistake or you are not happy with the way your structure is displayed with the wire representation: Click and hold on the wire representation button and then click on reset to default. ## 6.1.2 Stick and Ball (Xstick) Representation Click and hold on the **stick and ball representation** button. A menu will be displayed as shown below. ## To change the style of the Xstick representation: Click and hold on the stick and ball representation button and then click on style and choose either plain, chemistry, Chem Plus, or Chem Plus Aromatic. #### To change the size of the Xstick representation: Click and hold on the stick and ball representation button and then click on set thickness, set ball/stick ratio, set hydrogen ratio, and set backbone ratio. **NOTE:** Clicking on the +/- next to the **xstick representation** button also changes the thickness of the xstick representation. In order to make some parts of your picture clearer, the xstick representation can be set to transparent: Click and hold on the stick and ball representation button and then click on transparent. ## To undisplay representations other than xstick: • Click and hold on the **stick and ball representation button** and then click on undisplay other representations. If you make a mistake or you are not happy with the way your structure is displayed with the xstick representation: Click and hold on the stick and ball representation button and then click on reset to default. ## 6.1.3 Ribbon Representation Click and hold on the ribbon representation button and a menu will be displayed. ## To change the style of the Ribbon representation: Click and hold on the ribbon representation button and then click on a style option: smooth, wide, wide smooth, cylinders, protein worm. ## To assign secondary structure: To accurately represent the secondary structure of the molecule in ribbon representation you may wish to assign secondary structure: Click and hold on the ribbon representation button and then click on assign sec. structure. To make some parts of your picture clearer, the ribbon representation can be set to transparent: Click and hold on the ribbon representation button and then click on transparent. #### To undisplay representations other than ribbon: Click and hold on the ribbon representation button and then click on undisplay other representations. If you make a mistake or you are not happy with the way your structure is displayed with the ribbon representation: Click and hold on the ribbon representation button and then click on reset to default. **NOTE:** Always use the **ICM** assign sec.\*\* structure tool in the ribbon right click menu to get accurate secondary structure assignment. This is particularly important when studying helices which may have non-cannonical elements within them such as 3/10 or pi. To view non-cannonical helix segments use the segment option in the ribbon right click menu. #### To change the display of chain breaks (dotted lines): - Click and hold on the ribbon represenation button. - Select the options Display Chain Breaks or Display Chain Break label. # 6.1.4 Skin Representation Click and hold on the **skin representation button**. A menu will be displayed as shown below. To make some parts of your picture clearer, the skin representation can be set to tight, normal or sparse: • Click and hold on the **skin representation button** and then click on either tight, normal or sparse. To undisplay representations other than skin: Click and hold on the skin representation button and then click on undisplay other representations. If you make a mistake or you are not happy with the way your structure is displayed with the skin representation: • Click and hold on the **skin representation button** and then click on \*\* reset to default\*\*. **NOTE:** Sometimes due to singularity problems holes may appear within the skin surface. To cure this infliction select atoms nearby and right click select Advanced->RandomizeAtoms ## 6.1.5 CPK Representation Click and hold on the **CPK representation button**. A menu will be displayed as shown below. To undisplay representations other than CPK: • Click and hold on the **CPK representation button** and then click on **undisplay other representations**. If you make a mistake or you are not happy with the way your structure is displayed with the cpk representation. Click and hold on the CPK representation button and then click on reset to default. ## 6.1.6 Surface Representation Click and hold on the surface representation button. A menu will be displayed as shown below. To change the style of the surface representation: Click and hold on the surface representation button and then click on tight, normal, or surface. To undisplay representations other than surface: Click and hold on the surface representation button and then click on undisplay other representations. If you make a mistake or you are not happy with the way your structure is displayed with the surface representation: Click and hold on the surface representation button and then click on reset to default. ### 6.1.7 Display and Undisplay Hydrogens To display and undisplay hydrogens. Click and hold on the **"Change Hydrogen Display"** button shown below. Multiple single clicks will toggle through the hyrogen display options. - Display Tab - Click and hold on the "Change Hydrogen Display" button shown below. ### 6.1.8 Display Hydrogen Bond **NOTE:** The method by which hydrogen bonds are calculated is described here in the command line manual. The GRAPHICS.hbondMinStrength parameter determines the hbond strength threshold for hbond display. The strength value is between 0. and 2. By changing 1. to 0.2 you will see more weak hydrogen bonds. In order to display potential hydrogen bonds in your structure: - Convert to an ICM Object - Make a selection if you are trying to display the H-bonds between a ligand and the receptor make sure the ligand is part of the selection. - Click the Display Tab. - Click on the **Toggle H-bonds** icon in the **display** tab. Click and hold on the H-bond button to get access to other display options - Click the +/- on the right of the H-Bond button to change thickness of H-bond representation. - Click and hold the button to change representation or use the hbondpairs option in the ICM Workspace. #### Click and hold ### What do the default coloring of the H-bond represent? Longer and shorter H-X distances in the hydrogen bond are color-coded, from red to blue, respectively. **NOTE** Dynamic hydrogen bonds can be set by clicking and holding on the **H-bond toggle** button in the **Display** tab. Hydrogen bonds will then respond to any changes made to the ligand. ### 6.1.9 Display Formal Charges You can display formal charges by clicking and holding on the "Change Hydrogen Display" button in the Display tab. ### 6.1.10 Ca (carbon alpha) Trace To generate a carbon alpha (Ca) trace: - Right click on the object in the ICM workspace and select Tools/Make Ca-Trace object. - The Ca-Trace object will be displayed in the ICM workspace. ### 6.2 Multi-Windows To display more than one window click on the buttons shown below. To control the layout and mouse sync mode click on the button shown below. ### 6.3 Meshes - Surface - Grobs Available in the following product(s): ICM-Browser-Pro | ICM-Pro Click on the tab button entitled 'meshes' and more graphics tools for surfaces are available. In ICM surfaces are sometimes referred to as meshes or graphical objects (Grobs). 6.2 Multi-Windows 107 ### 6.3.1 Surfaces The surface of your structure can be displayed and colored by **electrostatics** or **binding** properties. To do this: - Load a structure into ICM File/Open or tab-pdb{PDB Search}Convert the structure into an ICM object. - Select the 'meshes' tab button. - Click on the drop down arrow menu shown below and select which surface you wish to generate. - Click on the generate surface button next to the drop down arrow. #### 6.3.2 MolSkin MolSkin is a new macro that instantly makes publication quality graphics and it gives each molecule a color and colors contact patches. It undertakes the following: - Molecular surfaces are generated with those assigned colors and occlusion shaded. - Carbons of each molecule are colored by its own consistent color. - Labels, ribbons, are colored accordingly. - Surfaces are gradually cross-colored by each other to mark the contact patches. - The labels are brought to the surfaces. #### To use MolSkin: - Right click on the object in the ICM workspace and choose Shapes/Make/Molecular Shapes and Contacts. - Once the surfaces are made they will be listed in the ICM workspace where they can be toggled on or off. ### 6.3.3 Color Surface by Proximity To color a surface by proximity to neighboring molecules: - Make a surface. - Right click on the molecule you want to color by proximity and choose Shapes/Make/Color by Proximity. ### 6.3.4 Color Surface by Selection To color a surface by a selection: - Make a surface. - Make a selection. - Right click on the molecule you want to color by selection and choose Shapes/Make/Color by Selection. 6.3.2 MolSkin 109 #### 6.3.5 Meshes A variety of shapes can be constructed automatically using ICM. These shapes are referred to as meshes. The types of shapes you can build are shown in the drop down option in the meshesh tab To make a shape select it from the menu by clicking on the down arrow and then click the button next to the menu. The shape will then be displayed in the 3D graphics window. ### 6.3.6 Google 3D Objects (Sketchup) #### To read in a 3D Mesh from Google in KMZ or COLLADA format: - File/Load/ 3D Mesh in KMZ or COLLADA Format from Google - Search for the object you would like to view and download it. - To read the file go to File/Open ### 6.3.7 Display or Undisplay Meshes or Surfaces To display or undisplay the surface click in the box in the ICM workspace as shown below: #### ICM Workspace check here to display or undisplay surface **NOTE:** All surfaces, meshes and macroshapes come under the one heading of **meshes** in the workspace panel. ### 6.3.8 Mesh Options. A number of options relating to meshes can be found by right clicking on the mesh in the ICM Workspace. This section describes some of these options. #### 6.3.8.1 Resize Mesh Once a mesh has been created you can move it and resize it. To do this: - Locate the mesh in the ICM Workspace and right click on it - Select the **Resize/Move Mode** in the menu. - A purple box as shown below will surround the molecule. To resize the mesh click on one of the corners of the box and drag to the required size. The number displayed on the edges of the box represent the dimensions. #### 6.3.8.2 Move Mesh To move a mesh: - Locate the mesh in the ICM Workspace and right click on it - Select the **Resize/Move Mode** in the menu. - Click on the mesh in the graphical display with the **middle** mouse button. #### 6.3.8.3 Mesh Representation There are five different display modes: - Dot - Wire - Solid Rugged - Solid Smooth - Smooth Transparent. 112 #### 6.3.8.4 Mesh Color and Lighting There are a number of options to color and change the display of the mesh. These options can be accessed simply by right clicking on the mesh name in the ICM Workspace as shown below. ### 6.3.9 Mesh Clipping Clipping tools can be used to adjust the frames of the mesh independently of other objects. The buttons shown below can be used for this purpose. The buttons used for clipping are described in the section entitled Clipping Tools. To clip the skin independently of the object as shown in the image above: - Display object and mesh. - Click and hold on clip meshes button(red button) and select Reset Clipping to Default and check the option Clipping enabled - Click on the front clipping plane button. - (Optional) To lock the mesh clipping click on the yellow lock mesh clipping button. #### 6.3.10 Save Mesh You can save a mesh as a wavefront object by right clicking on the mesh in the ICM Workspace and selecting **SaveAs**. ### 6.3.11 Occlusion Shading The occulusion shading option provides better representation of depth within a cavity. The color of each surface element of a grob (mesh) is changed by mixing its own color with the background depending on the burial of the surface element. #### To add occlusion shading: - Right click on the mesh in the ICM Workspace and select Occlusion Shading. The occlusion shading value can also be changed before generating the mesh in the meshes tab. - Enter a depth value default is 0.8. Higher values will generate a more dramatic shading. See example here. 6.3.8 Mesh Options. 113 ### 6.4 Coloring Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro To change the coloring of molecules: - Select the atoms, residues, molecules, or objects you wish to color in the graphical display or in the ICM Workspace. - Then use the color options in the Display Tab. ### 6.4.1 Coloring To change the color of a structural representation such as CPK, Xstick, wire or ribbon. - Select the atoms, residues, molecules, or objects you wish to color - Click and hold on the structural representation button for the representation you wish to color (e.g. wire, ribbon etc...) in the **Display** tab. - Select a color by clicking color. To color by a particular parameter such as atom type, b-factor, secondary structure etc... - Click and hold on the structural representation button for the representation you wish to color (e.g. wire, ribbon etc...) in the **Display** tab. - Select ..by-> option ### To change the color of everything displayed: 114 6.4 Coloring Click on the color palette in the Display Tab. ### 6.4.2 Color Background #### To change the color of the background: Select View/Color background. Click on the square of your desired color. If you are not satisfied with the color palate, click on the arrow next to the colors to customize a color. #### OR • Right click on a color in the colors panel in the display tab. ### 6.4.3 Background Image A background image can be added to the graphical display. This can be useful for making cool images or for comparing structures (e.g.compare displayed object with background image of object). ### To add a background image from an image file (png or jpeg): - File/Open Image - Right click on the image in the ICM Workspace and select "Set as Background in Graphics." - Choose one of the following: (1) Original Resoution, (2) Original Resolution Centered, or (3) Scale to Fit - Enter the Scale (%) - Enter whether you want to keep existing background. #### **To move and resize a background image:** Version 3.7-2b and higher. - File/Open Image - Right click on the image in the ICM Workspace and select "Set as Background in Graphics." - Choose the option **Original Resoution**. - Click on the drag atom button (looks like a hand). - Click and drag image. - Remember to deselect drag atom button. 6.4.1 Coloring 115 #### To set current display as background image: • Click and hold on the "Copy Image to Clipboard" button at the bottom of the gui and select the "Set as Background" option. #### To remove a background image: • Select the **display** tab and then click and hold on the color sphere button and select "Remove Background Image". - Right click on the image in the ICM Workspace and select "Set as Background in Graphics." - Choose the option Remove From Background ### 6.5 Lighting Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro These options are in the light tab CLick and drag the sliders to change the lighting. You can also save your preferred lighting settings and return to default. Shine - shininess property of the solid material Ambient - ambient light intensity of RGB for ambient light Diffuse - diffuse light intensity of RGB for diffuse light Spec - specular light intensity of RGB for specular light Alpha - transparency setting for grob A-Bright - light intensity shinning on grob **X** and **Y** - Change the position of the light source in the graphics window ### 6.6 3D Stereo Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro Click and hold on the stereo hardware button (see image below). There are 5 different options available which are described here http://molsoft.com/man/icm-table.html#GRAPHICS.stereoMode. 6.5 Lighting 117 - 1. up-and-down - 2. line interleaved - 3. in-a-window - 4. Sharp - 5. Anaglyph The Anaglyph option is the easiest to used with inexpensive 3D glasses and and without any expensive 3D compatible hardware or monitors. The 3D effect is better with a lighter background. ### 6.7 3D Printing You can save surfaces in the STL format for 3D printing. To do this: - Make a mesh e.g. go to the meshes tab plain solid. - The mesh (surface) will then be displayed in the ICM workspace (left hand side). - Right click on the mesh and choose Save as.. and choose stl from the format option list ### 6.8 Labeling and Annotation Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro To add labels or display or undisplay pre-defined annotation: - Select the atoms, residues, molecules, or objects you wish to label in the graphical display or in the ICM Workspace. - Then use the label options in the Display Tab. To add new user-defined annotation: - Select the atoms, residues, molecules, or objects you wish to label in the graphical display or in the ICM Workspace. - Right click on the selection and choose "Annotate Selection". ### 6.8.1 Labeling Labeling options are contained within the Labels or Display Tab. In many cases clicking and holding a label button will allow you to view more options. 118 6.6 3D Stereo ### 6.8.2 Labeling Atoms Select the atoms you wish to label (see display structure or selection toolbar). - Select the **display** tab. - Click the label ATOM button. ### Click and hold to change label options ### To change the level of label detail: • Click and hold the **label ATOM** button and select the desired level of label detail, color or style. ### 6.8.3 Labeling Residues #### To label residues: - Select the **display** tab. - Select the residues you wish to label (see display structure or selection toolbar). - Click the label RES button. 6.8.2 Labeling Atoms #### To change the level of label detail: Click and hold the label RES button and select the desired level of label detail or style. #### 6.8.4 Move Residue Label #### To change the location of your residue label: - Select View/Drag res labels. - If your mouse has a middle mouse button, then click on handle (as shown) of the label you wish to move, and drag it to your desired area. If your mouse has no middle mouse button, then click on the Translation icon on the toolbar, and click on the handle (as shown) of the label you wish to move, and drag it to your desired area. The +/- buttons on the side of the Residue and Atom buttons will shift the label. There are also other **residue label move** options available when you click and hold the residue label button. These options include **Shift to Sidechain Tips, Shift to Calphas**, and **Restore Positions** #### 6.8.5 Label Variables To label variable angles (dihedral-torsion, planar and phase angle) the molecule needs to be converted into an ICM object. - Convert the molecle to an ICM object. - Select the atoms for which you would like to display the variables (see display structure or selection toolbar). - Click on the **toggle variable label** button shown above located in the **display** tab. - Change the font size by using the +/- buttons. - Change the font and color by clicking and holding on the variable atom label button. To change the variable label style click and hold the variable atom label button as shown below. Rings of varying diameter and color are superimiposed on rotatable bonds. Green rings with large diameter are considered less constrained than rings with small green rings. Red rings are highly constrained. When the Label Style/Energy option is selected the first number displayed represents the bond angle, the second the energy and the third the worst energy that could be achieved by rotating the bond. ### 6.8.6 Sites and Annotation 6.8.5 Label Variables 121 When a PDB file is read into ICM the sequence functional/mutation sites listed in Uniprot are automatically displayed. To undisplay all displayed sites click on the **Sites** button in the display tab. Click in the bottom left hand corner of the annotated site to change the level of detail or click on an arrow head to move the location. Individual sites can be displayed or undisplayed in the ICM workspace. To create your own annotated site: - Select the region you wish to annotate as a Site. - Right click on the selection. - Choose the option Annotate/Make Site - Enter the annotation into the text box and select ok Your new site will now be listed in the ICM Workspace. To edit or delete a site: • Right click on the site in the ICM workspace. ### 6.8.7 Changing Label Colors ### To change the color of any label: Click and hold down the required label button and a menu as shown below will be displayed. • Select color. ### 6.8.8 Customized Label 2D or 3D To generate a customized a label: - Select the labels tab. - Select either 2D or 3D button. - Enter your label and select the desired color, font and size. To **edit** or **delete** a label - right click on the label in the graphical display as shown below. #### Right click here to Edit or Delete label To move a custom 3D label you need to right click on it in the ICM workspace (under meshes) and choose Connect/Move independently. Press the Esc key to disconnect when you have finished moving it. ### 6.8.9 Undisplay Customized Label **Undisplay Residue, Atom, and Variable Label** Any label that is displayed can be undisplayed by selecting the region of the molecule related to the label and clicking on the corresponding label button in the labels tab. For example if you wish to undisplay an atom label - click the atom label button. If a label is displayed the coresponding button in the **display** tab will be shaded blue. When you delete the button will return to grey. 2D and 3D labels have an undisplay button (red cross on the button see customized label section). Undisplay 2D or 3D label Click onthe undisplay label button in labels tab. **NOTE:** A label can also be deleted by right clicking on the label in the graphical display and selecting **delete.** ### 6.8.10 Labeling Distances Within the **labels** tab there are tools for calculating and displaying distances. These tools can also be found in the Tools/Analysis menu. Show corresponding distance between two objects ### To display distance between two atoms: - Click on the labels tab (previously called advanced tab). - Select the atoms between which you would like to find the distance. (See selection toolbar) - Click on the 'Show Distances Between Two Atoms' Button - The distance will be displayed in angstroms, in green. #### To find the distance from one atom to many: - Click on the labels tab (previously called advanced tab). - Select the atom from which you wish to measure the distance from (See selection toolbar) - Click on the 'Show Distances From One Atom To Many' button. - The distances will be displayed in green. The maximal and minimal distances can be selected by entering values in the boxes shown here (below) in the labels tab (previously called Advanced tab). **NOTE:** Distances can be displayed and undisplayed in the 3D labels section of the ICM Workspace. See image below. #### To change the color of the distance label • Right click on the **distpairs** under the **3D labels** section of the ICM workspace and select **Change Color**. ### 6.8.11 (Un)display Origin To display and undisplay the axis of the coordinate frame (origin): • Select the **labels** tab and select the **toggle origin** button. # Display or undisplay origin button - located in the labels tab ### 6.9 Display Distances and Angles Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro # 6.9.1 Display Distance Between Two Atoms - the quick way - Click on the **Display** tab - Click on the **Distance between two atoms** button shown below. - Click on the atoms you wish to measure. - Distance will be displayed in the graphical display. You can turn this on and off in the ICM Workspace panel under the heading 3D labels. ### 6.9.2 Display Planar Angle - Select the **display** tab. - Select three atoms. - Select the button shown below. ### 6.9.3 Display Dihedral Angle - Select the display tab. - Select four atoms. - Select the button shown below. #### 6.9.4 Delete Label To delete distance or angle labels - Select the **display** tab. - Select the delete distance or angle label button shown below. ### Delete distance or angle labels button in display tab ### 6.10 Graphics Effects ## Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro All the visual effects tools can be accesed by the View Menu or click on the corresponding button in the View Tools panel shown below. ### 6.10.1 Fog **Fog Toggle**(Ctrl + D): this feature creates a fog-like environment for your object, so that the part of your structure that is closer appears clear and the distant parts are faded as if they are in fog. The clipping planes control the point at which the fog begins. • View/Fog ### 6.10.2 Sketch Accents To make images as shown below use: • View/Sketch Accents ### 6.10.3 Elegant Ribbon & Ligand Sketch - Display Tab - Click and hold Hydrogen button - Select Elegant Ribbon+Sketch ### 6.10.4 Occlusion Shading Occlusion shading is for surfaces and meshes to give a perception of depth. ### To add occlusion shading: - Right click on the mesh in the ICM Workspace and select Occlusion Shading. The occlusion shading value can also be changed before generating the mesh in the meshes tab. - Enter a depth value default is 0.8. Higher values will generate a more dramatic shading. ### 6.10.5 Perspective **Toggle perspective Ctrl\_P** this will add perspective to your structure, enhancing depth in the graphical display. • View/Perspective #### 6.10.6 Animate View Learn how to build fully interactive and interruptable animations. Smooth Animated Transitions ### 6.10.6.1 Make Animation To quickly produce an ICM Molecular Animation: - Click and hold down the "Begin rocking/rotation" button shown in the picture below. - Choose from the following options X-Rock, Y-Rock, Xy-Rock, xY-Rock, X-Rotate, and Y-Rotate. **NOTE:** Default rocking representation can be changed in the File/Preferences/Gui menu. ## 6.10.6.2 Change Speed, Range and Cycle Length of Animation To change the speed, range and cycle length of the animation: - Click and hold down the "Begin rocking/rotation" button shown in the picture above. - Choose the set speed range option and change the speed and range using the drag bars. Any change will appear in the graphical display behind this box. - If desired you can change the number of cycles of the animation. This is an ideal tool for screen-shot movie making. **NOTE:** There is a return to default button in the Rocking Preferences dialog box shown above and defaut values can be changed in File/Preferences/Gui. **NOTE:** Default rocking speed can be changed in the File/Preferences/Gui menu. #### 6.10.6.3 Interrupt Animation An ICM Animation or Transition is fully interactive and is interrupted by a single click of the mouse. To stop or change an animation or transition: Click the "Begin rocking/rotation" button shown in the picture below. To temporarily halt an animation or transition: 132 6.10.6 Animate View Click in the graphical display. Once you release the mouse button the animation will start again. Click here to stop an animation **NOTE:** If you click on the graphical display during an animation the animation will be interrupted. Whilst clicking and holding the mouse button other operations can be performed such as zooming and selections. Click in the graphical display window to temporarily interrupt an animation #### 6.10.6.4 Saving an Animation An animation can be saved in an ICM project: File/Save Project Or as a slide. ### 6.11 Graphics Shortcuts Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro The left mouse button can be mapped onto different graphics tools which can be selected from the right hand tool bar. Note: (1) You can access many non-rotation modes directly from the rotation mode by using Middle and Right-mouse buttons, as well as by using the right, top and left margins of the graphics window. (2) You can access the rotation mode from non-rotation modes by pressing Ctrl. - rotation ( **the default** , press Ctrl if you in the non-rotation modes ) - translation ( the middle mouse button in the rotation mode) - zooming in and out by dragging the mouse up and down (the left margin in the rotation mode, or use the mouse **wheel**) - Z-rotation (the top margin in the rotation mode) - selecting by box (the right mouse click in the rotation mode) - selecting by lasso ( Ctrl-draw lasso in the rotation mode ) - picking out atoms (a toggle) - picking out and labeling residues (a toggle) 6.10.6 Animate View 133 - moving the front clipping plane (the top section of the right margin in the rotation mode) - moving the rear clipping plane (the bottom section of the right margin in the rotation mode) - moving the slab (the middle section of right margin in the rotation mode) - unclipping ( Ctrl-U ) - rotating torsions (Ctrl-left-mouse-click in the rotation mode) - connect and unconnect separate molecules to movement controls Many useful graphics tips are summarized here. **NOTE:** Key mouse controls are summarized in the command line manual here http://www.molsoft.com/man/graphics-controls.html ### 6.12 Molecule Move Buttons Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro To move your structure it must first be displayed in the graphics window (for instructions on how to display a structure see the Display Tab). All of the following options are displayed in the Move Tools toolbar (shown below). #### 6.12.1 Rotation In order to achieve the best pose for a picture or to enable the study of a certain region of your structure in more detail you may need to rotate the structure: • Click on the **rotation** icon on the toolbar. Click and drag on your structure in the display window until it is in the desired position. #### 6.12.2 Custom Rotation An option is provided to customize the rotation of the molecule. This allows exact rotation by a specified number of degrees. - Click and hold down the rotation button and a data entry box as shown below will be displayed. - Enter the number of degrees of rotation you require and in which X, Y or Z coordinate. #### To continuously rotate the picture: - Click on the **continuous rotation** icon on the toolbar. - Click, hold, and slightly move your mouse anywhere on the graphical display window. The point at which you hold your mouse, is the direction to which the object will turn. - Positioning the mouse towards the center of the display will move the object slower than if the mouse is positioned towards the edge of the graphical display. In order to rotate your picture around the Z-axis: • Click on the **Z-axis rotation** icon on the toolbar. • Click and drag your object around the Z-axis until it is in the desired position. #### 6.12.3 Translation To translate your structure up, down, left, or right: • Click on the **translation** icon on the toolbar. 6.12.2 Custom Rotation 135 • Click and drag on your structure in the display window until it is in the desired position. When you are displaying more than one object and you wish to translate one object in relation to the other on the Z-axis: - Right click on the name of the object you wish to move in the ICM workspace and select connect to object. This object is now independent from the other object and can now be manipulated separately. - Click on the **Z translate** icon on the toolbar. - Click and drag your structure along the Z-axis, moving it closer or further from your unconnected structure. - Once you are finished, right click on the name of the object which is connected, and click on disconnect. ### 6.12.4 Zoom #### To zoom in or out of your structure: • Click on the **zoom** icon on the toolbar. • Click and drag your mouse up to zoom in and down to zoom out. You can also zoom in and out directly with the right-mouse-button *without* explicitly switching to the zoom tool, if you use the **left 5%-margin** of the graphics window. #### 6.12.5 Center To restore your picture to the center of the graphical display window or to center on a selection: - Make a selection of the region you wish to zoom into if no selection is made the whole structure will be centered. - Click on the **center** icon on the toolbar. 136 6.12.3 Translation ### 6.12.6 Torsion Angles # To alter the torsion angle of certain residues of your structure manually: - Convert your pdb structure into an ICM object. - Click on the change torsion angles icon on the toolbar (see image below). - Click on the bond until you see the torsion angle displayed in yellow (see image below). Click and hold on the bond around which you wish to rotate a residue. The changing torsion angle will be displayed in orange. **NOTE:** This option can be used more effectively in conjunction with the variable label option. #### To alter torsions by entering specific angle values: You can edit torsions by specifically defining the exact angle as described here. ### 6.12.7 Connect (Move) When there is more than one object displayed in the graphical display window the objects are connected to one another. If you wish to move or manipulate one object independently from the others you need to **connect** to it #### To do this from the ICM Workspace: Right click on the name of the object you wish to move in the ICM workspace and select Connect to Object. The object will now be colored yellow. 6.12.5 Center 137 - The object is now controlled separately from the rest of your objects by your mouse. - Disconnect your object by once again right clicking on the name of the object in the ICM Workspace and selecting disconnect in the drop down menu or Press the ESCAPE key. Note: you can temporarily switch to the global rotation in the connected state if you press Shift Note: use the Escape button to disconnect ### **6.13 Clipping Tools** Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro Move Front Clipping Plane Move Rear Clipping Plane Slab Unclip The clipping tools allow you to adjust the frames of the ICM window, changing the clipping planes. Clipping planes can also be moved *without* switching to the clipping tool, if you click the right hand margin of the graphics window: - The top section of the right 5% margin of the graphics window: moves the back clipping plane - The middle section of the right 5% margin of the graphics window: moves the slab (both clipping planes) - The bottom section of the right 5% margin of the graphics window: moves the front clipping plane In order to move the front or rear clipping planes of your screen: - Click on the Move front clipping plane or Move rear clipping plane icons on the toolbar. - Click and drag the respective plane frontward or backward, depending on how you wish to clip it. You can also move the **slab** of viewing window, keeping the distance between the front and back clipping planes. In order to adjust the area of the structure where your viewing window is located: - Click on the **Slab** icon on the toolbar. - Click and drag the slab frontward or backward, depending on the desired area of the structure you wish to see. If you have made changes to the clipping planes which you do not wish to keep or you wish to automatically fit your entire structure within the clipping planes: • Click on the **Unclip** icon on the toolbar. This will automatically set the clipping planes to fit your object. ## 6.13.1 Mesh Clipping Clipping tools can be used to adjust the frames of the mesh independently of other objects. This is described here. ## 6.14 Graphic Layers Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro To display and undisplay layers of a structure you can use the buttons shown below. Seven layers can be created and within each layer different structural representations can be displayed. Right click on one of the layer buttons and a number of options can be chosen as shown below. To change the display in one of the layers: - Right click on one of the layer buttons. - Select a representation wire, xstick or CPK. - You can do this for each of the seven layer buttons. - Click on the layer button to display and undisplay. If the layer button is shaded red then the layer is not displayed. If the layer button is shaded light blue then it is displayed. You can switch between layers by clicking on the button or using the. You can use the memorize button to store a particular representation and clear to remove a memorized representation. ## 6.15 High Quality Publication Images 6.13 Clipping Tools 139 ## 6.15.1 High Quality Image ## To make high quality publication images: The first step is to improve the quality of the image using the **High Quality Image** and **Antialias** buttons shown below. #### To save and write an image: Select File/Write Image and the following window will be displayed: Choose one of the tabs depending on the image type you require: - Antialiasing allows you to make png, tif, targa, eps or rgb file types - **High Resolution PNG** Allows you to specify a resolution increase and transparent backgroun. - **High Resolution** Allows you to specify a resolution increase for tif, targa and rgb files. - Vectorized Postscript This creates a vectorized postscript model of the screen image. Instead of the bitmap snapshot this command generates lines, solid triangles and text strings corresponding to the displayed objects. Since the postscript language is directly interpreted by high-end printers, the printed image may be even higher quality than the displayed image. The final resolution is limited only by the printer since the original image is not pixelized. Warning: there may be inevitable side-effects for some types of solid images at the intersection lines of solid surfaces (i.e. large scale cpk representation, hint: use display skin instead). \*\*NOTE: With some graphics drivers the high resolution image may be distorted or multiple representations of the image in one frame. Please see the FAQs for a solution to this. ## 6.15.2 Quick Image A quick image can be saved using this option. The image will be saved as icm1.png in the current directory in which you are working. Each subsequent image produced will be incrementally numbered. This option is also available via a button as shown below: ## 6.15.3 Image Options Click and hold on the **image** button at the bottom of the GUI to: - Copy image to clipboard (single click on the button also does this). - Resize image (Write Image Advanced) - Transparent Background Write Image Advanced) - Store an image in ICM (Write Image Advanced) - If you are making an ICM document you may want to store images inside ICM (Add Image to Album). 7 Slides & ActiveICM In this chapter you will find a description of the tools available to create files (.icb) containing fully-interactive three-dimensional (3D) molecules and two-dimensional (2D) data. These files can contain multiple interactive views and animations of molecular structures and objects in conjunction with related hyperlinked text, chemical, biological sequence, alignment and data views. The files are small and easily transferable and downloadable. The files can be used for Molecular Presentation and Documents inside the ICM browser or displayed on the web and in PowerPoint using the ActiveICM plugin. For examples of ICM Molecular Documents please see MolSoft's ActiveICM product page at www.molsoft.com/activeicm.html #### **Chapter Contents:** - Making Molecular Slides - How to View and Navigate Slides - How to Edit Slides - How to Add Smooth Blending and Transition Effects Between Slides - How to Make Molecular Documents Link HTML Text to Slides - ActiveICM ActiveICM enables you to view and display ICM graphical slides and animations interactively inside Windows Microsoft PowerPoint and web browsers such as Internet Exporler and Mozilla Firefox. - IcmJs is a JavaScript/HTML5 version of the ActiveICM plugin. ## 7.1 Making Slides Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro A slide enables you you to store a large number of different 3D visualization along with text and window layout. The following information can be stored in a slide: - Viewpoint (e.g. rotation, translation, zoom, lighting and depth effects) - A set of atom-specific graphical representations such as surfaces, which can be represented as smooth, transparent or wireframe, ball-and-stick models, CPK (space-filling) models. - A set of atom, residue or distance labels on any of the atomic items - A set of arbitrary 3D textual annotations assigned to a point in space - Å set of arbitrary 2D annotations assigned to specific 2D coordinates on a screen - Parameters of the parametric animation - Window layout for when the slides are viewed in the browser. - Current table(s) - Sequences and Alignments - HTML text with hyperlinks - 2D images - For each grob (mesh): representation and colors. A slide can be made by clicking on the Camera button at the bottom of the GUI. 7 Slides & ActiveICM 143 Slides can be viewed in the GUI, can be edited and graphical effects can be added to them. Slides can also be embedded into the web, or PowerPoint using ActiveICM or viewed in ICM-Browser (or ICM-Pro). This tutorial takes you through the steps to create a series of fully interactive 3D slides. Another tutorial can be found here. **To begin making ICM Molecular Slides:** First load the structure or structures you wish to display in your first slide. Additional structures, labels etc and text can be added at any point during the slide making process. In this example we will load the PDB file 1XWS a PIM1 kinase. 144 7.1 Making Slides Next, we will convert the PDB file to an ICM object so we can make slides of the ligand-receptor hydrogen bonds and binding pocket surface. • Now we are going to prepare the first slide by rotating the protein structure to an orientation which allows the viewer to see 7.1 Making Slides 145 the key features of the kinase. For example the bulge in the hinge region (between the N- and C- lobes) which is unique to PIM proteins. • Next, make the first slide by clicking on the camera button at the bottom of the graphical user interface. 146 7.1 Making Slides #### Click to add slide Once you have clicked on the camera button you will see that the first slide has been generated. The first slide is shown in the ICM Workspace window as shown below. • Slides can consist of Static views or Transitions and Animations. Here we will zoom into the flexible glycine rich region of the kinase which lays across the roof of the ATP-binding pocket. Click on the camera button and make the second slide 7.1 Making Slides 147 Next, we will make a slide of the surface of the ligand binding pocket colored by binding property. • Now save the document as an icb file. Go to File/Save as... 148 7.1 Making Slides ## 7.2 Make a Movie from a Set of Slides Available in the following product(s): ICM-Browser-Pro | ICM-Pro Please see the movie chapter on how to make a movie from a set of slides. ## 7.3 How to View and Navigate Slides Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro #### 7.3.1 View Slide Show To view a slide show select the buttons shown below: Click and hold and select Toggle Slide Layout Run Slideshow **NOTE:** Slides are associated with the objects currently loaded into ICM. Therefore if you delete an object then the slides will not work. However if you delete an object and then re-read the same object with the same name and structure the slides will be ok. ## To save a slide show • File/Save Project ## 7.3.2 Slide Navigation You can make as many slides as you wish as described in the Making Molecular Slides section. To navigate through the slides you can use the buttons shown below, the cursor keys for some operations or the right click options in the ICM Workspace. The slide currently displayed is highlighted in red in the ICM Workspace. To jump to another slide right click and select "Set Slide". All slides are displayed in the ICM Workspace. You can hover the mouse over a slide name in the ICM Workspace and a thumbnail sketch of the slide is displayed as shown below. This can be used for slide navigation purposes. Hover mouse over slide name in the ICM Workspace and a thumbnail sketch of that slide will be displayed. Or you can right click on the name of the slide in the ICM Workspace and select the option "Preview". ## 7.4 How to Edit Slides Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro You can jump to the slide you wish to edit by following the slide navigation instructions. ## 7.4.1 Edit Slide **Edit slide contents:** To edit the content of a slide the procedure is to add a new slide and then delete the old one or use the "overwrite current slide" option as shown below: • Click and hold down on the camera button. Click and hold #### To edit a slide description. Click and hold down on the camera button and select the option "Edit Slide Description". 7.4 How to Edit Slides 151 - Enter the name of the slide - Enter a description of the slide. - If you wish to keep the current window layout or active tabs check the boxes provided ## To delete a slide: Right click on the name of the slide in the ICM Workspace and select Delete. ## To change the name of a slide • Right click on the name of the slide in the ICM Workspace and select Edit Slide. ## 7.4.2 Move Slide To change the slide's position in the slideshow use the Move Current Slide option and select the new position from the list. - Click and hold on the "make slide button". - Select Move Current Slide. Click and hold 152 7.4.1 Edit Slide Select the position in the slide show where you want to move the slide to. ## Co-display more than one slide - Right click on the name of the slide in the ICM Workspace you wish to co-display with the curently displayed slide. - Select the option co-display slide. ## 7.5 How to Add Smooth Blending and Transition Effects Between Slides Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro #### How to add smooth and blend transitions to a slide. - Right click on the name of the slide in the ICM Workspace. - Select Edit Slide. - Select the desired transition effect smooth or blend as shown below. - Select the length of the transition in milli seconds. 7.4.2 Move Slide 153 ## 7.6 How to Make Molecular Documents - Link HTML Text to Slides Available in the following product(s): ICM-Browser | ICM-Browser-Pro | ICM-Pro An ICM Molecular Document contains text and images which can be hyperlinked to the graphical display. Click on the hyperlinked text and then a fully-interactive 3D slide will be displayed. The hyperlinks are usually linked to a set of slides but can also be linked to a series of commands in a script, a web page, a table or alignment. Once a molecular document has been made you can view it in the ICM-Browser (File/Save Project .icb file) or download ActiveICM and view it in a web page or Powerpoint. ## To begin creating an ICM document - File/New/ and click on the HTML tab. - Enter some text. E.g the Name of the HTML document. Formatting can be changed as described in the edit section below. - Click OK A HTML text panel will be displayed in the graphical user interface. **NOTE:** You can add multiple documents into a single file. The documents will be accessible via tabs at the top of the HTML panel. ## 7.6.1 How to Add Text or Edit a Molecular Document ## To edit the HTML text in the graphical display - First create an HTML document and the text panel will be displayed in the graphical user interface. - Right click in the body of the text display panel and select Edit. • Enter text and use the formatting tools provided in the panel above the text editor. Make sure you have selected the **Edit** tab in the HTML editor. You can see your page in the **View** tab or write directly in HTML in the **Source** tab. The key formatting tools in the HTML editor are shown below. ## 7.6.2 How to Make a Hyperlink Between Text and a Slide #### To make a hyperlink between the text and the graphical display (slide) Make a slide or set of slides of the graphical display you wish to link to. See Making Molecular Slides for help on this. Once slides have been created: - File/New/Html - Right click in the body of the text display panel. - Select Edit. - Highlight the text you wish to link to a graphical display you can do this by left clicking and dragging over the text (selected text will be highlighted in blue). - Click on the "Camera button" in the HTML editor formatting tool panel. - Select the **Slide** tab. - Select which number slide you wish the text to be linked to from the drop down menu. - There is an option to display the slide as a thumbnail image in the text document panel. Check if appropriate. ## 7.6.3 Insert Image **NOTE:** The easiest way to add images (PNG or JPEG) into an ICM Document is to use drag and drop. You can drag and drop the image into the ICM Workspace or go to File/Open. Once the image is in the album in the ICM Workspace you can then drag it from the ICM workspace into tthe HTML editor. Drag and Drop from the ICM Workspace to the HTML source editor ## Another way to insert a picture into the HTML text panel • First read the image into the ICM photo album File/Open OR Drag and Drop from directory into the ICM Workspace. The image name and preview will then be displayed in the ICM Workspace. - Create HTML text File/New/HTML. Add text. - Right click in the HTML window and select 'Edit Source'. - Right click on the position in the ICM Script Editor where you would like to insert the image. - Select 'Insert Image' - Select the image name source. - Choose the desired Width and Height. 158 7.6.3 Insert Image - Click OK. - Click Save in the ICM Script Editor. ## 7.6.4 Insert Script ### How to insert a script to the text panel There are 3 ways to add a script - described in more detail below - 1. Drag and drop script from ICM Workspace - 2. In the HTML Source Editor right click and select Insert Slide or Action - 3. Create an "inline" script These methods are described below: ### **Drag and Drop Method** - Create a script File/New/Script - The script will be displayed in the ICM Workspace. - Right click in the HTML Text Panel (for instructions on how to create this panel see create molecular document) and select edit source and the HTML Source Editor will be displayed. - Click-Drag and Drop the script into the HTML Source Editor A line as shown below will be added. <a href="#icm/script/script1">text placed here will be displayed as a link in the document</a> #### Another way to add a script to the document is to Insert Action: - Right click in the body of the text display panel. - Select Edit Source - Highlight the text you wish to link to a graphical display you can do this by left clicking and dragging over the text (selected text will be highlighted in blue). - Right click and select 'Insert Slide or Action' or select the button in the HTML Source Editor and a window as shown below will be displayed. 7.6.4 Insert Script 159 - Select the option [Arguments and] ICM commands - Add script in the editor provided - Select ok #### **Inline Script** A script can be added to the HTML text in the following way - Right click in the body of the text display panel. - Select Edit Source - Enter script in the format as shown below. ``` <!--icmscript name="script2" #dialog{"Test"} # i_number1 (2) # i_number2 (3) print $1 + $2 --><a name="script2" href="#_">script2</a> ``` ## 7.6.5 Insert a Dialog Box Dialog boxes are provided to enable a viewer to interact with a presentation or document file. The dialog box will be a gui data entry box. For an example here is a script to prompt the user of the file to enter a pdb code: ``` #dialog{"Read PDB File"} # s_pdbcode (1crn) read pdb $1 ds a_1. ``` The code above can be saved as a script or inside the html text. To do this: - 1. Right click on the HTML text display and select "Edit Source". - Highlight the text you wish to link to a dialog box and then select the right click and select 'Insert Slide or Action' or select the button in the HTML Source Editor and a window as shown below will be displayed. OR. - 1. Right click on the HTML text display and select "Edit Source". - 2. Add a link to a script as shown below. <a href="#icm/script/script1">Example Script 2</a> ## 7.6.6 How to add a check box. To add a check box: - Click on the check box button in the HTML editor tools panel (see below). - You can choose the check box to toggle an object or molecule on or off. Or you can be more specific about the toggle actions using the ICM command line. You can choose different actions for On and Off. ## 7.6.7 Document Navigation The following buttons shown below aid document navigation. Also remember that more than one document can be stored and the header of each document file will be displayed in multiple tabs in the text panel window. ## 7.6.8 Protect Shell Objects From Deletion When making a molecular document you can protect objects from deletion by the person who reads your document by: - Right click on the object in the ICM Workspace. - Select the **Protect** option. ## 7.7 ActiveICM ActiveICM enables you to view and display ICM graphical slides and animations interactively inside Windows Microsoft PowerPoint and web browsers such as Internet Exporler and Mozilla Firefox. #### **Chapter Contents:** - How to Embed in Microsoft PowerPoint 2003 - How to Embed in Microsoft PowerPoint 2007 - How to Embed in Microsoft PowerPoint 2010 - How to Embed in a Web Browser - How to Use ActiveICM in PowerPoint - How to Change ActiveICM Component Properties - Advanced use of activeICM: Macros to direct visualisation changes - Background Images ## 7.8 How to Embed in Microsoft PowerPoint 2003 ## **Setup** - Download ActiveICM from www.molsoft.com/support - Save an ICM file (.icb) containing slides. Click here to see how to make slides. ### Embed icb file - Open the Insert menu from the top bar of PowerPoint and select Object - This opens up the Object dialogue. Select ActiveIcmCtlClass: - Click on OK. A file dialogue will then be opened. Open the ICB file you wish to use via this dialogue. IMPORTANT: To avoid later problems, make sure the ICB file is in the same folder as the PowerPoint file. - A low-resolution snapshot of the first slide in the ICB file will be shown in the activeICM control you created. You can change the shape of the control by dragging the corners of the control with 7.7 ActiveICM 163 the mouse, once selected. Right-click on the activeICM control and select the Properties menu item • Save the PowerPoint presentation ## 7.9 How to Embed in Microsoft PowerPoint 2007 #### Setup - Download ActiveICM from www.molsoft.com/support - Save an ICM file (.icb) containing slides. Click here to see how to make slides. **NOTE:** Here are the instructions for ActiveICM in Microsoft Office 2007, for older versions of PowerPoint see here. ### **Enable the Developer Menu:** - Click the Microsoft Office Button (button top left), and then click PowerPoint Options. - In the **PowerPoint Options** dialog box, click Popular. - Under Top options for working with PowerPoint, selet the Show Developer tab in the Ribbon check box, and then click OK. #### **Insert ActiveICM into PowerPoint:** - Select the **Developer** menu. - Select the More Controls button in the Controls field. - Select ActiveICMCtl Class from the list of controls and click OK. - Click the mouse anywhere in the white PowerPoint space and a dialog box will be displayed asking you to select your ICM (.icb) file. - Click and drag at the corners of the image to resize the normal way you would resize an object in PowerPoint. # 7.10 How to Embed in MicroSoft PowerPoint 2010 #### **Setup** - Download ActiveICM from www.molsoft.com/support . Please always check you are using the latest version. - Save an ICM file (.icb) containing slides. Click here to see how to make slides. ### **Enable the Developer Menu:** - Click on the File tab, and then click Options menu. - Select the Customize Ribbon option and then check the Developer option in the right hand side panel (see image below). - Click on the **Developer Menu**. - **IMPORTANT!** Click OK and then you will see the Developer Menu in the Ribbon at the top of PowerPoint. - Select the Developer menu. - Select the More Controls button in the Controls field. - Select ActiveICMCtl Class from the list of controls and click OK. - Click the mouse anywhere in the white PowerPoint space and a dialog box will be displayed asking you to select your ICM (.icb) file. - Click and drag at the corners of the image to resize the normal way you would resize an object in PowerPoint. ## 7.11 Embed in Web Browser **NOTE:** There is now a plugin-free version using JavaScript/HTML5 - click here for more information. To embed in a web browser. Download ActiveICM from here http://www.molsoft.com/getbrowser.cgi?product=activeicm&act=list (it is free!). - 2. Create an HTML page in ICM (File/New/Html). - 3. Add a series of slides. - 4. File/Export As ActiveICM Html.. **NOTE.** There is an issue with FireFox21 because it disables the ActiveICM plugin. The workaround at the moment is: - type about:config in the location (address) bar and press the "Enter" key to open the about:config page, just like you open a website by typing the URL in the location bar. - if you see a warning message then you can confirm that you want to access the about:config page. - in the Search bar at the top of the about:config page type 'load\_appdir\_plugins' - double click on the preference to set value to true - restart FF ## 7.12 How to Use Active CM in PowerPoint #### \*\*IMPORTANT There are two ways to open a presentation: - Double click on the ppt file in windows folder. (in this case PowerPoint will set the current directory to the one which contains the file and there should be no problems with both relative and absolute paths) - Open ppt through the "File-Open" or recent files. (in this case PowerPoint DOES NOT SET the current directory to the one which contains the file -> relative path might not work and user will be prompted to locate the ICB file unless file is found in absolute location) #### To view the slides you must be in Slide Show mode • Press the **F5** button to start the **Slide Show**. In edit mode (i.e. not presentation mode), the control is shown as a static image i; ‰ it is not possible to interact with the ICB file. Therefore, to prepare the presentation so that the control shows the correct initial visualisations it is necessary to run the PowerPoint slide(s) in presentation mode #### **Change Slides** • Use the left and right cursor keys to change slides. ## A number of other options can be accessed by right clicking on the slide. These options include: - Select Slide - Auto Play - Set on/off rocking - Center - Load a new ICM File ## You can also add multiple ActiveICM 3D displays in one slide: To display mutliple ActiveICM 3D displays in one slide just copy the original display or repeat the steps described above. All powerpoint slides should point to the same ICM file (.icb) but they can point to different slides. # 7.13 How to Change ActiveICM Component Properties A number of properties of ActiveICM can be changed once embedded in powerpoint. The options include: - Select the first slide to be displayed. - Set slide auto play. - Set auto play of a script. - Embed the powerpoint file and the icb file all into one file. ## To change these options: - Right click on your embedded activeICM in Powerpoint. - Select **Properties** and click on the button shown below. • A **Property Pages** window will then be displayed as shown below. To change the file name of the icb file linked to activeICM: Simply type in the path to the file or use the browse option. **To change the current ICM slide:** Use the drop down button next to **Current ICM Slide** to select the slide you wish to display first in your presentation. **To auto play slides:** Check the **Auto Play Slides** box and select the interval between slides option. A range of slides can be played by entering the number of the slides separated by a comma. **To auto play a script:** Select whether you want the script to run **On Click** or **On Slide** then select the script from the **script to play** drop down button. You should first save your script in the icb file. **To embed the icb file in the ppt file** Click the **Embed File into Control** option. **Important** - Please save your PowerPoint file in the t 1997-2003 ppt format not pptx. # 7.14 Advanced use of activeICM: Macros to direct visualisation changes Documentation kindly provided by Dr. Brian Marsden (SGC Oxford http://www.sgc.ox.ac.uk/people/brian/) It is possible to write simple VisualBasic scripts to avoid having to use the right-click menu approach to changing activeICM control slides within the control itself. This allows one to place buttons outside of the activeICM control, but in the same PowerPoint slide, which controls the control's behaviour. Below are a couple of useful examples of this approach. #### Creating a button to set the control's active slide: #### **Insert a button Office 2003** In edit mode, make sure the control toolbox toolbar is shown by right-clicking the blank area at the top of the top bar and ensuring Control Toolbox is ticked. Click on an icon in the Control Toolbox which corresponds to the sort of button you wish to use. Then click and drag in the PowerPoint slide to generate the button. #### **Insert a button Office 2007:** In edit mode, click on an icon in the Developer menu or ribbon which corresponds to the sort of button you wish to use. Then click and drag in the PowerPoint slide to generate the button. Double-click on the new button to open the VisualBasic editor with two empty functions pre-defined. The first one pertains to the control itself and can be ignored in this context \*For the second function (which is for the newly-created button), copy the following into the editor, between the two lines of function code: ActiveIcmCtl1.currentSlide = 2 - This sets the current activeICM control's slide to be number 3 **note** that the value placed in this code needs to be 1 less than the actual slide number (confusing, no?). Obviously, use a value here that makes sense in the context of your ICB file. - This should leave the editor looking like this: - Close the Visual Basic editor - To change the physical properties of the button e.g. text, colour e.t.c.right-click on the button and select the Properties menu option. This opens up a dialogue as below, where many properties of the button can be changed: Using this dialogue, it should be possible to disguise the button to look like normal text (for example) which can be clicked on during the presentation to change the visualisation of the - control, apparently magically. Note that the button will only work in presentation mode. - IMPORTANT: In Office 2007, remember to save the PowerPoint presentation now as a pptm file that is, a macro-enabled PowerPoint file otherwise the macros will not work next time you load the presentation. **Other code examples:** Just copy and paste the example of interest inside the function for the button in the Visual Basic editor. Code that enables a button to cycle through the ICB files slides in order (including wrap-around) ``` currentSlide = ActiveIcmCtl1.currentSlide numSlides = ActiveIcmCtl1.nofSlides If currentSlide = numSlides - 1 Then ActiveIcmCtl1.currentSlide = 0 Else ActiveIcmCtl1.currentSlide = currentSlide + 1 End If ``` ### 7.14.1 PowerPoint Cache Errors PowerPoint caches some information about active controls. Sometimes after an ActiveICM upgrade you may get an error when trying to access some property or method: "Wrong number of arguments or invalid property assignment" or something similar. In this case you need to close PowerPoint and remove all files from the location below: C:\Documents and Settings\seva\Local Settings\Temp\PPT11.0 ## 7.15 Background Images In ActiveICM version 1.1-5 and higher you can add background images to your icb file and display in PowerPoint and the web using ActiveICM. The documentation on how to insert background images can be found here. ## 7.16 ICM JavaScript (IcmJS) IcmJS (formerly known as ActiveIcmJS) is a JavaScript/HTML5 version of the ActiveICM plugin. You can read more about IcmJS here. To make a fully interactive 3D molecular web page from ICM and embed using IcmJS: - Use ICM vesion 3.8-5 or higher. If you do not have access to this please contact MolSoft to request it. - Make a set of slides. - Go to File/Export as ActiveICM Html and then select the IcmJS check box. - The IcmJS file will then be saved to your computer which you can open in any modern browser e.g. Chrome, FireFox or Safari. | Graphics Tutorials | | | |----------------------------------------------------------------------------------|------------|-----------------------------| | Molecule Representation, Coloring, Labeling | HTML | | | and Annotation | 11111111 | | | Creating Fully Interactive Slides for PowerPoint and the Web | HTML | Reference Guide <br>Webinar | | Sequence and Alignment Tutorials | | Weblilai | | Read Sequences and Align | HTML | Video | | Link Sequence to Structure | HTML | | | Alignment Annotation | HTML | Viaco | | Protein Structure Tutorials | IIIIVIL | | | PDB Search | HTML | | | Convert PDB to ICM Object | HTML | | | Superimpose Proteins | HTML | | | Structure Analysis | HTML | | | Calculate contacts | HTML | | | Display hydrogen bonds | HTML | | | Identify ligand binding pockets | HTML | | | PDB Preparation: Symmetry | HTML | | | PDB Preparation: Occupancy & B-Factors | HTML | | | PDB Preparation: Occupancy & B-Factors PDB Preparation: Alternative Orientation | HTML | | | PDB Preparation: Biomolecule | HTML | | | Protein Modeling Tutorials | IIIIVIL | | | Building an Homology Model | HTML | | | GPCR Modeling Example | HTML | | | Loop Modeling | HTML | | | Predicting the Effect of a Mutation on | IIIIVIL | | | Binding | HTML | | | Predicting the Effect of a Mutation on | 11773 41 | | | Stability | HTML | | | <b>Cheminformatics Tutorials</b> | | | | Chemical Sketching using the Molecular | HTML | Reference Guide | | Editor | | | | Chemical Search | | Refrence Guide | | Chemical Clustering | HTML, | | | Working with Large Chemical Space | HTML, | | | 3D Pharmacophore Search | | Video | | 2D Pharmacophore Search | HTML | | | How to Create a Markush Structure | HTML | Video | | How to Enumerate a Markush Library | HTML | Video | | How to Decompose a library based on a | HTML | Video | | Markush Library How to Enumerate a library by reaction | HTML | Video | | * * | | video | | Detecting Activity Cliffs Atomic Property Fields (APF) | HTML | | | '/ | | | | APF Superposition, Score, Consensus,<br>Screening and Clustering. | HTML | | | Ligand Editor Tutorials | | | | Working with the ICM Interactive 3D Ligand | | | | Editor | HTML | Reference Guide. | | Ligand Docking Tutorials | | | | Dock Biotin to the Streptavidin Receptor | HTML | Video | | Re-Dock an Inhibitor to Ricin Crystal | <b>ЦТМ</b> | Vidoo | | Structure | HTML | Video | | | | | | Covalent Docking | HTML | Video | |---------------------------------------------------------|------|-------------------| | Protein-Protein Docking Tutorial | | | | Protein-Protein Docking using FFT Method | HTML | | | Virtual Screening Tutorials | | | | Virtual Ligand Screening to Ricin Receptor | HTML | | | Virtual Ligand Screening to Cyclooxygenase | HTML | Video-1 Video-2 | | Docking a Markush Library | HTML | | | Induced Fit Docking Tutorials | | | | Multiple Receptor Conformation Ensemble Docking Example | HTML | | | Explicit Group Docking | HTML | | | QSAR Tutorials | | | | 2D FingerPrint QSAR Model | HTML | | | 2D 3D Pharmacophore QSAR Model | HTML | | ### 8.1 Graphics Tutorials #### Introduction The following examples are focused on the structure of the kinase catalytic domain. The catalytic domain is nestled between the N- and C-terminal and has high sequence conservation between kinase families. The adenine moiety of ATP interacts with the hinge region which links the N- and C-terminals of the catalytic domain. The ATP sugar binding region is on the "floor" of the pocket where ribose makes a hydrogen bond with a polar residue. A conserved lysine residue on the beta3 strand is part of the "roof" of the pocket where the triphosphate group of ATP binds. A flexible glycine-rich loop moves in and out of the pocket depending on the ligand bound state of the PK and is regulated to some extent by the movement in and out of the pocket by the AlphaC helix. A buried region at the "back" of the pocket is protected by a "gatekeeper residue" forming a variable hydrophobic cavity. The hydrophobic cavity along with the DFG motif region are of interest for drug design because it opens up regions of the pocket which are not conserved and do not bind ATP. To learn the basics of the graphical user interface we will annotate the key structural regions of a protein kinase. #### 8.1.1 Change Molecule Representation and Color This tutorial shows you how to: - How to load a PDB structure into ICM. - How to change the background color. How to display and undisplay a molecule. How to color ribbon representation. 177 Introduction **Step 1:** Click on the search tab to load and display the PDB structure 2vz6 **Step 2:** Change the background color by right clicking on the color palette. Step 3: Display the "a" subunit of the kinase. **Step 4:** Use the options in the "Display Tab" to color the ribbon. Step 5: Select the beta 3 strand (residues 37:43) and color yellow. #### 8.1.2 Annotation This tutorial shows you how to add user defined annotation to a particular region of a protein structure. 180 8.1.2 Annotation **Step 6:** Select the region you wish to annotate and right click on the selection for options. #### **8.1.3 Labels** This tutorial is a continuation from the previous tutorials in this section and shows you how to: - How to select individual residue types. - How to propagate a selection from one atom to all. - How to use the residue label button. - How to make a spherical selection. - How to label a residue selection. 8.1.3 Labels 181 **Step 7:** Use the "Filter Graphical Selection" button to select charged residues. **Step 8:** Propagate selection to all taoms to display all atoms of the side chain. 182 8.1.3 Labels **Step 9:** Locate the B3 to AlphaC salt bridge (K42- E60) and label using residue label button. **Note:** Once you have selected the two residues you can invert selection (click on invert selection button) and then undisplay all the other charged residues. **Step 10:** Select neighboring residues to the ligand. 8.1.3 Labels 183 Step 11: Display the residues and label them. #### 8.1.4 2D and 3D Labels This tutorial is a continuation from the previous tutorials in this section and shows you how to: - Create and display a 2D label. - Delete and move a 2D label. - Create and display a 3D label. - Delete and move a 3D label. 184 Step 12: Create a 2D label using the options in the "labels" tab. Step 13: Right click on the 2D label to edit or delete it. 8.1.4 2D and 3D Labels 185 **Step 14:** Create a 3D label using the options in the "labels" tab. Step 15: Right click on the 3D label to edit or delete it. # 8.2 Creating Fully Interactive Slides for PowerPoint and the Web Tutorial #### Introduction A slide enables you you to conveniently store a large number of different 3D visualization properties (e.g. color, viewpoint, representation etc...) along with text and window layout. ActiveICM enables you to view and display ICM graphical slides and animations interactively inside Windows Microsoft PowerPoint and web browsers such as Internet Exporler and Mozilla Firefox. In this example we are going to look at the effect of an agonist binding to the Beta-2-Adrenergic GPCR (B2AR) and prepare a molecular document. A prepared ICM file containing three B2AR GPCRs superimposed can be downloaded here ftp://ftp.molsoft.com/pub/workshop/ (1. cut and paste the address into a web browser. 2. Right click on GPCR\_slides.icb and choose "Save Link As". 3. Open the .icb in ICM File/Open). The file contains pdb files 2RH1 (R inactive state), 3POG (R\* active state, with G-alpha mimic), and 3SN6 (R\*G G-protein signalling state). The agonist ligand causes Helix 5 to shift inwards and Helix 6 to swing outwards. This agonist binding poses were predicted using ICM a year before the crystal structures were solved, you can read about this here and a good review of the structure and function of GPCRs here. #### **Tutorial** In this tutorial we will build a series of slides and then annotate them using HTML to create hyperlinks to the slides. The resulting molecular document can be exported in movie format or in fully interactive 3D files. **Step 1:** Download the example file here ftp://ftp.molsoft.com/pub/workshop/ (1. cut and paste the address into a web browser. 2. Right click on GPCR\_slides.icb and choose "Save Link As". 3. Open the .icb in ICM File/Open). Make a slide by clicking on the camera button at the bottom of the GUI. **Step 2:** The slide is stored in the ICM Workspace panel (left hand side of the GUI). You can make changes to the 3D display and return to the display in the slide by clikcing on the slide in the ICM Workspace. **Step 3:** Properies of the slide can be edited by right clicking on the slide in the ICM workspace. **Step 4:** Saving a viewpoint is useful if you are making many slides from the same viewing position. **Step 5:** In this slide we show that Helix 5 makes an inward shift when an agonist binds. **Step 6:** In this slide we show that upon binding an agonist Ile121 switches its rotameric state and Phe 282 moves. **Step 7:** In this slide we show that agonist binding causes Helix 6 to swing out. **Step 8:** You can export the slides as a movie or you can browse through them using the arrow buttons. **Step 9:** To build a molecular document you can annotate the slides using HTML. **Step 10:** Edit the document by right clicking on the HTML panel and choosing **Edit.** **Step 11:** Hyperlinks can be made to the slide. Other functions such as adding check boxes, ICM scripts and external links are also available. **Step 12:** Save the molecular document in icb format and view in ICM-Pro or ICM-Browser. You can also export to a web browser or view the fully interactive slides in Windows Powerpoint using a plugin called ActiveICM. | 2D, 6.8.8 | dnaRibbonWidth, 4.7.9 | |-------------------------------------|----------------------------| | 3D, 6.6, 6.8.8, 8.2 | dnaRibbonWorm, 4.7.9 | | | diardoon worm, 1.7.5 | | interactive ligand editor,<br>3.4.5 | dnaStickRadius, 4.7.9 | | | dnoWormPodius 4 7 0 | | object, 6.3.8 | dnaWormRadius, 4.7.9 | | print, 6.7 | font Scale, 4.7.7 | | printing, 6.7 | fontColor, 4.7.7 | | stereo, 6.6 | fontLineSpacing, 4.7.7 | | 4D docking, 4.2.2 | grobLineWidth, 4.7.3 | | ActiveICM, 3.3.1.11 | hbond Ball Period, 4.7.1 | | Atom Single Style, 4.7.3 | Style, 4.7.1 | | Beep, 4.7.11 | hbondAngleSharpness, 4.7.1 | | BlastDB Directory, 4.7.2 | hbondMinStrength, 4.7.1 | | alphas, 6.8.3 | hbondStyle, 4.7.1 | | | | | COLLADA, 3.3.1.6 | hbondWidth, 4.7.1 | | CPK, 3.4.1 | hetatmZoom, 4.7.1 | | ChEMBL, 4.2.3 | hydrogenDisplay, 4.7.1 | | Clash Threshold, 4.7.10 | light, 4.7.3 | | DNA, 4.3 | lightPosition, 4.7.3 | | Dock Directory, 4.7.2 | mapLineWidth, 4.7.3 | | | occupancy Radius Ratio, | | Drug Bank, 4.2.8 | 4.7.3 | | Editor, 4.7.2 | occupancyDisplay, 4.7.3 | | FILTER.Z, 4.7.2 | quality, 4.7.3 | | | | | gz, 4.7.2 | rainbow Bar Style, 4.7.4 | | uue, 4.7.2 | resLabelDrag, 4.7.7 | | FTP.createFile, 4.7.11 | resize Keep Scale, 4.7.3 | | keep File, 4.7.11 | ribbonRatio, 4.7.9 | | proxy, 4.7.11 | ribbonWidth, 4.7.9 | | Filter.zip, 4.7.2 | ribbonWorm, 4.7.9 | | Force Auto Bond Typing, 4.7.11 | rocking, 4.7.4 | | GIF, 3.3.1.14 | Range, 4.7.4 | | GRAPHIC.store Display, 4.7.3 | Speed, 4.7.4 | | NtoC Rainbow, 4.7.4 | selectionStyle, 4.7.3 | | alignment Rainbow, 4.7.4 | site Label Drag, 4.7.7 | | atomLabelShift, 4.7.7 | Shift, 4.7.7 | | | | | ballStickRatio, 4.7.1 | siteArrow, 4.7.7 | | center Follows Clipping, | stereoMode, 4.7.3 | | 4.7.3 | | | clash Style, 4.7.3 | stickRadius, 4.7.1 | | clashWidth, 4.7.3 | surfaceDotDensity, 4.7.3 | | clip Grobs, 4.7.3 | surfaceDotSize, 4.7.3 | | Skin, 4.7.3 | surfaceProbeRadius, 4.7.3 | | Static, 4.7.3 | transparency, 4.7.3 | | discrete Rainbow, 4.7.4 | wire Width, 4.7.1 | | displayLineLabels, 4.7.7 | wormRadius, 4.7.9 | | • | xstick Backbone Ratio, | | displayMapBox, 4.7.3 | 4.7.1 | | distance Label Drag, 4.7.1 | Hydrogen Ratio, 4.7.1 | | dnaBallRadius, 4.7.9 | Style, 4.7.1 | | | | | dnaRibbonRatio, 4.7.9 | Vw Ratio, 4.7.1 | | | | | atomSphereRadius, 4.7.3 | File Size Mb, 4.7.11 | |----------------------------------------|----------------------------------------| | contourSigmaIncrement, | Mnconf, 4.7.10 | | 4.7.3 | | | relArrow Size, 4.7.3 | Movie.fade Nof Frames, 4.7.4 | | relArrowHead, 4.7.3 | quality, 4.7.4 | | GUI.auto Save, 4.7.4 | Auto, 4.7.4 | | Interval, 4.7.4 | Output Directory, 4.7.2 | | enumberation Memory Limit,<br>4.7.11 | PDB, 4.2.1.6, 5.1.2 | | max Nof Recent Files, | D: 4 = 0 | | 4.7.11 | Directory, 4.7.2 | | Sequence Length, 4.7.4 | Style, 4.7.2 | | splash Screen Delay, 4.7.11 | Search, 3.3.2.12, 3.3.2.13, | | • | 3.3.2.14, 3.3.2.15, 3.3.2.16 | | Image, 4.7.11 | Field, 3.3.2.13 | | table Row Mark Colors, | Homology, 3.3.2.15 | | 4.7.4 | 2,7 | | workspace Folder Style, | Identity, 3.3.2.14 | | 4.7.4 workspaceTabStyle, 4.7.4 | Sequence, 3.3.2.16 | | HTTP.proxy, 4.7.11 | convert, 5.1.2 | | support Cookies, 4.7.11 | PFAM, 3.3.1.6 | | user Agent, 4.7.11 | PLOT.Yratio, 4.7.8 | | How To Guide, 3 | color, 4.7.8 | | Html, 4.2.1.6 | date, 4.7.8 | | Http Read Style, 4.7.11 | draw Tics, 4.7.8 | | Hydrogen.bond, 4.7.5 | font, 4.7.8 | | ICM Browser How To, 3.1 | fontSize, 4.7.8 | | IMAGE.bondLength2D, 4.7.6 | labelFont, 4.7.8 | | color, 4.7.6 | lineWidth, 4.7.8 | | compress, 4.7.6 gammaCorrection, 4.7.6 | logo, 4 . 7 . 8<br>markSize, 4 . 7 . 8 | | generateAlpha, 4.7.6 | orientation, 4.7.8 | | lineWidth, 4.7.6 | paper Size, 4.7.8 | | lineWidth2D, 4.7.6 | previewer, 4.7.8 | | orientation, 4.7.6 | rainbowStyle, 4.7.8 | | paper Size, 4.7.6 | seriesLabels, 4.7.8 | | previewResolution, 4.7.6 | PNG, 3.3.1.14, 4.1.14 | | previewer, 4.7.6 | Projects Directory, 4.7.2 | | print, 4.7.6 | Prosite Dat, 4.7.2 | | printerDPI, 4.7.6 | Viewer, 4.7.2 | | scale, 4.7.6<br>stereoAngle, 4.7.6 | Pub Chem, 4.2.9<br>PubMed, 4.2.1.7 | | stereoBase, 4.7.6 | Pubchem, 4.2.9 | | stereoText, 4.7.6 | RMSD, 5.3.2 | | Icm Prompt, 4.7.10 | RNA, 4.3 | | Inx Directory, 4.7.2 | Real Format, 4.7.10 | | JPEG, 3.3.1.14 | Label Shift, 4.7.7 | | KMZ, 3.3.1.6 | Style, 4.7.7 | | Log Directory, 4.7.2 | SEQUENCE.site Colors, 4.7.4 | | MOVIE.frame Grab Mode, 4.7.4 | SITE.label Style, 4.7.7 | | Map Atom Margin, 4.7.10 | labelOffset, 4.7.7 | | Sigma Level, 4.7.10 | wrap Comment, 4.7.7 | | | | | Fog, 4.7.4<br>Select Min Grad, 4.7.10<br>Show Res Code In Selection,<br>4.7.7 | atomLabelStyle, 4.7.7<br>author, 4.2.1.3<br>play slide, 7.13 | |------------------------------------------------------------------------------------------|--------------------------------------------------------------------| | SureChEMBL, 4.2.4 | backbone, 6.1.10 | | Swissprot, 3.3.1.6 | background, 6.4.2, 6.4.3 | | Dat, 4.7.2 | images active, 7.15 | | Temp Directory, 4.7.2 | image, 6.4.3 | | USER.email, 4.7.11 | backup, 3.3.2.11 | | friends, 4.7.11 | ball, 4.7.5 | | full Name, 4.7.11 | and stick, 3.4.1 | | organization, 4.7.11 | basicsel, 4.6.2 | | phone, 4.7.11 | binding properties, 6.3.1 | | Var Label Style, 4.7.7 | blast, 4.2.5 | | Water Radius, 4.7.10 | search, 4.2.5 | | Wire Style, 4.7.1 | bond, 5.2.3, 5.2.3.1, 5.2.3.2 | | XPDB Directory, 4.7.2 | bonding, 6.1.8 | | Xstick, 3.4.1 | preferences, 4.7.1 | | a-bright, 3.4.2 | box, 4.7.7 | | active, 7.7<br>activeICM, 7.8<br>activeicm, 7.7, 7.12, 7.14,<br>7.14.1 | build, 6.10.6.1<br>buttons, 7.14<br>bye, 3.3.1.18 | | advanced, 7.14 | alpha, 6.1.10 | | background images, 7.15 | trace, 6.1.10 | | control, 7.13 | ca-trace, 6.1.10 | | activeicmjs, 7.16 | cache, 7.14.1 | | album, 6.15.3 | center, 3.3.3.19, 4.1.3, 6.12, 6.12.5 | | align, 4.1.11 | change selection, 4.6.7 | | alpha, 3.4.2 | speed range, 6.10.6.2 | | channel, 4.7.6 | charge, 6.8.2 | | ambient, 3.4.2 | check box, 7.6.6 | | amino acid, 4.3 | chembl, 4.2.3, 4.2.4 | | anaglyph, 6.6 | chemical spreadsheet, 4.2.3 | | angle, 6.8.5, 6.9, 6.12.6 | substructure, 4.2.1.1 | | animate, 3.3.3.14, 6.10.6 | chi, 6.8.5 | | view, 6.10.6 | clash, 4.7.5 | | animation, 6.10.6.1, 6.10.6.2,<br>6.10.6.3, 6.10.6.4<br>store, 6.10.6.4<br>animations, 7 | clear display and planes, 3.3.3.2 selection, 4.6.6 planes, 3.3.3.2 | | annotate, 4.6.21 | click, 4.1.12, 6.11, 6.12 | | antialias, 3.3.1.14, 3.3.3.10 | clip, 6.3.9, 6.13.1 | | lines, 3.3.3.16 | clipboard, 6.15.3 | | lines, 3.3.3.16 | clipping planes, 6 | | arrange, 4.1.13.1 | tool, 6.13 | | window, 4.1.13.1 | tools, 6.13 | | as2_graph, 4.6.5 | clone, 3.3.1.2 | | assign, 6.1.3 | close, 6.3.3, 6.3.4 | | atom, 4.7.5 | collada, 3.4.6, 6.3.6 | | background, 6.4.2 | dihedral, 6.9.3 | |--------------------------------|---------------------------------------| | by, 6.4 | distance2, 6.9.1 | | surface by proximity, 6.3.3 | angles, 6.9 | | selection, 6.3.4 | formal charge, 6.1.9 | | background, 3.3.3.17, 6.4.2 | hydrogen, 6.1.7 | | distance, 6.8.10 | mesh, 6.3.5 | | mesh, 6.3.8.3 | meshes, 6.3.7 | | coloring, 6.4.1 | planar angle, 6.9.2 | | combo display style, 4.7.9 | tab, 3.4.1 | | compatible, 3.3.1.9 | CPK, 6.1.5 | | compound, 4.2.1.3 | angle, 6.9.2 | | compress, 4.7.6 | dihedral.angle, 6.9.3 | | connect, 6.3.8.1, 6.12, 6.12.7 | distace, 6.8.10 | | object, 6.12.7 | distance, 6.9.1 | | construct, 3.3.1.1, 6.10.6.1 | hydrogen, 6.1.7 | | molecule, 3.3.1.1 | polar, 6.1.7 | | object, 3.3.1.1 | meshes, 6.3.5 | | · · | and | | contact surface, 6.3.2 | display.macroshape, 3.4.6 | | contacts, 6.3.3, 6.3.4 | origin, 6.8.11 | | convert, 5.1.2 | representations, 3.4.1 | | converting pdb, 5.1.2 | ribbon, 6.1.3 | | cpk, 6.1.5 | skin, 6.1.4 | | crash, 3.3.2.11 | surface, 6.1.6, 6.3.1 | | creat, 7.6.1 | surfaces, 3.4.6 | | new objects, 4.3 | wire, 6.1.1 | | cross section, 6.13 | xstick, 6.1.2 | | current.slide, 7.13 | distance, 6.8.10, 6.9 | | custom, 6.12 | label, 4.7.7 | | label, 6.8.8 | distances, 3.4.3 | | rotation, 6.12.2 | document, 7.6.4, 7.6.5 | | default, 4.1.13 | navigation, 7.6.7 | | delete, 3.3.2.1, 4.6.6, 7.6.8 | documents, 6.15.3 | | all, 3.3.2.2 | envelope, 3.4.1 | | label, 6.8.9 | surface, 4.7.5 | | all, 3.3.2.2 | dotted line, 6.1.3 | | | drag, 4.1.11, 4.7.7, 6.8.3 | | angle.label, 6.9.4 | 7.6.4 | | distance.label, 6.9.4 | residue label, 3.3.3.15 | | label, 6.8.9 | draganddrop, 4.1.11 | | selection, 3.3.2.1 | drop, 4.1.11, 7.6.4 | | depth, 6.3.11, 6.10.4 | drug bank, 4.2, 4.2.8 | | dialog, 7.6.5 | dsPocket, 4.1.8 | | diffuse, 3.4.2 | easy rotate, 3.3.3.12 | | dihedral, 6.8.5 | edit, 5.2.3.1 | | directories preferences, 4.7.2 | ligand tools, 3.3.2.17 | | directory, 4.7 | menu, 3.3.2 | | display, 4.1.4, 4.1.13.1, 4.7, | , | | 5.2.3, 5.2.3.1, 5.2.3.2, 6.14 | molecular document, 7.6.1 | | delete distances, 6.9.4 | selection, 3.3.2.5 | | | · · · · · · · · · · · · · · · · · · · | | editpdbsearch, 3.3.2.12<br>electron density map, 3.3.1.6<br>electrostatic surface, 6.3<br>electrostatics, 6.3.1<br>elegant sketch, 6.10.3<br>embed browser, 7.11 | google, 3.3.1.6<br>objects, 6.3.6<br>3D, 3.4.6, 6.3.6<br>graphical display tutorial, 8.1<br>2D3D labels, 8.1.4<br>annotation, 8.1.2 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | powerpoint03, 7.8 powerpoint07, 7.9 powerpoint10, 7.10 activeicm, 7.13 script, 7.13 browser, 7.7, 7.11 firefox, 7.7, 7.11 internet.explorer, 7.7, | representation, 8.1.1 labels, 8.1.3 graphics, 4.1 controls, 6 effects, 6.10 panel, 6.2 preferences, 4.7.3 | | 7.11 microsoft, 7.7 powerpoint, 7.7, 7.8, 7.9, 7.10 | grob, 4.7.5, 6.3<br>gui, 4.1.1, 4.7.4<br>menus, 3.3 | | exit, 3.3.1.18 extra windows, 6.2 extract, 4.4.2 icb, 3.3.1.5 object icb, 4.4.2 icb, 3.3.1.5 file, 3.3.1.3 close, 3.3.1.12 compatible, 3.3.1.9 export, 3.3.1.11 high quality image, 6.15.1 load, 3.3.1.6 menu, 3.3.1 password, 3.3.1.10 preferences, 3.3.1.15 quick image, 3.3.1.13 icb, 4.1.10 recent, 3.3.1.16 | preferences, 4.7.4 tabs, 3.4 h-bond, 5.2.3, 5.2.3.1, 5.2.3.2 hardware stereo, 3.3.3.7 hbond, 5.2 header, 4.2.1.6 help, 2 videos, 2 high, 3.3.1.14 quality, 3.3.3.11 homology, 4.2.1.2, 4.2.5 to activeicm, 3.2 create molecular documents, 3.2.3 slides, 3.2.2 getting started, 3.2.1 ppt, 3.2.4 web, 3.2.5 icm browser convert display pocket, 3.1.4 distances | | bak, 3.3.2.11<br>filter selection, 4.6.8 | angles, 3.1.9 get started, 3.1.1 | | fog, 3.3.3.5, 6, 6.10.1<br>font, 4.7, 4.7.7, 5.2.3.1,<br>6.8.2, 6.8.3<br>preferences, 4.7.7 | graphical display, 3.1.2 effects, 3.1.5 images, 3.1.7 | | formal charge, 6.1.9 | labels annotation, 3.1.6 | | front, 6.3.9, 6.13.1<br>full scene antialias, 3.3.3.10<br>screen, 3.3.3.8<br>general preferences, 4.7.5 | selections, 3.1.3 superimpose, 3.1.8 search, 4.2 use gui, 4.1 | | generalselecttools, 4.6.1<br>getting started, 4<br>glasses, 6.6 | html, 3.3.1.11, 4.3, 7.6.1, 7.6.7<br>hydrogen, 5.2.3, 5.2.3.1,<br>5.2.3.2, 6.1.8<br>bond, 5.2, 6.1.8 | | move, 5.2.3.2<br>bonds, 5.2.4<br>hyperlink, 7.6.1, 7.6.2 | sites, 6.8.6<br>variable, 6.8.1<br>variables, 6.8.5 | |----------------------------------------------------------|-------------------------------------------------------------| | iSee, 3.3.1.5, 3.3.1.11, 4.1.10, | labeling, 6.8.1 | | 6.15.3, 8.2<br>icb, 4.4.2, 4.5<br>object, 5.1 | labels, 6.8<br>distances, 6.8.10 | | icmjs, 7.16 identity, 4.2.1.2 | tab, 3.4.3<br>landscape, 4.7.6 | | image, 4.1.14, 4.7, 4.7.5, 6.15.3, 7.6.3 | layer, 6.14 | | advanced, 6.15.3 preferences, 4.7.6 multiple, 3.3.1.6 | layers, 6.14<br>ligand, 5.2.2<br>code, 4.2.1.3, 4.2.7 | | quality, 3.3.3.11 | editor preferences,<br>3.3.2.18 | | quick, 3.3.1.13, 6.15.2<br>images, 6.15<br>insert, 7.6.4 | pocket, 5.2.4<br>receptor display, 5.2<br>surface, 5.2.2 | | image, 7.6.3 | pocket, 4.1.8 ligand_pocket_interactions, | | script, 7.6.4 | 5.2.4 | | interactive, 8.2 interrupt, 6.10.6.3 | ligedit tab, 3.4.5<br>light, 3.4.2 | | animation, 6.10.6.3 | tab, 3.4.2 | | introduction icm browser, 1 | lighting, 6.3.8.4, 6.5 | | isee, 7.6.5 | line, 4.7.5 | | javascript, 7.16 | lineWidth, 4.7.3 | | jpg, 6.15 | links, 4.6.20 | | keyboard mouse, 6.11 | list, 4.6.18 | | kmz, 3.4.6, 6.3.6 | load, 3.3.1.3, 3.3.1.16 | | label, 4.7.7<br>atoms, 6.8.2 | nmr model, 4.2.1.4<br>protein structure, 5.1.1 | | color, 6.8.7 | lock, 6.3.9, 6.13.1 | | move, 6.8.4 | logout, 3.3.1.18 | | residues, 6.8.3 | macros, 7.14 | | sites, 6.8.6 | macroshape, 6.3 | | variables, 6.8.5 | make, 6.10.6.1 | | 2D, 3.4.3 | animation, 6.10.6.1 | | 3D, 3.4.3, 6.8.1 | molecular document, 7.6 | | atom, 6.8.1 | selection, 4.6 | | atoms, 6.8.2 | molecule, 3.3.1.1 | | color, 6.8.7 | object, 3.3.1.1 | | custom, 6 . 8 . 8 | making molecular slides, 7.1 | | delete, 6.8.1, 6.8.9 | html, 7.6 | | distance, 6.8.10 | map, 4.7.7 | | drag, 3.3.3.15 | materials, 3.4.6 | | move, 3.3.3.15, 6.8.4 | maxColorPotential, 4.7.10 | | residue, 6.8.1<br>residues, 6.8.3 | menu, 7.6.5 | | 16514468, 0.0.3 | windows, 3.3.4<br>mesh, 5.2.1, 5.2.2, 6.3, | | site, 6.8.1 | 6.3.8.1, 6.3.8.2, 6.3.8.4,<br>6.3.9, 6.3.10, 6.3.11, 6.13.1 | | | , | | color lighting, 6.3.8.4 options, 6.3.8 representation, 6.3.8.3 save, 6.3.10 | selection, 4.6.5<br>origin, 6.8.11<br>other selection, 4.6.19<br>package.activeicm, 7.13 | |-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------| | options, 6.3.8 | pdb, 3.3.1.6, 4.2, 4.2.1.1,<br>4.2.7, 4.5 | | meshes, 6.3.2, 6.10.4 | html, 4.2.1.6 | | surfaces grobs, 6.3 | search, 4.2.1, 4.2.1.2,<br>4.2.1.3 | | tab, 3.4.6 | recent, 3.3.1.17 | | mmff type, 6.8.2 | search, 3.4.4, 4.1.2 | | mnSolutions, 4.7.10 molecular animations slides, 7 | pdbsearchfield, 3.3.2.13 pdbsearchhomology, 3.3.2.15 | | documents, 8 . 2 | pdbsearchidentity, 3.3.2.14 | | graphics, 6 | pdbsearcsequence, 3.3.2.16 | | molskin, 6.3.2 | peptide, 4.3 | | mouse, 4.1.3, 6.11, 6.12 | perspective, 3.3.3.9, 6.10.5 | | move, 3.3.3.18, 4.1.11, 4.1.13, | 1 | | 5.2.3.2, 6.3.8.1, 6.3.8.2, 6.12, | phi, 6.8.5 | | 6.12.7<br>mesh, 6.3.8.2 | picking, 6 | | | picture, 3.3.1.13, 4.1.14, | | slide, 7.4.2 | 6.15.2, 7.6.3 | | structure, 6.12 | tips, 4.1.14 | | tools, 6 | planar, 6.8.5 | | rotate, 6.11 | angle, 6.9.2 | | slab, 6.11 | plane, 6.3.9, 6.13, 6.13.1, 6.14 | | translate, 6.11 | plot, 4.7, 4.7.8 | | z-rotation, 6.11 | preferences, 4.7.8 | | zoom, 6.11 | png, 3.3.1.13, 6.15, 6.15.2, 7.6.3 | | multi panel, 6.2 | pocket, 4.1.8, 5.2, 5.2.1, 5.2.2 | | windows, 6.2 | surface, 5.2.1 | | multiple receptor, 4.2.2 | peptide, 4.1.8 | | navigate workspace, 4.6.10 | properties, 4.1.8 | | new icm session, 3.3.1.2 | pocketome, 4.2, 4.2.2 | | nmr model, 4.2.1.4 | portait, 4.7.6 | | non-contiguous selection, 4.6.18 object, 4.1.11, 4.5 | postscript, 4.7.6<br>powerpoint, 8.2 | | objects, 5.1.2 | ppt, 7.12, 7.14 | | occlusion, 6.3.11, 6.10.4 | preferences, 4.7 | | shading, 6.3.11 | presentatio, 7.6.5 | | effect, 6.10.4 | presentation, 7.7, 7.12 | | occupancy, 6.1.3 | presentations, 7 | | display, 4.2.1.5 | print, 6.7 | | older version, 3.3.1.9 | printer.resolution, 4.7.6 | | omega, 6.8.5<br>open, 3.3.1.3, 4.4 | project, 3.3.1.5<br>close, 3.3.1.12 | | file, 4.4 | rename, 3.3.1.8 | | password, 4.4.1 | properties, 6.8.2 | | with password, 3.3.1.4 | protect, 7.6.8 | | password, 3.3.1.4, 4.4.1 | protein structure, 5 | | orange, 4.6.5 | superposition, 5.3 | | | | | proximity, 6.3.3, 6.3.4<br>psi, 6.8.5 | right, 4.1.12<br>click, 4.1.12 | |---------------------------------------|---------------------------------| | publication quality images, | rock, 3.3.3.14, 6.10.6, | | 6.3.2 | 6.10.6.1, 7<br>speed, 6.10.6.2 | | pubmed, 4.2.1.7 | rotate, 3.3.3.14, 4.1.3, 6, | | purple box, 3.3.3.20 | 6.10.6, 6.10.6.1, 6.12, 6.12.1, | | purple 60x, 5.5.5.20 | 6.12.2, 7 | | qs hydrogen bond, 5 . 2 . 3 | easy, 3.3.3.12 | | quality, 3.3.1.14, 4.7.5 | speed, 6.10.6.2 | | quick, 4.1.14 | rotation, 6.12.1 | | image, 6.15.2 | save, 4.5, 6.3.10, 6.10.6.4 | | start move structure, 4.1.3 | file, 4.5 | | read pdb, 4.1.2 | object, 4.1.9 | | representation, 4.1.6 | pdb, 4.5 | | selection, 4.1.5 | project icb, 4.1.10 | | level, 4.6.3 | slide, 7.4 | | what is selected, | | | 4.6.4 | image, 3.3.1.14, 4.1.14 | | dispalay.distance, 6.9.1 | object, 4.1.9 | | start color, 4.1.7 | password, 3.3.1.10 | | quit, 3.3.1.18 | picture, 3.3.1.14 | | | project, 3.3.1.7, 3.3.1.8, | | rainbow, 4.7.5 | 3.3.1.9, 4.1.10 | | range, 6.10.6.2 | saving, 3.3.1.7 | | ratio.selection, 4.7.5 | project, 3.3.1.7 | | read, 3.3.1.3, 3.3.1.16, 4.4 | scale, 4.7.5 | | pdb, 4.1.2 | script, 4.3, 7.6.4, 7.6.5 | | rear, 6.3.9, 6.13.1 | search chembl, 4.2.3 | | recent files, 3.3.1.16 | drugbank, 4.2.8 | | pdb codes, 3.3.1.17 | in workspace, 3.3.2.4 | | receptor, 5.2.1, 5.2.2 | pdb, 4.2.1 | | recover, 3.3.2.11 | chemical, 4.2.1 | | redo, 3.3.2.10 | ligand code, 4.2.7 | | rename project, 3.3.1.8 | pocketome, 4.2.2 | | representation, 3.3.3.18 | pubchem, 4.2.9 | | residue, 4.7.7 | surechembl, 4.2.4 | | range, 4.6.18 | tab field, 4.2.1.3 | | residues, 5.2.1, 5.2.2 | pdb chemical, 4.2.1.1 | | resize, 6.3.8.1, 6.15.3 | sequence, 4.2.1.2 | | mesh, 6.3.8.1 | uniprot, 4.2.6 | | resolution, 4.2.1.3 | in.workspace, 3.3.2.4 | | restore, 3.3.2.11, 6.3.9, 6.13.1 | secondary.structure, 6.1.3 | | recent backup, 3.3.2.11 | select, 4.6.12, 4.6.13 | | ribbon, 3.4.1, 4.7.9, 6.1.3 | all, 4.6.14 | | preferences, 4.7.9 | amino acid, 4.6.13 | | style, 4.7.9 | molecule, 4.6.12 | | breaks, 6.1.3 | neighbors, 4.6.15 | | cylinders, 6.1.3 | graphic, 4.6.16 | | smooth, 6.1.3 | object, 4.6.11 | | worm, 6.1.3 | residue, 4.6.13, 4.6.18 | | ribbonColorStyle, 4.7.9 | by number, 4.6.18 | | | | | atom, 4.1.5, 4.6.3<br>graphical, 4.1.5, 4.6.3<br>object, 4.1.5, 4.6.3<br>purple.box, 3.3.3.20<br>residue, 4.1.5, 4.6.3<br>workspace, 4.1.5, 4.6.3 | side by side stereo, 3.3.3.6<br>size, 5.2.3.1<br>sketch accents, 6.10.2<br>accents, 3.3.3.13, 6.10.2<br>skin, 3.4.1, 6.1.4<br>slab, 6.3.9, 6.13.1<br>slice, 6.13<br>slide, 6.10.6.4, 7.2, 7.3.1, | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | selecting.neighbors, 4.6.16 | 7.6.1 | | selection, 4.6.4, 4.6.5, 4.6.21, 6.3.4 clear, 3.3.2.7 neighbors, 3.3.2.8 alignment, 4.6.19 all, 3.3.2.3 alter, 4.6.7 atom, 3.3.2.5 basic, 4.6.2 change, 4.6.7 clear, 3.3.2.7 filter, 3.3.2.5, 4.6.8 graphical, 4.6.16 invert, 3.3.2.6 level, 3.3.3.3 mode, 3.3.3.4 near atoms, 3.3.2.8 neighbors, 3.3.2.5, 3.3.2.8, 4.6.15, 4.6.17 object, 4.6.11 other, 4.6.19 properties, 3.3.2.5 residue, 3.3.2.5 sphere, 4.6.15 spherical, 3.3.2.8 superposition, 5.3.1 table, 4.6.19 tools, 4.6.19 tools, 4.6.11 workspace, 4.6.9, 4.6.7, 4.6.8 whole, 4.6.11 workspace, 4.6.9, 4.6.7, 4.6.8 whole, 4.6.11 selectioninvert, 3.3.2.6 3.3 | 7.6.1 effects, 7.5 movie file, 7.2 navigation, 7.3.2 show, 7.3 blend, 7.5 edit, 7.4.1 effect, 7.5 smooth, 7.5 transition, 7.5 slides, 7, 7.1, 7.3 smooth, 6.3.8.3 solid, 6.3.8.3 spec, 3.4.2 speed, 6.10.6.2 stereo, 4.7.6, 6.6 hardware, 3.3.3.7 side-by-side, 3.3.3.6 stick, 4.7.5 stl, 6.7 stop, 6.10.6.3 store, 3.3.3.18, 6.10.6.4 current view, 3.3.3.18 structure representation, 6.1 style, 4.7.5 superimpose, 5.3.2 surface, 3.4.1, 4.7.5, 5.2.1, 5.2.2, 6.1.6, 6.3, 6.3.3, 6.3.4 surfaces, 5.2, 6.3.1, 6.3.2, 6.10.4 system preferences, 4.7.11 tab pdb, 3.4.4 table, 4.3 tag, 4.6.21 text, 4.7.7, 7.6, 7.6.1, 7.6.7 texture, 3.4.6 threshold, 4.7.5 tier, 4.1.13 | | shine, 3.4.2, 4.7.5<br>shineStyle, 4.7.3<br>show, 7.3.1 | torsion, 6.12.6<br>angles, 6.12, 6.12.6<br>trace, 6.1.10 | ``` translate, 4.1.3, 6, 6.12 translation, 6.12.3 transparent, 6.3.8.3 background, 6.15.3 tutorial molecular documents, 8.2 tutorials, 8 unclip, 6.3.9, 6.13.1 undisplay, 4.1.4, 6.1.7 origin, 6.8.11 undo, 3.3.2.9, 4.7 uniprot, 4.2.6 unusual peptide, 4.3 activeicm, 7.12 uundisplay-all, 3.3.3.1 variable, 4.7.7 video, 2 view, 3.3.3.18, 7.3.1 animate view, 3.3.3.14 center, 3.3.3.19 color background, 3.3.3.17 fog, 3.3.3.5 menu, 3.3.3 mesh clip, 6.13.1 perspective, 3.3.3.9 selection level, 3.3.3.3 mode, 3.3.3.4 sketch accents, 3.3.3.13 slide show, 7.3.1 tools, 3.3.3 undisplay all, 3.3.3.1 wavefront, 3.4.6, 6.3.10 web, 8.2 browser, 3.3.1.11 window, 4.1.13 windows, 4.1.13.1 wire, 3.4.1, 4.7.5, 6.1.1 wireBondSeparation, 4.7.1 workspace, 4.1.4 panel, 4.1.4 selection, 4.6.9 navigation, 4.6.10 write, 4.1.14, 4.5 image, 3.3.1.14 images, 6.15 pdb, 4.5 image, 3.3.1.14 object, 4.1.9 ``` picture, 3.3.1.14 project, 3.3.1.7, 4.1.10 xi, 6.8.5 xstick, 6.1.2 youtube, 2 zoom, 4.1.3, 6, 6.12, 6.12.4