

Table of Contents
1. Introduction...1

1.1. Release notes...1
1.2. Brief history of ICM..12
1.3. ICM distribution and support..12
1.4. What can you do with ICM? (a program overview)...13

1.4.1. Graphics...13
1.4.2. Simulations..16
1.4.3. Sequence analysis..19
1.4.4. Modules of ICM...22

1.5. Notational conventions..24
1.6. Common abbreviations...25
1.7. Getting started...26

1.7.1. ICM−shell..26
1.7.2. The first steps...29

2. Reference Guide..31
2.1. ICM command line options...31
2.2. Command line editing...31
2.3. Graphics controls...32
2.4. Editing pairwise sequence−structure alignments..35
2.5. Constants...36
2.6. Subsets and index expressions..37
2.7. Molecule intro...39
2.8. Selections..39

Selection Types..40
 Selection levels...41
Examples..41
Select by number, range, name or pattern..41
2.8.1. Object selection..41
2.8.2. Molecule selection...42
2.8.3. Residue selection...43
2.8.4. Atom selection...45
2.8.5. Free and all variables (v_ and V_)...47
2.8.6. Functions returning selections...50
2.8.7. Finding contiguous residue ranges with the String function...................................50

2.9. Arithmetics..51
2.9.1. Assignment..51
2.9.2. Arithmetic operations...51
2.9.3. Logical operations..54
2.9.4. Comparison operators..55
2.9.5. Advanced operations and some comments..56

2.10. Flow control..57
2.10.1. Loops...57
2.10.2. Conditional branching..58
2.10.3. Jumps...59

2.11. ICM molecular objects..60
2.12. Energy and Penalty Terms..61

i

Table of Contents
2. Reference Guide

2.13. Integer shell parameters..65
2.13.1. autoSavePeriod..65
2.13.2. defSymGroup...66
2.13.3. i_out...66
2.13.4. iProc...66
2.13.5. maxColorPotential...66
2.13.6. maxMemory...67
2.13.7. minTetherWindow...67
2.13.8. mnSolutions...67
2.13.9. mncalls...67
2.13.10. mncallsMC...68
2.13.11. mnconf...68
2.13.12. mnhighEnergy..68
2.13.13. mnreject..68
2.13.14. mnvisits..69
2.13.15. nLocalDeformVar..69
2.13.16. nSsearchStep..69
2.13.17. nProc..69
2.13.18. randomSeed..69
2.13.19. segMinLength..70
2.13.20. sequenceBlock...70
2.13.21. sequenceLine..70
2.13.22. surfaceAccuracy...70
2.13.23. windowSize..71

2.14. Real shell variables..71
2.14.1. addBfactor..71
2.14.2. alignMinCoverage..71
2.14.3. alignOldStatWeight...71
2.14.4. axisLength..72
2.14.5. cnWeight..73
2.14.6. dcWeight..73
2.14.7. densityCutoff...73
2.14.8. dielConst..73
2.14.9. dielConstExtern...73
2.14.10. drop..73
2.14.11. fogStart...74
2.14.12. gapExtension..74
2.14.13. gapOpen...74
2.14.14. hbCutoff...74
2.14.15. lineWidth...75
2.14.16. mapSigmaLevel...75
2.14.17. mcBell..75
2.14.18. mcJump..75
2.14.19. mcShake...75
2.14.20. mcStep...76
2.14.21. mfWeight...76

ii

Table of Contents
2. Reference Guide

2.14.22. mimelDepth...76
2.14.23. mimelMolDensity..76
2.14.24. r_out...76
2.14.25. r_2out...77
2.14.26. resLabelShift..77
2.14.27. rsWeight...77
2.14.28. selectMinGrad..77
2.14.29. selectSphereRadius..77
2.14.30. shininess...78
2.14.31. ssThreshold..78
2.14.32. ssWeight...78
2.14.33. ssearchStep...78
2.14.34. surfaceTension...78
2.14.35. tempLocal..78
2.14.36. temperature..79
2.14.37. tolGrad...79
2.14.38. tzWeight...79
2.14.39. vicinity...79
2.14.40. vwCutoff..80
2.14.41. vwExpand..80
2.14.42. vwSoftMaxEnergy...80
2.14.43. waterRadius..80
2.14.44. wireBondSeparation...81
2.14.45. xrWeight..81

2.15. Logical variables...81
2.15.1. l_antiAlias..81
2.15.2. l_autoLink..81
2.15.3. l_bpmc...82
2.15.4. l_breakRibbon..82
2.15.5. l_bufferedOutput..82
2.15.6. l_bug..82
2.15.7. l_caseSensitivity..82
2.15.8. l_commands...82
2.15.9. l_confirm..83
2.15.10. l_easyRotate...83
2.15.11. l_info..83
2.15.12. l_minRedraw..83
2.15.13. l_neutralAcids..83
2.15.14. l_out...84
2.15.15. l_print...84
2.15.16. l_readMolArom..84
2.15.17. l_showAccessibility...84
2.15.18. l_showMC..85
2.15.19. l_showMinSteps...85
2.15.20. l_showSpecialChar..85
2.15.21. l_showSites..85

iii

Table of Contents
2. Reference Guide

2.15.22. l_showSstructure..85
2.15.23. l_showWater..85
2.15.24. l_showTerms..85
2.15.25. l_warn..86
2.15.26. l_wrapLine...86
2.15.27. l_writeStartObjMC..86
2.15.28. l_xrUseHydrogen...86

2.16. String variables..86
2.16.1. s_blastdbDir...86
2.16.2. s_editor...87
2.16.3. s_entryDelimiter..87
2.16.4. s_errorFormat...87
2.16.5. s_fieldDelimiter...87
2.16.6. s_helpEngine..88
2.16.7. s_icmhome...88
2.16.8. s_inxDir...88
2.16.9. s_icmPrompt..88
2.16.10. s_imageViewer..89
2.16.11. s_labelHeader...89
2.16.12. s_lib..89
2.16.13. s_logDir...89
2.16.14. s_out...90
2.16.15. s_pdbDir...90
2.16.16. s_projectDir..90
2.16.17. s_printCommand..90
2.16.18. s_prositeDat...91
2.16.19. s_psViewer...91
2.16.20. s_reslib...91
2.16.21. s_skipMessages : ignore specific error messages..91
2.16.22. s_tempDir...92
2.16.23. s_translateString...92
2.16.24. s_userDir..92
2.16.25. s_usrlib (obsolete)..92
2.16.26. s_webEntrezLink...92
2.16.27. s_webViewer..92
2.16.28. s_xpdbDir...93

2.17. Preferences..93
2.17.1. atomLabelStyle..93
2.17.2. alignMethod...94
2.17.3. atomSingleStyle...94
2.17.4. dcMethod...94
2.17.5. electroMethod..95
2.17.6. errorAction...96
2.17.7. ffMethod..96
2.17.8. gcMethod...97
2.17.9. highEnergyAction..98

iv

Table of Contents
2. Reference Guide

2.17.10. interruptAction...98
2.17.11. mfMethod...98
2.17.12. minimizeMethod..98
2.17.13. pdbDirStyle..99
2.17.14. rejectAction..99
2.17.15. resLabelStyle..99
2.17.16. ribbonColorStyle..100
2.17.17. ribbonStyle...100
2.17.18. shineStyle...101
2.17.19. surfaceMethod..101
2.17.20. tzMethod..101
2.17.21. varLabelStyle...102
2.17.22. visitsAction..102
2.17.23. vwMethod..102
2.17.24. webEntrezOption...103
2.17.25. wireStyle..103
2.17.26. xrMethod..103

2.18. Tables (structures)...104
2.18.1. FILTER..104
2.18.2. FTP...104
2.18.3. GRAPHICS..105
2.18.4. GRID..108
2.18.5. GROB..109
2.18.6. GUI..109
2.18.7. IMAGE..110
2.18.8. LIBRARY..113
2.18.9. OBJECT...113
2.18.10. PLOT...114
2.18.11. SITE...116
2.18.12. WEBLINK...117
2.18.13. WEBAUTOLINK..118

2.19. Other shell variables..119
2.19.1. defCell..119
2.19.2. accFunction..119
2.19.3. gapFunction...119
2.19.4. I_out...120
2.19.5. M_out...120
2.19.6. R_out..120
2.19.7. S_out..120
2.19.8. swissFields...120
2.19.9. readMolNames...121
2.19.10. Named Atom/Residue/Molecule/Object Selections..121
2.19.11. as_out...121
2.19.12. as2_out...122
2.19.13. Named Selections of Internal Variables (Dihedrals, Angles and Bonds)..........122
2.19.14. vs_out...122

v

Table of Contents
2. Reference Guide

2.20. Commands...122
2.20.1. alias..122
2.20.2. align...123
2.20.3. assign...128
2.20.4. break...130
2.20.5. build...130
2.20.6. call icm script...136
2.20.7. center..137
2.20.8. clear..137
2.20.9. color family of commands...137
2.20.10. compare: setting conformation comparison parameters for the montecarlo
 command...144
2.20.11. compress..145
2.20.12. connect...146
2.20.13. continue..147
2.20.14. convert..147
2.20.15. copy..150
2.20.16. crypt...150
2.20.17. delete ICM shell objects...151
2.20.18. display..156
2.20.19. elseif...167
2.20.20. endfor...168
2.20.21. endif...168
2.20.22. endmacro..168
2.20.23. edit...168
2.20.24. endwhile...168
2.20.25. exit...169
2.20.26. find...169
2.20.27. fix...176
2.20.28. for...176
2.20.29. fork...176
2.20.30. fprintf...177
2.20.31. goto..177
2.20.32. group..177
2.20.33. gui..181
2.20.34. help...183
2.20.35. history..184
2.20.36. if...184
2.20.37. keep..184
2.20.38. link internal variables of molecular object...184
2.20.39. link residues to sequences and alignments...185
2.20.40. list...185
2.20.41. list available sequence databases...186
2.20.42. load...186
2.20.43. ICM−shell macros..188
2.20.44. make...189

vi

Table of Contents
2. Reference Guide

2.20.45. minimize..200
2.20.46. menu...202
2.20.47. modify..203
2.20.48. montecarlo..204
2.20.49. move...210
2.20.50. pause..211
2.20.51. plot...211
2.20.52. plot area: show matrix values with color...213
2.20.53. print..215
2.20.54. printf...215
2.20.55. print image...216
2.20.56. quit...216
2.20.57. randomize...216
2.20.58. read...217
2.20.59. rename..234
2.20.60. rename object...234
2.20.61. return..235
2.20.62. rotate..235
2.20.63. set family of commands...236
2.20.64. show...254
2.20.65. sort...268
2.20.66. split...269
2.20.67. sprintf...270
2.20.68. store..271
2.20.69. ssearch..271
2.20.70. strip..272
2.20.71. superimpose...272
2.20.72. then...273
2.20.73. transform..273
2.20.74. translate..274
2.20.75. undisplay..274
2.20.76. unfix...274
2.20.77. unix..275
2.20.78. wait...275
2.20.79. web...276
2.20.80. web table: shows an icm table with a web browser...276
2.20.81. while...277
2.20.82. write...277

2.21. Functions...290
2.21.1. Abs...290
2.21.2. Acc...291
2.21.3. Acos...292
2.21.4. Acosh...292
2.21.5. Align..293
2.21.6. Angle..296
2.21.7. Area..296

vii

Table of Contents
2. Reference Guide

2.21.8. Area contact matrix..297
2.21.9. Asin..298
2.21.10. Asinh..298
2.21.11. Ask...299
2.21.12. Atan..299
2.21.13. Atan2..300
2.21.14. Atanh..300
2.21.15. Atom..300
2.21.16. Augment...301
2.21.17. Axis..302
2.21.18. Bfactor..302
2.21.19. Boltzmann..303
2.21.20. Box...303
2.21.21. Bracket...303
2.21.22. Cad...304
2.21.23. Ceil...306
2.21.24. Cell...307
2.21.25. Charge..307
2.21.26. Cluster..307
2.21.27. Color..308
2.21.28. Consensus..309
2.21.29. Corr..309
2.21.30. Cos...309
2.21.31. Cosh...310
2.21.32. Count..310
2.21.33. Deletion..310
2.21.34. Det..311
2.21.35. Disgeo..311
2.21.36. Distance..312
2.21.37. Eigen..315
2.21.38. Energy..315
2.21.39. Error...316
2.21.40. Exist...317
2.21.41. Existenv...318
2.21.42. Extension...318
2.21.43. Exp...319
2.21.44. Field...319
2.21.45. User field from a selection...320
2.21.46. File...321
2.21.47. Find..321
2.21.48. Floor...322
2.21.49. Getenv..322
2.21.50. Gradient..322
2.21.51. Grob...323
2.21.52. Histogram...325
2.21.53. Iarray..326

viii

Table of Contents
2. Reference Guide

2.21.54. Iarray(stack): numbers of visits for all stack conformations...........................326
2.21.55. IcmSequence..327
2.21.56. Index..327
2.21.57. Indexx..329
2.21.58. Insertion...329
2.21.59. Integer..330
2.21.60. Integral...330
2.21.61. Interrupt..331
2.21.62. Label..331
2.21.63. Length..332
2.21.64. LinearFit...332
2.21.65. Link..333
2.21.66. Log...333
2.21.67. Map..334
2.21.68. Mass...334
2.21.69. Matrix...334
2.21.70. Max..335
2.21.71. MaxHKL..336
2.21.72. Mean..336
2.21.73. Min...336
2.21.74. Money..337
2.21.75. Mod..337
2.21.76. Mol...338
2.21.77. Name..338
2.21.78. Namex..339
2.21.79. Next..339
2.21.80. Covalent neighbors of an atom..340
2.21.81. Nof...340
2.21.82. Norm..341
2.21.83. Obj...342
2.21.84. Occupancy..342
2.21.85. Path..342
2.21.86. Pattern..343
2.21.87. Pi..343
2.21.88. Potential...343
2.21.89. Power...344
2.21.90. Probability..344
2.21.91. Profile...347
2.21.92. Putenv..347
2.21.93. Radius..347
2.21.94. Random..348
2.21.95. Rarray...348
2.21.96. Real function..350
2.21.97. Remainder function..351
2.21.98. Replace...352
2.21.99. Res...353

ix

Table of Contents
2. Reference Guide

2.21.100. Res(ali ..): from sequence positions in subalignment to residue selection......353
2.21.101. Resolution..354
2.21.102. Rfactor..354
2.21.103. Rfree...354
2.21.104. Rmsd..354
2.21.105. Rot..355
2.21.106. Sarray...356
2.21.107. Score..357
2.21.108. Select..358
2.21.109. Sequence..359
2.21.110. reverse complement dna sequence function..360
2.21.111. Sign..360
2.21.112. Sin..360
2.21.113. Sinh..361
2.21.114. Site...361
2.21.115. Smiles...361
2.21.116. Smooth...361
2.21.117. Sql..363
2.21.118. Sqrt...364
2.21.119. Sphere..364
2.21.120. Split..365
2.21.121. Srmsd...365
2.21.122. String..366
2.21.123. Chemical formula...368
2.21.124. Sstructure...369
2.21.125. Sum..370
2.21.126. Symgroup...371
2.21.127. Table..371
2.21.128. Converting alignment into a table..372
2.21.129. Extracting parameters of stack conformations...372
2.21.130. Tan...373
2.21.131. Tanh...373
2.21.132. Tensor..373
2.21.133. Temperature...374
2.21.134. Time...375
2.21.135. Tolower..375
2.21.136. Torsion...375
2.21.137. Toupper..376
2.21.138. Tr123..376
2.21.139. Tr321..376
2.21.140. Trace..377
2.21.141. Trans..377
2.21.142. Transpose...378
2.21.143. Trim...378
2.21.144. Turn..379
2.21.145. Type...379

x

Table of Contents
2. Reference Guide

2.21.146. Unix...380
2.21.147. Value..381
2.21.148. Vector...381
2.21.149. Version...381
2.21.150. Volume...382
2.21.151. View...383
2.21.152. Warning : the ICM warning message..384
2.21.153. Xyz : atom coordinates and surface points..384

2.22. Macros...385
2.22.1. buildpep: Building peptides from a sequence..385
2.22.2. calcBindingEnergy: estimates electrostatic, hydrophobic and entropic
 binding terms..386
2.22.3. calcDihedral4atoms: calculate a torsion angle defined by four atoms................386
2.22.4. calcDihedralAngle: calculate an angle between two planes in a molecule.........386
2.22.5. calcEnsembleAver: Boltzmann average the energies of the stack
 conformations...386
2.22.6. calcMaps: calculate five energy maps and write them to files............................387
2.22.7. calcPepHelicity: calculate average helicity of a peptide from movie frames......387
2.22.8. calcProtUnfoldingEnergy: rough estimate of solvation energy change upon
 unfolding...388
2.22.9. calcRmsd: calculate three types of Rmsd between protein conformations..........388
2.22.10. calcSeqContent..388
2.22.11. icmCavityFinder: analyze and display cavities..389
2.22.12. dsCellBox: displays crystallographic unit cell...390
2.22.13. dsCell: cell and crystallographic neighbors...390
2.22.14. dsCharge: one of many ways to show charge residues......................................391
2.22.15. dsChem : chemical style display..391
2.22.16. dsConsensus: 3D display of conserved residues..391
2.22.17. dsCustom: extended display and property−coloring...391
2.22.18. dsCustomFull macro for molecular display...392
2.22.19. dsDistance: display distances between two selections.......................................392
2.22.20. dsPropertySkin: display molecular surfaces colored by properties essential
 for binding...392
2.22.21. dsEnergyStrain: analyzing energy strain in proteins...393
2.22.22. dsEnergyStrain1...394
2.22.23. icmPmfProfile..394
2.22.24. dsPrositePdb...395
2.22.25. dsRebel: surface electrostatic potential..395
2.22.26. dsSeqPdbOutput : visualize the sequence similarity search results...................396
2.22.27. dsSkinLabel...396
2.22.28. dsSkinPocket and dsSkinPocketIcm..396
2.22.29. dsStackConf...396
2.22.30. dsVarLabels...396
2.22.31. ds3D...397
2.22.32. dsWorm..397
2.22.33. dsXyz : display...397

xi

Table of Contents
2. Reference Guide

2.22.34. findFuncMin..398
2.22.35. findFuncZero..399
2.22.36. nice...399
2.22.37. cool...399
2.22.38. homodel...399
2.22.39. makeIndexChemDb...399
2.22.40. makeIndexSwiss..400
2.22.41. makePdbFromStereo: restore 3D coordinates from a stereo picture.................400
2.22.42. mkUniqPdbSequences...400
2.22.43. plot2DSeq..400
2.22.44. plotSeqDotMatrix..400
2.22.45. plotSeqDotMatrix2..400
2.22.46. plotBestEnergy...401
2.22.47. plotOldEnergy..401
2.22.48. plotFlexibility...401
2.22.49. plotCluster..401
2.22.50. plotMatrix..402
2.22.51. plotRama..402
2.22.52. plotRose...402
2.22.53. plotSeqProperty...402
2.22.54. predictSeq..402
2.22.55. prepSwiss...403
2.22.56. printFast...403
2.22.57. printMatrix...403
2.22.58. printPostScript...403
2.22.59. printTorsions..403
2.22.60. refineModel: globally optimize side−chains and anneal the backbone.............403
2.22.61. regul...404
2.22.62. rdBlastOutput...404
2.22.63. rdSeqTab..404
2.22.64. readPdbList..404
2.22.65. remarkObj..404
2.22.66. searchPatternDb...404
2.22.67. searchPatternPdb..405
2.22.68. searchObjSegment...405
2.22.69. searchSeqDb..405
2.22.70. searchSeqPdb...405
2.22.71. searchSeqPdb...405
2.22.72. searchSeqSwiss..406
2.22.73. setResLabel..406
2.22.74. sortSeq...406
2.22.75. undsCharge..406
2.22.76. makeSimpleModel...406
2.22.77. makeSimpleDockObj...406
2.22.78. searchSeqProsite..406

2.23. Files...407

xii

Table of Contents
2. Reference Guide

2.23.1. _macro. A collection of ICM macros..407
2.23.2. _startup. ICM startup file...407
2.23.3. _startCheck script...407
2.23.4. foldbank.db..408
2.23.5. Bank of protein folds (foldbank.seg)...408
2.23.6. Atom codes (icm.cod)..409
2.23.7. Bond angle bending and improper torsion deformation parameters (icm.bbt)....409
2.23.8. Bond stretching parameters (icm.bst)..409
2.23.9. Conformational stack (*.cnf)...410
2.23.10. Distance restraint types (icm.cnt or *.cnt)...410
2.23.11. Distance restraints (*.cn)...410
2.23.12. Graphics objects (*.gro)...411
2.23.13. ICM HTML help file (icm.htm)...411
2.23.14. Hydrogen bonding types (icm.hbt)..411
2.23.15. Hydration parameters (icm.hdt)...411
2.23.16. Configuration file (icm.cfg)...412
2.23.17. Colors (icm.clr)..412
2.23.18. Electron density map (*.map)..413
2.23.19. MC simulation movie (*.mov)...413
2.23.20. ICM−object (*.ob)...414
2.23.21. Residue library (icm.res or *.res)...414
2.23.22. Object Variables (*.var)...415
2.23.23. Multidimensional variable restraint types (icm.rst or *.rst).............................415
2.23.24. Multidimensional variable restraints (*.rs)..416
2.23.25. A sample *.col file...417
2.23.26. A sample *.tab file...417
2.23.27. Torsion parameters (icm.tot)..417
2.23.28. Van der Waals parameters (icm.vwt)...418
2.23.29. Protein databank file (or *.ent)..418
2.23.30. Sequence (*.seq *.pir *.gcg *.msf *)...419
2.23.31. ICM−sequence file (*.se)...419
2.23.32. ICM−alignment file...420
2.23.33. ICM all−file: a file with multiple icm objects...420
2.23.34. Residue comparison table (icm.cmp or *.cmp)...421
2.23.35. Protein profiles (*.prf)...422
2.23.36. Integer array (*.iar)..422
2.23.37. String array (*.sar)...422
2.23.38. Matrix (*.mat)..422
2.23.39. Numerical data (real arrays) (*.rar)...423

3. User's guide...425
3.1. ICM−shell..425

3.1.1. How to get help..425
3.1.2. Customization..425
3.1.3. How to write a nice demo with menus to impress the boss...................................426
3.1.4. How to boost learning process while reading the ICM manual.............................426

xiii

Table of Contents
3. User's guide

3.1.5. How to get the list of the command words..427
3.2. ICM graphics...427

3.2.1. How to learn the ICM molecular graphics in 30 seconds......................................427
3.2.2. How to make a nice high−resolution image..428
3.2.3. How to rotate one molecule around its own center of mass..................................428
3.2.4. How to annotate a molecular image in the graphics window................................429
3.2.5. How to save and print the generated image...429
3.2.6. How to change the color of the graphics window background..............................429
3.2.7. How to return a molecule to the center of the graphics window...........................429
3.2.8. How to color atoms according to their B−factors..430
3.2.9. How to color residues according to their hydrophobicities...................................430
3.2.10. How to color residues according to their accessibilities......................................430
3.2.11. How to color atoms according to their charges...431

3.3. Structure analysis..431
3.3.1. How to optimally superimpose two 3D structures...431
3.3.2. How to optimally superimpose without the residue alignment.............................432
3.3.3. How to make a Ramachandran plot...433
3.3.4. How to display hydrogen bonds..433
3.3.5. How to identify atoms or residues at the molecular interface...............................433
3.3.6. How to identify torsions at the molecular interface...434
3.3.7. How to calculate packing density..435
3.3.8. How to perform a principal component analysis...435
3.3.9. How to calculate a dihedral angle..436
3.3.10. How to print a table of the torsion angles..436
3.3.11. How to build a hydrophobicity profile...437
3.3.12. How to display and characterize protein cavities..437

3.4. Sequence, searches and alignments...438
3.4.1. How to search all Prosite patterns in your sequence..438
3.4.2. How to find a fragment in the PDB database (obsolete).....................................438
3.4.3. How to identify binding pockets..439
3.4.4. How to find a similar fold or topological motif in the PDB database...................440
3.4.5. How to generate a non−redundant list of PDB sequences.....................................440
3.4.6. How to merge several pdb files...441
3.4.7. How to compile a database of protein secondary structures and their folds..........441
3.4.8. How to search headers of the PDB entries...442

3.5. Energetics and electrostatics...443
3.5.1. How to plot the distance dependence of a van der Waals interaction...................443
3.5.2. How to calculate the electrostatic free energy by the REBEL−method................443
3.5.3. How to evaluate the pK shift...444
3.5.4. How to evaluate the binding energy..444
3.5.5. How to calculate an ensemble average..444
3.5.6. How to evaluate helicity of a peptide from the BPMC simulation........................445
3.5.7. How to merge and compress several conformational stacks.................................446

3.6. Manipulations with molecules..446
3.6.1. How to build new object from a sequence...446
3.6.2. How to quickly convert a pdb file into an ICM−object...447

xiv

Table of Contents
3. User's guide

3.6.3. How to prepare a PDB structure for energy calculations (regularization).............447
3.6.4. How to create a new molecule or a residue for the ICM residue library...............448
3.6.5. How to modify an ICM−object..448
3.6.6. How to merge two ICM−objects...451
3.6.7. How to make a hybrid model from several pdb files...452
3.6.8. How to generate a series of intermediates between the two given structures........453
3.6.9. How to reconstruct a structure from a published stereo picture............................453

3.7. Animation..454
3.7.1. How to rotate and zoom in a script..454
3.7.2. How to make a molecular movie from a Monte Carlo trajectory..........................455

3.8. Transformations and symmetry...457
3.8.1. Main concepts and functions...457
3.8.2. How to generate symmetry related molecules...458
3.8.3. How to find and display rotation/screw transformation axis.................................458
3.8.4. How to combine several transformations..459
3.8.5. How to build a helix from the two contacting monomers.....................................459

3.9. Maps and factors...460
3.9.1. How to manipulate with structure factors..460
3.9.2. How to calculate phases of reflections given a 3D model and a cell.....................460
3.9.3. How to automatically place a fragment into density...461

3.10. How to plot..461
3.10.1. How to make a simple plot y=F(x)...461
3.10.2. How to plot a histogram...461
3.10.3. How to make a 3D−surface plot of a 2D−function..462
3.10.4. How to create a new graphics object of a specific shape.....................................462
3.10.5. Flexible peptide docking..462

3.11. How−to: Docking and Virtual Ligand Screening...467
3.11.1. Docking and virtual ligand screening. Overview..467
3.11.2. How−to: Ligand docking simulations..468
3.11.3. How−to: Virtual Ligand Screening..471

3.12. Example scripts...474
3.12.1. How to predict 3D structure of a peptide from its sequence................................474
3.12.2. How to perform local flexible docking of two protein molecules.......................475
3.12.3. How to perform an explicit flexible docking of two simplified protein
 molecules..476
3.12.4. How to build a model by homology..476

4. References..477
4.1. General literature references...477
4.2. The main description of the ICM method...479
4.3. ICM algorithms...479
4.4. ICM applications...480
4.5. Credits...482

xv

Table of Contents
5. Glossary...483

5.1. A..483
add..483
alignment...483
all...484
alpha helix..484
amber..484
append..485
atom...485
axis...485

5.2. B..485
base..485
ball...486
beta...486
boundary element...486
BPMC..486

5.3. C..486
cavity..487
charge...487
coil...487
column...487
current map..487
current object...487
current table...487
command..488
comp_matrix..488
conf..488
cpk..489

5.4. D..489
database..489
Depth−cueing, or fog...489
distance..490
distance geometry..490
disulfide bond..490
drestraint..491
drestraint type...491

5.5. E−H...491
ecepp..491
fasta..491

5.6. S...492
site..492
grob..494
hbond− hydrogen bonds...494
svariablei, or ICM−shell variable..494
integer..494
label..495
logical...495

xvi

Table of Contents
5. Glossary

macro..495
map...495
matrix...496
MIMEL..498
mmff ..498
mol...498
mol2...499
more...499
movie...499
mute...500
only..500
pattern..500
png...500
pdb or Protein Data Bank...501
peptide bond...501
profile...501
prosite...502
REBEL...502
real..503
regularization...503
residue..504
rgb..504
ribbon...504
script...505
sequence...505
segment..506
(ICM)−shell...506
skin...506
smiles...507
sln...507
stack...507
stick..508
string..508
structure factor (factor)..508
surface area..509

5.7. T..510
table..510
Pairwise table expressions:..510
table subsets:..511
tether..511
transformation vector...511

5.8. U−Z...512
unique...512
virtual atoms and variables..512
volume...513
vrestraint..513

xvii

Table of Contents
5. Glossary

vrestraint type...513
wire..514
xstick..514
ZEGA...514

 Index..515

xviii

1. Introduction

ICM stands for Internal Coordinate Mechanics and was first designed and built to predict low energy
conformations of biomolecules. ICM also is a programming environment for various tasks in computational
structural biology, sequence analysis and rational drug design. The original goal was to develop algorithms
for energy optimization of several biopolymers with respect to an arbitrary subset of internal coordinates
such as bond lengths, bond angles torsion angles and phase angles. The efficient and general global
optimization method which evolved from the original ICM method is still the central piece of the program.
It is this basic algorithm which is used for peptide prediction, homology modeling and loop simulations,
flexible macromolecular docking and energy refinement. However the complexity of problems related to
structure prediction and analysis, as well as the desire for perfection, compactness and consistency, led to
the program's expansion into neighboring areas such as graphics, chemistry, sequence analysis and database
searches, mathematics, statistics and plotting.

The original meaning became too narrow, but the name was kept. The current integrated ICM shell
contains hundreds of variables, functions, commands, database and web tools, novel algorithms for
structure prediction and analysis into a powerful, yet compact program which is still called ICM. The seven
principal areas are centered around a general core of shell−language and data analysis and visualization.

1.1. Release notes
Last Updated: Aug 19,2002 .

In this section we keep track of all the latest changes in different modules of ICM.

Selecting atoms and residues by user−defined field values Aug 18,2002

1. Introduction 1

User can define one atom field (see set field and Field (selection [i_field])) and three residue
fields. Now one can also select atoms or residues using the Select function with arguments looking like
this: "u>3." for atoms. For residues "u","v" and "w" values can be used for three user fields. Example:

 Select(a_/* "u>3.") # select residues with 1st user field greater than 3.

improvement of split grob . Limit size of generated grobs 11,2002

Now you can specify the minimal size of a grob generated as a result of the the split command, e.g.
split gg 500.0

extracting grob vertices with certain color Aug 11,2002

Grob(grob { from_R, to_R, from_G, to_G, from_B, to_B })
function which returns a grob with selection of points of the source grob. The selected points will have
colors between the RGB values provided in the 6−dim. array of limits (from 0. to 1.).

set grob label s_Label Aug 10,2002

Assign a string label to a grob.

Name(object_type select) August 10, 2002 Returns string array of names of the selected objects.

Nof(object_type select) August 10, 2002 Counts the selected objects. Convenient for GUI scripting (see
the icm.gui file).

sort objects and sort molecules July 30, 2002 You can now resort objects and molecules by a user field or
by molecular mass. See sort objects or sort molecules.

Access to the warning messages from shell: the Warning function July 24, 2002 Example:

if Warning() message = Warning(string)

Permissions for tables: set property args table1 table2 .. July 24, 2002

tables can now have a number of properties: read only, edit the cells only, etc. See the set property
command.

Error(string) Text of each error message and its numerical error code July 24, 2002

Now all icm error messages you can extract the full text of the message. Example:

if Error errorMessage = Error(string)
print i_out # the numerical code of the message

Remove unwanted characters. Trim(s_sourse, s_listOfOkCharacters) July 18, 2002

Revert order in arrays July 18, 2002

 Iarray({1 2 3} reverse) # returns {3 2 1}

2 1. Introduction

 Sarray(S reverse)
 Rarray(R reverse)

Unique atomic ordering for chemical compounds: the make unique command. July 15, 2002

Fast refinement into electron density (the gcMethod preference). July 15, 2002

explicit sequence type for the Sequence(s_seq [nucleotide | protein]) function. April 22,
2002

option box in make grob map April 10, 2002 It controls addition of the surrounding box to the contoured
map.

averaging two matching arrays: Mean (R1 R2) April 9, 2002

minimize loop command and making loop optimization movies April 9,2002 The build model
command may not be able to find a perfectly matching loop. Two sorts of problems may appear: the
imperfections of the loop attachments and the clashes of the loop to the body of the model. They are
resolved with the minimize loop i_loopNumer command.

window={minValue,maxValue} range for color mapping April 8, 2002 Now the display and color
commands in which you color a selection by a matching array of values, can be told what range of values
the array is clamped to. A single digital value can also be used as a color with the window option.
Example:

 color ribbon a_/ Bfactor(a_/ simple) window=−0.5//2.
 color ribbon a_/14 0.8 window=−0.5//2. # single value coloring

This command will clamp Bfactor(a_/ simple) values which are normally around zero, but may range from
large negative values to large values, to the [−0.5,2.] range.

relative B−factor. April 3, 2002 In read pdb now the average B−factor for all non−water atoms is
calculated for X−ray objects. The normalized B−factor ((b−b_av)/b_av) is now returned by the
Bfactor(as_ simple) function. This is much better for coloring ribbons by B−factor since it only
depends on ratios to the average. We recommend to use:

 color ribbon a_/ Trim(Bfactor(a_/ simple),−0.5,3.)//−0.5//3. # or
 color a_// Trim(Bfactor(a_// simple),−0.5,3.)//−0.5//3. # for atoms

This scheme will give you a full sense of how bad a particular part of the structure is.

save tab− and comma delimited tables. April 3, 2002s_fieldDelimiter="," or "\t" will be
now affecting write table You can also specify it in the command line like this:

write table separator="," # or separator="\t", etc.
write table header separator="," # will save column names

Atom chirality April 1, 2002 (not a joke!) Atom chirality flags have been introduced. Each atom can have
a chirality flag set to:

zero − non−chiral center•

1. Introduction 3

1 − left topoisomer•
2 − right topoisomer•
3 − racemic mixture of both isomers•

Here is a short summary of new commands and functions associated with chirality:

i/o chirality flag is read from a mol file or ICM object.
set chiral as_ flag set chirality flag to a selection

a_//X[1230LRB] select chiral atoms, e.g. a_//X1 for left atoms, a_//X is equivalent to
a_//X123

show as_ shows a new Xi field with the chirality value
l_racemicMC this flag allows to switch chirality in icm global optimization
Dot−separated chemical formula for multiple molecules March 30,2002

Use String(dot, selection) to get a dot separated chemical formula (String(all, selection) will give the
total formula).

Setting, storing and extracting user−defined properties of atoms, residues, molecules and objects
March 22. 2002

User can now store real properties of atoms, residues, molecules and objects directly in the object.

To set those properties, use the set field selection [number=i] property
command.

•

To extract the property use Field(selection, i_fieldNumber)•
To clear use the set field clear selection command (or explicitly set it to zero).•

Level Max.Nof_fields example
Atom 1 set field a_//c* Mass(a_//c*)
Residue 3 set field a_/trp 1. number=2
Molecule16 set field a_W Random(1.,10.,Nof(a_W)) number=12
Object 16 set field a_*. Rarray(Count(Nof(a_*.)))
Version() function to report the license codes. March 12. 2002 The Version function now returns
one−character license codes (e.g. " H D ").

 Version()
 Version(full)

parsing more PDB object types. March 9, 2002 ICM now recognizes more object types as specified by
the EXPDTA card of a pdb−file, see Type (os_ 2):

"ICM" ready for energy calculations. Those objects are either built in ICM or converted to the
ICM−type.
"X−Ray" determined by X−ray diffraction
"NMR" determined by NMR
"Model" theoretical model (watch out!)

4 1. Introduction

"Electron" determined by electron diffraction
"Fiber" determined by fiber diffraction
"Fluorescence" determined by fluorescence transfer
"Neutron" determined by neutron diffraction
"Ca−trace" upon reading a pdb, ICM determines if an object is just a Ca−trace.
"Simplified" special object type for protein folding games.
Passing arguments to an ICM script: icm −a string option March 8, 2002 You can initialize
s_icmargs string with the icm −a 'args' option. Example:

% icm −s −a 'a1.sdf a2.sdf'
 s_icmargs
 a1.sdf a2.sdf
 args = Split(s_icmargs)
 for i=1,Nof(args)
 print args[i]
 endfor

String({ as_ | rs_ | ms_ | os_ } i_number) March 1, 2002 Function String (selection) is further
extended to print i−th element of a selection. It is convinient in scripts. For atoms it will also show the full
information about an atom, rather than only the ranges of atom numbers.

Detecting if pmf parameters (Nof(pmf). Feb 16, 2002 Nof(pmf) function reports the number pmf types.

Converting selections to strings. String(as_ | rs_ | ms_ | os_) function extended. Feb 14, 2002 Now
you can make a selection at any level and the String function will return a selection string which can be
stored in variables, arrays and tables. Note, that the chemical formula is now returned by the String(all as_
) or String(dot as_) function (keyword may be the last arugment as well).

Accumulating numbers of visits in the compress stack command. Feb 12, 2002 Now when you
compress the conformation stack, the number of visits after the compression will be the total number of
visits from all.

"Ca−trace" objects. Feb 9, 2002 Frequently Ca−trace−only objects in PDB create problems in automated
database analysis scripts. Now this type is identified upon readin and it can be checked with the Type(a_ 2
) command. Also if you try to convert the "Ca−trace" object to the ICM type, the convert command
returns an error. If the object is mixed and contains both all atom models and Ca−traces, the Ca−traces will
be skipped.

improvements of the convert command. Feb 6, 2002 Previously when the convert command was
applied to an object with missing atoms in the backbone, the convert command had problems and
generated ICM objects deviated from their pdb−templates significantly. This problem is now fixed. Also,
ICM reports the deviation from the template and it is returned in the r_out command.

Unification of the a_// and a_1.// selections. Feb 12, 2002 There was a discrepancy between short
forms of selections of all residues and all atoms. Now for the selections have the same level (e.g. a_// or
a_1.// select all atoms in the current or the first object, respectively)

setting number of visits and energy for stack conformations. Jan 29, 2002 You can now specify the
number of visits and the energy manually in the store conf command.

1. Introduction 5

writing sequence groups into fasta/msf files. Jan 27, 2002 groups of sequences can be now saved or
shown to fasta or msf files.

uncompressing bzip2 on the fly. Jan 25, 2002 Seemless treatment of the .bz2 compressed files is added.
E.g.

 read sequence "aaa.seq.bz2"
 364255 sequences loaded:

setting b−factors at residue level. Jan 20, 2002 Previously b−factors were always assigned at the atom
level. Now, if you have a real array of residue energies (e.g. returned by the Energy(rs_) function, you can
assign b−factors at the residue level with a simple command:

set bfactor rs_ R_resBfactors

reading .sdf .mol files Jan 18, 2002

Features from multiple sdf files are now extracted into the S_out string array upon reading. E.g.

 read mol "aaa.mol"
 logp = Rarray(Field(S_out,"logp",1,"\n")) # rarray of logp values
 can_numbers = Trim(Field(S_out,"cas_rn",1,"\n"))

selecting water Jan 17, 2002

Selecton a_W selects both water molecules and deuterated waters. This may now replace less rigorous
a_w* expressions in macros. E.g. delete a_W This selection is equivalant to the longer Mol(
a_/hoh,dod) expression.

selecting aromatic atoms. Jan 15, 2002

Selection a_//R will select aromatic atoms. It selects all heavy atoms connected by aromatic bonds and
hydrogens attached to them.

moving selections from one object to another Jan 11, 2002

Frequently a selection of atoms, residues of molecules need to be tranferred from one object to another.
Now there is a function Select(selection, os_targetObject). Example :

 read pdb "2ins"
 copy a_ "bb"
 aa = a_1.2,4,5//c*
 bb = Select(aa,a_bb.) # moves the selection

This is useful in macros.

surface energy Jan 5, 2002

The surface energy can now be calculated using grid potentials.

preference GRID.gcghExteriorPenalty Jan 3, 2002

6 1. Introduction

van der Waals grid energy outside van der Waals grids "gc" and "gh" used to be positive to push molecules
back to the grid box. Now there is a preference: GRID.gcghExteriorPenalty which can be set to
"repulsive" (the previous mode) or to "zero" to have no field outside the box.

zero−size rarrays and iarrays can be created. Jan 1, 2002

Rarray(0) and Iarray(0) now allow to create arrays of zero size.

convertObject macro extended to convert a selected set of molecules Dec 26, 2001

s_skipMessages allows to suppress printing of selected error and warning messages Dec 15, 2001

s_skipMessages is new shell string variable which contains a list of error/warning codes which you
want to suppress in your icm output. Despite suppression of the message, the error is still generated and can
be returned with the Error(string) function in i_out. Example:

 s_skipMessages = "[234][5243]"

Macro to write sequences in the alignment order. Nov 28, 2001 Frequently you may want to renumber
your object (which may contain omitted loops and ends) according to a full protein sequence. Now you can
do it automatically with the

align number ml_ seq_

command.

Macro to reorder sequences in the alignment in the read order. Nov 26, 2001

The alignment changes the input order of sequences. To keep the order the same in an alignment, you may
now use the

reorderAlignmentSeq(ali_) macro from the _bioinfo file.

See the Align function for more details.

Macro to write sequences in the alignment order. Nov 24, 2001

A tiny macro wrSeqAli (file _macro) allows to write sequences in the alignment order.

Type(seq_ 2) : type of a sequence Nov 22, 2001 find out the sequence type with the Type(seq_ 2)
function.

normal distribution : Random(mean std N "gauss") Nov 14, 2001

Generate an array with normally distributed numbers with the Random() function, e.g. Random(0., 1., 10,
"gauss")

set grob reverse : inverting normals in grobs, Nov 9, 2001 Permanently change direction of normals of
one or all grobs allows to change direction of lighting as well as influence the sign of Volume(grob). Now
one can:

1. Introduction 7

 set grob reverse # all grobs
 set g_ reverse # a specific grob

full pairwise alignment with arbitrary positional weights, Nov 8, 2001 We introduced a new command
to set custom sequence residue areas (e.g. set area 1crn_m {0.3,1.,1.3,0.8,..}) . This
'areas' can be used by the Align(seq1,seq2,area) function for weighted pairwise alignment.
Example:

 set area 1crn_m 0.
 set area 1crn_m Random(0. 2. Length(1crn_m))

New macros, Nov 7, 2001

icmCavityFinder to find closed cavities
icmPocketFinder to find open cavities
potential of mean force , Nov 4, 2001

A new energy term "mf" is added. It allows to establish interactions according to pairs of atoms types.
This term can be used both for chemical superposition and pharmacophore modeling (e.g. you know
several ligands to the same receptor and want to derive the pharmacophore model), or for scoring the
docking solutions in virtual ligand screening. Example:

 read pmf "ident.pmf"
 buildpep "his ; ala trp" # two molecules: his and ala−trp
 fix v_//omg
 montecarlo "mf"

read pdb sequence chain case, Nov 2, 2001

Originally PDB was case insensitive. However, in some entries it is used to specify different chains, e.g. A
and a in 1fnt . ICM now copes with this misdemeanor of PDB.

~/.icm/user_startup.icm file, Oct 28, 2001

font control in GUI terminal: Oct 25 , 2001

icm.cfg file can now be define the font size in the terminal window. The specification may look like
this:

 XTermFont *−fixed−medium−*−*−*−24−*

gui simple: keep the original terminal window and start gui , Oct 22 , 2001

Previously the gui command under Unix/Linux disabled the original terminal window and created a new
one inside the GUI window. This new window had problems with font controls. Now you can keep the
original window and start GUI.

% icmgl
 gui simple
 # or
% icmgl −G

8 1. Introduction

Distance(alignment1 alignment2 exact) , Oct 21, 2001

a measure of differences between two alignments (see Distance(ali,ali,exact)) to evaluate the
influence of alignment parameters on alignments, or to evaluate differences between a trial alignment and a
'golden' standard.

display origin , Oct 19, 2001

allows to display coordinate frame. Also: undisplay origin

set v_ reverse , Oct 18, 2001

modify internal coordinates while keeping the remote part of the molecule unmoved

copy a_ tether , Oct 18, 2001

the copy command is extended to allow simultaneous copying and imposing tethers to the copy. Also, now
the default name of the copy−object is a_copy.

refineModel macro, Oct 17, 2001

refineModel macro from the _macro file allows to refine models resulting either from homology
model (in this case it is supposed to be tethered to the target object) or any other source. It performs
iterative energy refinement with appropriate annealing of the tethers. If you only want to improve the
predicted side chains, use refineModel 0 yes

a_//Z selection for tether−target atoms, Oct 18, 2001

Previously one could select tethered atoms (a_//T) but not the atoms to which this atoms are tether .
Now it can be done with the a_//Z selection.

montecarlo reverse, Oct 16, 2001

a new reverse option of the montecarlo command allows to make a more intellegent random move
of a molecule fragment surrounded by other static molecules. It prevents the movement of the whole
molecule if a backbone angle at N−terminus is changed.

Average gradient amplitudes of residues Oct 14, 2001

Gradient(rs_ | as_) now returns not only the array of gradient lengths for atoms (e.g. Gradient(a_//*)) but
also returns averaged gradient lengths for each selected residue if the selection is of residue level (e.g.
Gradient(a_/*)). This can be used to color the ribbon or to direct a montecarlo procedure.

Easy coloring of 3D models by space averaged alignment strength. Oct 8,2001

see ribbonColorStyle

 ribbonColorStyle = "reliability"

1. Introduction 9

allows to color a ribbon model by alignment strength with 3D gaussian averaging of the conservation
signal. selectSphereRadius controls the radius of the averaging.

Reading NMR entries with CRYST data .

Some new NMR entries in PDB have illegal CRYST ORIGX etc. data. Previously ICM complained about
them. Now, it the experiment is NMR, the crystallographic symmetry fields are skipped.

Sampling with probabilities according to b−factors . Oct 5,2001

Now you can use a new bfactor option of the montecarlo command to sample 'hot' parts of structure
with higher probabilities. The relative frequences are taken from the b−factors of the atoms belonging to
the mc−variables. Example:

 buildpep "ala his trp glu" # default b−factor=20
 set bfactor a_/2 1000. # make 2nd his hot
 montecarlo bfactor

To preserve the old bfactors, save them before the simulation and restore after. E.g.

 b_old = Bfactor(a_//*) # save
 ..
 set bfactor a_/10:20 200.
 montecarlo bfactor
 ..
 set bfactor a_//* b_old # restore

Detection of missing fragments in pdb−files. Oct 3,2001

ICM detects chain missing residues according to the differences between SEQRES sequence and the
residues with coordinates and returns the total number of missing residues in the i_out system variable.
E.g.

 read pdb "1amo.a/"
 make sequence a_1.1 # sequence 1amo_1_a extracted
 if(i_out>1) then
 read pdb sequence "1amo" # sequence 1amo_a read
 a=Align(1amo_a 1amo_1_a)
 build model 1amo_a a_1.1 a # patch the missing fragments
 endif

Renumber residues in fragments. Oct 3, 2001 previously only renumbering of the whole protein chain
was allowed Example:

 read pdb "1crn"
 align number a_/10:20 101 # renumber a fragment starting from 101

Total masses of residues, molecules, objects. Oct 3, 2001

The same extension as the one below was applied to the Mass function (e.g. Mass(a_/*) returns masses of
residues.

10 1. Introduction

Total charges of residues, molecules, objects. Sep 14, 2001

Charge(os_ | ms_ | rs_ | as_ [formal | mmff]) now returns the array of total
charges for each selected unit (e.g. Charge(a_/*) returns an array of total charges of each selected residue)

Numbers of atom arrays in residues, molecules, objects. Sep 13, 2001

 Nof(a_*.* atom) # returns an iarray of number of atoms in each molecule

Cheminformatics: Modifications of non−ICM objects Aug 10, 2001 Example:

 read mol "scaffold.mol" # contains r1 atoms
 read mol "bblocks.sdf" # contains blocks with attachment points atoms
 modify a_1.//r1 a_2.//a # build a molecule
 build hydrogen
 set type mmff
 set charge mmff
 convert

Modeling: tzMethod = "weighted" to use b−factors of atoms for weighting tethers. Aug 7, 2001 method
of imposing and calculating tethers. The three alternatives are the following

"simple" : equal weight tethers to 3D points (the old one)1.

"weighted" : individual weights are calculated from atomic B−factors by dividing 8*PI2 by
the B−factor value. All the weights additionally are multiplied by the tzWeight shell parameter.

2.

"z_only" : tethers are imposed only in the Z−direction towards the target Z−coordinate. These
type of tethers allow to pull a molecule into a z−plane. This may be useful if you are trying to
generate a flat projection of a three−dimensional molecule.

3.

Modeling: tzMethod = "z_only" to tethers to the z−plane of other atoms. Aug 1, 2001

Distance restraints improvements. July 17, 2001.

Target distance allows to have a target not in the middle of upper and lower bounds.

v_//T and v_//F selections

New maps and binding site predictions− Sep. 01.

Two commands have been extended:

make map potential (no terms) . − calculates new map m_atoms. Can be used on pdb−objects•
make grob map exact r_contourLevel . − allows to specify absolute (exact) contouring level•

A new map with gaussian envelope around atoms can be quickly built for ICM and non−ICM objects and
used to find semi−closed pockets. If contoured at 0.3 it gives

 buildpep "his arg"
 make map potential Box(a_ 3.) solid

1. Introduction 11

 make grob m_atoms 0.2 exact # contours near vw−raduis.
 display cpk
 display g_atoms

To identify pockets: try different contouring levels and split the grobs.

bug fixes:

modify phase branch convert a_ "new name"

1.2. Brief history of ICM
ICM author's heads in italic

Ruben Max
The first lines of ICM were born in 1985 out of a desire to build a general method for predicting the
structure of complex biological macromolecules and their complexes. I formulated a set of requirements for
a program for molecular mechanics in a full set of internal coordinates, and started working on the internal
coordinate algorithms and the Fortran code of the first program blocks. By 1991 the batch parameter files
were replaced by a command language and an interactive shell that looked quite similar to the current
version of ICM, and the molecules started to follow commands and sample the energy minima.

Max Totrov and I extended or rewrote most parts of ICM from 1991 to 1994. By 1993 several people
(Alexey Mazur, Mikhail Petukhov, and Dmitry Kuznetsov) had also contributed to the fortran version of
ICM, however their contributions did not survive in the current version of the program. Alexey pursued the
development of molecular dynamics in internal coordinates which was first formulated and tested in a
series of papers in 1989 and, later, branched out of ICM.

The all−C version of ICM emerged in 1994 as a result of a full rewrite. Some features were lost, but more
were gained. Serge Batalov joined the development of the program in the fall of 1994, about the time
Molsoft was founded. Max and I together with the new Molsoft developers keep ICM strong, clean and
healthy.

1.3. ICM distribution and support
ICM is being developed, distributed and supported by Molsoft, LLC.

If you have any problem with our programs, please contact Molsoft via e−mail:

 support@molsoft.com

Please indicate the platform, the version of the program, and do not forget all the necessary files to
reproduce it. Some of the commands or functions described in this manual belong to specific modules and

12 1.2. Brief history of ICM

are not available in the ICM−main program.

1.4. What can you do with ICM? (a program overview)
Let us go through the short overview of ICM applications.

1.4.1. Graphics

Versatile surface and structure views to elucidate protein function

The views include

binding and active site surfaces with mapped
properties

•

automatic identification and views of cavities and
open binding pockets

•

electrostatic surfaces•

Analytical molecular surface (skin)

The contour−buildup algorithm calculates the smooth and accurate analytical
molecular surface in seconds. This surface can be saved as a geometrical object,
saved as a vectorized postscript file.

The skin is used in the REBEL algorithm to solve the Poisson equation, as well as in the molecular surface
analysis routines (e.g. a projection of physical properties on the receptor surface).

Also ICM can build and draw a solvent−accessible surface (see surface) and

1.4. What can you do with ICM? (a program overview) 13

* a gaussian molecular density which can be contoured at different

levels and to generate different smooth molecular envelopes and
enclosed pockets and cavities:

 make map potential Box(a_ 3.)
 make grob m_atoms exact 0.5 solid
 display g_atoms smooth

Schematic representations of DNA and RNA

PDB entry: 101d

ICM command:

 nice "101d"

PDB entry: 4tna

ICM commands:

 nice "4tna"
 color ribbon a_N/* Count(Nof(a_N/*))

14 1.4.1. Graphics

Complex combined representations

Simplified molecular representations are built automatically (e.g.
the protein−dna complex is shown with one command: nice
"1dnk"). You can combine different types of molecular
representations with solid or wire geometrical objects.

Molecular representations include wire models, ball−and−stick models, ribbons, space filling models, and
skin representation.

1.4.1. Graphics 15

1.4.2. Simulations

Prediction of peptide structure from sequence

Take a peptide sequence and predict its three−dimensional structure.
Of course, success is not guaranteed, especially if the peptide is
longer than about 25 residues but some preliminary tests are
encouraging.

You will also get a movie of your peptide folding up. Just type the peptide sequence in the _folding file
and go ahead.

High quality models by homology

ICM has an excellent record in building accurate models by homology. The
procedure will build the framework, shake up the side−chains and loops by
global energy optimization. You can also color the model by local reliability to
identify the potentially wrong parts of the model.

ICM also offers a fast and completely automated method to build a model by homology and extract the best
fitting loops from a database of all known loops (see build model and montecarlo fast). It just
takes a few seconds to build a complete model by homology with loops.

Loop modeling and protein design

ICM was used to design two new 7 residue loops and in both cases the designs were
successful. Moreover, the predicted conformations turned out to be exactly right
(accuracy of 0.5Å) after the crystallographic structures of the designed proteins were
determined in Rik Wierenga's lab. Use the _loop script to predict loop
conformations and dsEnergyStrain to identify the strained parts of the design.

16 1.4.2. Simulations

Crystallographic symmetry

ICM has a full set of commands and functions to generate symmetry related
molecules.

Docking two proteins

Docking two proteins reliably is still an unsolved problem. However, there has been a considerable
progress. In some cases (e.g. beta lactamase and its protein inhibitor) the ICM docking procedure predicted
the binding geometry correctly based only on the global energy optimization. ICM will generate a number
of possible solutions using both the explicit atom model of the receptor and the receptor grid potential and
refine them by explicit global optimization of the surface side−chains. Even though success is not
guaranteed, the generated solutions can be useful, especially if any additional information about the binding
is available.

Finding pockets and docking a flexible ligand to a receptor

1.4.2. Simulations 17

As demonstrated in several recent papers, short flexible peptides can be

successfully docked ab initio to their receptors. This method is a blend of the
peptide folding with the grid potentials representing the receptor. A similar
method can be applied to any chemical. A chemical can be built from a 2D
representation and optimized. The "drugable" pockets can be predicted with an
algorithm based on the contiguous grid energy densities.

Scanning a database of flexible ligands

In virtual screening the flexible docking is applied to hundreds of thousands of individual ligands. This
version of docking is fast and requires an accurate relative binding or ranking function to discriminate
between the true ligands and hundreds of thousands of potential false positives. The ligand sampling and
docking procedure is a combination of the genuine internal coordinate docking methodology with a
sophisticated global optimization scheme.

Accurate and fast potentials and empirically adjusted scoring functions have led
to an efficient virtual screening methodology in which ligands are fully and
continuously flexible.

Calculating electrostatic potential

ICM incorporates a very fast and accurate boundary element solution of the Poisson equation to find the
electrostatic free energy of a molecule in solution. This algorithm (abbreviated as REBEL) can be used
dynamically during conformational search. The components of the electrostatic free energy are used to
calculate the binding energy and evaluate the transfer energy between water and organic solvents.

ICM uses generalized Born approximation to calculate the electrostatic solvation energy and its gradient
dynamically during local and global conformational searches.

The electrostatic potential can be
projected on a molecular surface for the
identification of possible binding sites.

18 1.4.2. Simulations

1.4.3. Sequence analysis

Genomics

Handling gigabytes of genomic sequence, fast cross−comparison of millions of sequences was another
challenge solved in the ICM program. ICM can identify a unique subset of millions of sequences, assemble
sequences from Unigene clusters into alignments (SIM4 program is used a part of the procedure).

Similarity dotplot: alternative alignments and repetitive subdomains

It looks like this:

Using the plotSeqDotMatrix macro:

 read sequence s_icmhome + "zincFing.seq"
 plotSeqDotMatrix 2drp_d 3znf_m \
 "Two z−finger peptide" "Human Enhancer Domain" 5 20

1.4.3. Sequence analysis 19

Here the color shows

the local significance
of the alignment. You
can change the method
to calculate
probability, color
scheme and residue
comparison matrices
and calculate it
interactively or in
batch.

Pairwise sequence alignment and its significance

Make a pairwise sequence alignment and evaluate the probability that the two aligned sequences share the
same structural fold. The alignment is performed with the Needleman and Wunsch algorithm modified to
allow zero gap−end penalties (so called ZEGAalignment). The ZEGA probability is a more sensitive
indicator of structural significance than the BLAST P−value. The structural statistics was derived by
Abagyan and Batalov, 1997:

 read sequence s_icmhome + "sh3.seq"
 show Align(Fyn Spec) # the probability will be shown

You can change residue comparison matrices, gap penalties and do many alignments in batch.

Multiple sequence alignment

Read any number of sequences in fasta or swissprot formats and automatically align the sequences,
interactively or in a batch. It will look like this:

Consensus ...#.^.YD%..+~..−#~# K~−.#~##.~~..~WW.#. ~~.~G%#P.
Fyn −−−−VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGYIPS
Spec DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE−−VNDRQGFVP−
Eps8 KTQPKKYAKSKYDFVARNSSELSM−KDDVLELILDDRRQWWKVR−−−NSGDGFVPN

nID 7 Lmin 56 ID 11.5 %
#MATGAP gonnet 2.4 0.15

ICM commands:

 read sequence s_icmhome + "sh3.seq"
 group sequences sh3
 align sh3

20 1.4.3. Sequence analysis

 show sh3

The gui version of ICM also has a multiple alignment viewer with dynamic coloring according to
conservation tables CONSENSUS and CONSENSUSCOLOR. It will automatically show secondary
structure and other features.

Evolutionary trees, 2d and 3d sequence clustering

Relationships between sequences can be presented in three
forms:

as evolutionary trees (ICM uses the neighbor−joining
method for tree construction);

•

as 2D distribution of sequences using the two main
principal axes (use plot2Dseq macro);

•

as 3D distribution. This can be analyzed in stereo
using controls of molecular graphics (use ds3D
macro: ds3D Distance(alig) Name(alig)
).

•

Sensitive Sequence Similarity Search, ZEGA

Search your sequence (interactively or in batch) through any database and generate a list of possible
homologues which are sorted and evaluated by probability of structural significance. The ZEGA alignment
(full dynamic programming with zero end gaps) is used for each comparison and an empirical probability
function described in JMB,1997 is used to assign a P−value to each hit. This search may give you more
homologues that a BLAST search! The output may presented in a linked table form:

Table of hits

NA1 NA2 ID SC pP DE

Fyn 1nyf_mNo 100. 62.8120.94fyn
... lines skipped...

1.4.3. Sequence analysis 21

Eps81tud_m17 21. 17.044.17 alpha−spectrin
Eps81fyn_a23 22.6 17.024.16 phosphotransferase fyn
Eps81efn_a25 22. 16.644.11 fyn tyrosine kinase
Eps81hsq_mNo 24.2 16.874.1 phospholipase c−gamma (sh3 domain)

3D plots of functions

Take a matrix and represent it in 3D in a variety of
forms. View it in stereo, color, label, transform with
the mouse. Example:

 read matrix s_icmhome + "def"
 make grob def solid color
 display

1.4.4. Modules of ICM

ICM is distributed in the following packages:

ICM−main•
ICM−bioinfo (sequence analysis)•
ICM−REBEL (electrostatics)•
ICM−docking (includes cheminformatics)•
ICM−pro (includes the above four modules)•
ICM−homology (fast homology building and database loop searches in addition to ICM−pro)•
ICM−VLS (virtual ligand screening, includes ICM−pro)•

The modules have the following features:

ICM−main

shell for molecules, numbers, strings, vectors, matrices, tables, sequences, alignments, profiles,
maps

•

ICM−language and macros•
graphics, stereo•
imaging and vectorized postscript•
animation and movies•
mathematics, statistics, plotting•
presentation of the results in html format•
user−defined and automated interpretation of web links•
HTML−form−output interpretation•
pairwise and multiple sequence alignments, evolutionary trees, clustering•
secondary structure prediction and assignment, property profiles, pattern searching•
superpositions, structural alignment, Ramachandran plots•
protein quality check•
analytical molecular surface•
calculations of surface areas and volumes•
cavity analysis•
symmetry operations, access to 230 space groups•

22 1.4.3. Sequence analysis

database fragment search•
identification of common substructures in PDB•
read pdb, mol2, csd, build from sequence•
energy, solvation, MIMEL, side−chain entropies, soft van der Waals, tethers, distance and angular
restraints

•

local minimization•
ab initio peptide structure prediction by the Biased Probability Monte Carlo method•
loop simulations•
side−chain placement•

ICM−REBEL (electrostatics)

electrostatic free energy calculated by the boundary element method•
coloring molecular surface by electrostatic potential•
binding energy (electrostatic solvation component)•
maps of electrostatic potential and its isopotential contours•

ICM−docking and chemistry

indexing of chemical databases in SD, mol2 and csd format•
searching and extracting from the indexed databases•
fast grid potentials•
scripts for flexible ligand docking•
scripts for protein−protein docking•
2D (SMILES) to 3D conversion, type and charge assignment, mmff geometry optimization,
low−energy rotamer generation

•

refinement in full atom representation•

ICM−bioinformatics

fast comparison and redundancy removal of millions of genomic or protein sequences•
multiple EST clustering, alignment and consensus derivation•
database indexing and manipulations•
functions to evaluate sequence−structure similarity•
scripts to recognize remote similarities in the protein sequence and PDB databases•
search a pattern through a database•
searching profiles and patterns from the Prosite database through a sequence•
HTML representation of the search results with interpretation of links•
interactive editor of sequence−structure alignment•
automated building of models by homology with loop sampling and side−chain placement (fast
homology model building combined with the database loop search is a separate module which is
ICM Homology).

•

ICM−Homology

sequence−structure alignment (threading)•
ultra−fast automated homology model building with a database loop search•
loop modeling and refinement, side−chain placement•
surface analysis•

1.4.4. Modules of ICM 23

As a method for structure prediction, ICM offers a new efficient way of global energy optimization and
versatile modeling operations on arbitrarily fixed multimolecular systems. It is aimed at predicting large
structural rearrangements in biopolymers. The ICM−method uses a generalized description of biomolecular
structures in which bond lengths, bond angles, torsion and phase angles are considered as independent
variables. Any subset of those variables can be fixed. Rigid bodies formed after exclusion of some
variables (i.e. all bond lengths, bond angles and phase angles, or all the variables in a protein domain, etc.)
can be treated efficiently in energy calculations, since no interactions within a rigid body are calculated.
Analytical energy derivatives are calculated to allow fast local minimization. To allow large scale
conformational sampling and powerful molecular manipulations ICM employs a family of new global
optimization techniques such as: Biased Probability Monte Carlo (Abagyan and Totrov, 1994),
pseudo−Brownian docking method (Abagyan, Totrov and Kuznetsov, 1994) and local deformation loop
movements Abagyan and Mazur, 1989).

A set of ECEPP/3 energy terms is complemented with the solvation energy, electrostatic polarization
energy and side−chain entropic effects (Abagyan and Totrov, 1994), making the total calculated energy a
more realistic approximation of the true free energy. The MMFF94 force field has also been implemented.
Powerful molecular graphics, the ICM−command language, and a set of structure manipulation tools and
penalty functions (such as multidimensional variable restraints, tethers, distance restraints) allow the user to
address a wide variety of problems concerning biomolecular structures.

1.5. Notational conventions
The following notational and typographical conventions are used throughout the manual.

Bold. Command names may appear in bold in syntax descriptions. (e.g. montecarlo). Type them
as they appear in the text.

•

Typewriter font is used for command words, examples and ICM−shell prompts. This text
can also be copied into the shell.

•

Italic font is used for command or function arguments which should be replaced with actual
values. For example, if you see

•

/whatever/your/ICM/directory/

and your ICM directory actually is

/usr/pub/icm

the latter is what you should actually type.

Short prefixes shown in parentheses may be used to specify argument type: integer (i), real
(r), string (s), logical (l), preference (p), iarray (I), rarray (R), sarray (S),
matrix (M), sequence (seq), profile (prf), alignment (ali), map (m), graphics object, or
grob (g), structure factor (sf), atom selection (as), residue selection (rs), molecule selection (ms),
object selection (os), variable selection, e.g. a subset of torsion angles, (vs), and table (T). These
prefixes are also used to construct formal argument names for macros. For example, I_Color
would mean an integer array with color information, or s_ObjName would mean a string variable
or constant (e.g. "crn") specifying the object name.

Optional arguments appear in square brackets [].•

24 1.5. Notational conventions

Braces { } are used for mutually exclusive groups or arguments. For example:•

set charge as_ { r_Charge | add r_Increment } means either

set charge as_ r_Charge or

set charge as_ add r_Increment

The default values in ICM macros are shown in parenthesis and in typewriter font:•

icmPocketFinder as_receptorMol r_threshold (3.) l_display (yes)

1.6. Common abbreviations
In addition to the abbreviated ICM−shell−objects prefixes (see above), abbreviations may be used for
energy terms, and some other frequently used words.

abbr. description
as_ atom selection
ali alignment
conf conformation
cn distance restraints
grad gradient
ey energy
hb hydrogen bonds
ls list
ms_ molecular selection
MC, mc montecarlo
MB Mouse Button
mn maximal number of items
n number of items
os_ object selection
re, res residue
rs_ residue selection
rs variable restraint
seq sequence
to torsion
tz tether
ty type
va, var variable internal coordinate in a molecule (torsions, phase angles, planar angles, bond lengths).
vw van der Waals
wt weight

1.6. Common abbreviations 25

It is convenient to declare these abbreviations as aliases to the corresponding full words in the _startup
file for fast typing. For example:

 ls seq

instead of

 list sequence

1.7. Getting started
Start the GUI (Graphics User Interface) version of ICM by typing icm −g or icm −G and hitting
RETURN. This executable will look the $ICMHOME shell variable. The commands of the GUI menu will
be taken from $ICMHOME/icm.gui file. Feel free to change it. The GUI is meant to be self−explanatory.
In this manual we will mostly focus on the shell commands and function, since in many cases the GUI
gives you only limited subset of possibilities.

1.7.1. ICM−shell

ICM−shell is a basic interface between a user and the ICM−program. The shell can be used from the GUI
version or directly. This is a powerful and flexible environment for a multitude of versatile tasks ranging
from mathematics and statistics to very specialized molecular modeling tasks.

Start ICM by typing:

 icm

Make sure that your .cshrc login file contains

 setenv ICMHOME /whatever/your/ICM/directory/is/

Do not forget the slash at the end. It is also useful to add your $ICMHOME directory to your $path since
there are some ICM related shell scripts and utilities which you may want to access.

You will see the ICM−prompt inviting you to type a command. The first thing to know is how to get help.
You may just type help and use / whatever to find what you want, or use help commands or help
functions to find out about the syntax. Now type:

 aa=2.4

You have just created a new ICM−shell variable aa and assigned a value of 2.4 to it. You can create a
variable with a name which is not already in use in the ICM−shell, does not contain space or delimiters like
".","," and starts from a letter (e.g. 1aag is an illegal name, except for sequences). Let us go on:

 bb=2.*aa

Now you have created another ICM−shell variable bb and its value is probably 4.8. Find it out by typing:

 print " bb=", bb

26 1.7. Getting started

or any of these commands:

 list "b*"
 list integers
 show bb

The next step would be to type a conditional expression like:

 if (bb != 4.8) print "something went wrong"

or something even more elaborate:

 if (bb != 4.8) then
 print "something went wrong"
 else
 print "It really works"
 endif

You can always start a for−loop such as:

 cc={"sushi","sashimi","negi maki","toro","period."}
 for i=1,Nof(cc)
Nof returns the number of elements.
Index i runs from 1 to 5
 print "*** I just like to eat ",cc[i]
 endfor

Notice that anything after a pound sign # in ICM scripts is a comment.

We have just played with a real variable bb and string array cc . They had their unique names and we
could create, read, write, delete and rename them.

ICM−shell objects

Furthermore, the ICM−shell can handle many other different types too, namely, it may contain in its
memory entities of 16 different types, such as

integer , (e.g. a=10, b= −3)•
real , (e.g. c = −3.14)•
string , (e.g. d = "ICM rules")•
logical , (e.g. e = (2 > 43); f = yes)•
preference , (i.e. fixed multiple choices, try show wireStyle)•
iarray , (i.e. integer arrays, g={−2,3,−1})•
rarray , (i.e. real arrays, h={ −2.3, 3.12, −1.})•
sarray , (i.e. string arrays, i={"mek","yerku","erek"})•
matrix , (read from a disk file, e.g. read matrix "def.mat")•
sequence , (i.e. amino acid or nucleotide sequences)•
alignment , (i.e. pairwise or multiple sequence alignments, read from a file)•
profile , (i.e. protein sequence profiles)•
map , (i.e. density functions defined on the 3D grid)•
grob (abbreviation for GRaphic OBject, which is different from molecular graphics objects, and
contains dots, lines and solid surfaces; it can be a contoured electron density, 3D plot, an arrow,

•

1.7. Getting started 27

etc)
atomic/molecular objects and related selections of atoms (a_//ca,c,n) residues (a_/2:15)
molecules (a_1.b,c/) objects (a_1,2.) and, finally ..,

•

table , or spreadsheet. Several arrays are linked together in a table. Table can also have a header
with some additional data fields. Tables are essentially simple databases which can be
manipulated with, sorted and searched with ICM commands.

•

The more complicated objects, like arrays, sequences, alignments, maps etc., can be read from a disk file
(e.g. read sequence "a.seq") or created by an ICM command or function (e.g.
a=Sequence("ACFASDTRSEEDFFF") or make sequence a_1.1)

Atomic objects are usually specified by an atom, residue, molecule or object selection which are
collectively referred to as selections.

All of the listed entities have their unique names in the ICM−shell and can be read, renamed (e.g.
rename myFactors bbb), deleted (e.g. delete myFactors aaa), written to a file with a
standard type−specific extension (e.g. write aaa "surf" will create file surf.gro , the extension
type depends on the object), shown, often printed and displayed graphically.

A number of ICM−variables have reserved names and are used by the program. For example, the
mncalls variable always describes the number of molecular energy evaluations during a minimization,
s_pdbDir is the path to your pdb files, etc. You may customize some of those ICM−shell variables by
redefining them in the system−wide _startup file, and $HOME/.icm/user_startup.icm file. The
standard _startup file reads icm.ini file which contains many standard directory and parameter
definitions, e.g. :

 read all s_icmhome+"icm.ini" # initialize icm variables

Important: be careful when negative numbers appear in the command line. If not separated from the
previous numeric argument by a comma, they will be interpreted by ICM−shell as an expression, i.e. the
two arguments will simply be replaced by their difference. For example, the command

 display string "I like crambin" −0.9 −0.3

is wrong, a comma is needed, otherwise −0.9 −0.3 will be substituted by −1.2. This command will
place the string in a point with screen coordinates X=−1.2 and Y=0.0 (the default), not in X=−0.9 and
Y=−0.3 as might be expected. The safest way should be to use commas as separators in the argument list in
the command line, like the following:

 display string "I like crambin" −0.9 , −0.3

is correct, the two arguments are separated by comma

Now you can use the mouse to rotate and translate molecules and strings. The left mouse button is
associated with rotation, the middle mouse button is translation and the right mouse button clicks are used
for drop down menus in GUI and labeling (double click is a residue label). A more detailed list of graphics
controls is given below.

As far as the keyboard commands and prompting, try to use the arrow keys for invoking previous
commands and TAB for prompting (e.g. atom TAB) to see the available commands and functions.

28 1.7. Getting started

1.7.2. The first steps

You first ICM commands may be the following:

 read pdb "1crn"
 display ribbon

or simply

 nice "1est"

You can also:

 read mol s_icmhome + "ex_mol" # or
 read mol2 s_icmhome + "ex_mol2" # or
 read csd ...

The second way to create a molecular object is building the extended chain given the amino−acid sequence.
The simplest way to build a short peptide is to use alias BS to the build string command. Type

 BS ala his leu tyr # or
 buildpep "AHLY;AGGAR" # to build two molecules

In a more complex case create a file, say mymol.se,.se being the standard extension for the object
sequence files. The file should contain the names of molecules (field ml) and their sequence (field se) and
may look like this:

ml mol1
se nter ala gly his ser trp cooh
ml mol2
se hoh
ml mol3
se hoh

Type:

 build "mymol"

to build the object. Now you can display the three molecular objects you have just loaded, i.e. crambin, the
two peptides. We will use the cpk and the xstick graphics representations.

 display a_2. # a_2. means 'the second object'
 display cpk a_1./2:10 # a_.. means 'residues 2:10 of the first object'
 display xstick a_1./16:18

You can also replace residues with the modify command:

 modify a_2./his "tyr"

Let us clear the scene and start doing some more fun things:

 delete a_*. # a_*. selects all the objects
 build "mymol"

1.7.2. The first steps 29

 display # by default displays everything
 set vrestraint a_/* # this command will increase the efficiency
 montecarlo

Of course, there is a more elaborate possible setup for a montecarlo run (see _folding script) and
graphics should not be used for a real run. However, the above example is pretty much what you need to do
to run the Biased Probability Monte Carlo Minimization to find the global minimum which models the
solution structure of this peptide.

Now let us make a quick tour into multiple sequence alignments. First, get your sequence file (most formats
will be accepted). The simplest default file format (then you do not need format type specs like: msf, pir,
etc) is the fasta format (angular bracket and sequence name followed by the sequence)

> seq1
ASDFREWWDYIEQ
> seq2
SDRTYIEQWWDCVN

There are some example multiple sequence files in the ICM−directory. Let us do the following:

 read sequences s_icmhome+"sh3" # example sh3.seq file
 group sequence "*" sh3ali
 show sequences alignments
 align sh3ali # redo the multiple sequence alignment
 unix gs sh3ali.eps # gs is a PostScript previewer
 show Align(Fyn, Eps8) # make a pairwise alignment

If you want to go directly to more elaborate sessions and scripts, or have a "How can I ..." question, you
may hop to the User's guide section.

30 1.7.2. The first steps

2. Reference Guide
2.1. ICM command line options

Option Description
−a arg_string initialize s_icmargs string with the arg_string
−b inhibit Buffered output
−c clean: do not save _seslog
−e 'commands' execute semi−colon separated icm commands and quit
−g [menuFile] start GUI menu bar, using menu file [default=icm.gui]
−G [menuFile] start GUI menu and keep the original terminal window
−n do Not execute _startup file
−s Silent mode (l_warn=no l_commands=no l_info=no l_confirm=no)
−p set path for ICMHOME, e.g. −p/opt/icm/
−w web cgi mode: combination of −p and −s, e.g. −w/opt/icm/
−d(or −display) address sets/redirects the X display (default is $DISPLAY)

−24 enforce high quality 24−bit image mode at the expense of double
buffering

−B[max_beeps] no more than max_beeps on errors (default=300)

−X report the computer identification number for a node−locked license
GUI options:

−style={motif|windows|platinum|cde}sets the GUI style
−session=session restores the earlier session

−geometry WxH+X+Y sets the client geometry of the main widget, e.g. −geomerty
200x200+150+700

−fn or −font font defines the GUI font
−bg or −background color sets the default background color
−fg or −foreground color sets the default foreground color
−btn or −button color sets the default button color
−name name sets the GUI name
−title title sets the title (caption)
−visual TrueColor forces to use a TrueColor visual on an 8−bit display
−ncols count limits the number of colors on a 8−bit display
−cmap causes to install a private color map on an 8−bit display

2.2. Command line editing
(cursor is in the text window).

Operation Shortcut Key
command word completion/promptingTAB

2. Reference Guide 31

up−history UP arrow
down−history DOWN arrow
forward−char RIGHT arrow
backward−char LEFT arrow
beginning−of−line CTRL+A
delete−char CTRL+D
end−of−line CTRL+E
backward−delete−char Backspase or CTRL F+H
kill−to−line−end CTRL+K
insert−overstrike toggle CTRL+O
paste CTRL+P
delete/copy−whole−line CTRL+U
delete/copy−word CTRL+W
yank (identical to paste) CTRL+Y
Use the TAB key when you do not know what to do or to avoid unnecessary typing as well as probable
typos in long names. This prompting is very convenient and is consistent with the tcsh UNIX shell. It will
not only prompt you for possible completions, but also prompt you for available files in the read
command (hit TAB after the double quote mark) and available selection of items in preference .

Examples:

 show Ic TAB # completes function name IcmSequence()
 read pdb "TAB # gives you all local *.pdb *.brk files
 read sequence "1a TAB # lists 1a*.seq files

2.3. Graphics controls
The rough picture is simple: rotate with the left mouse button, translate, drag, crop, and zoom (drag along
the left window margin) with the middle button, and select/pop with the right button. However these are
only the defaults which can be customized.

The default shortcut keys are stored in the icm.clr file. Thefore, the mapping of keys/mouse buttons to
particular graphics operations is flexible and can be easily redefined. The GUI controls and the popup
menu are additional to the older shortcut keys listed here. The following shortcut keys to speed up
operations in the graphics window (see the quick graphics reference guide) are defined by default. If some
of these definitions are not working, check your icm.clr file in the $ICMHOME directory and modify the
key/mouse−operation mapping to your liking.

32 2.3. Graphics controls

Quick graphics reference guide

It is necessary to have the cursor in the graphics window. For some operations you may need to move
cursor in a specified area (e.g. left margin) of the window. (Note for Windows 95/Windows NT version's
users: if you use a two−button mouse hold the left button and the SPACE key instead of the middle mouse
button (see picture−prompt for two−button mouse). Some controls use only a margin on the screen (e.g.
Bottom5 means the bottom 5% of the graphics viewing area).

Note: if your SGI hardware stereo does not work properly you may need to install IRIX6.4 patches 2448,
2771 and 2843.

OPERATION DESCRIPTION KEYS

ROTATE

SHIFT key enforces
global
rotation

simple LeftMB (MB stands for Mouse
Button)

continuous Shift−Bottom5− LeftMB
Z−axis clockwise LeftMB at top margin (or ALT +Z)

2.3. Graphics controls 33

Z−axis counterclockwise LeftMB at top margin or CTRL +Z
individual torsion angle in
ICM−object

CTRL (or CTRL+SHIFT) LeftMB
on reference atom

TRANSLATE

SHIFT key enforces
global
translation

GRAPHICS.resLabelDrag
controls residue
label dragging

XY−plane (dragging) MiddleMB
drag atom in non−ICM objectCTRL LeftMB at the dragged atom

Z−axis MiddleMB at right margin

ZOOM
zoom in MiddleMB at left margin or SHIFT

MiddleMB up

zoom out MiddleMB at left margin or SHIFT
MiddleMB down

CLIPPING PLANES

front plane CTRL MiddleMB

back plane ALT MiddleMB or
Right5−MiddleMB

slice/slab (move both planes)CTRL+ALT MiddleMB
unclip CTRL+U

LABELING

label atom or grob RightMB−click
label residue double RightMB−click

paste atom's/grob's name to
command line

CTRL−SHIFT RightMB (or under
Gui: RightMB on atom and release on
1st item)

paste residue name to the
command line

CTRL double−RightMB (GUI:
RightMB on residue, popup menu and
release on 1st item. Use the residue
selection level, R)

set 3D cursor to the residue
(move with arrows) CTRL−SHIFT double RightMB

CONNECT for
independent movement of
molecule(s) SELECT
GROB(S) for changing
size or color

disconnect/unselect everythingESC or double RightMB−click,
cursor in any empty area of the screen

connect to molecule or grob CTRL+ALT RightMB−click on atom
or vertex

connect to more
molecule(s)/grob(s) CTRL+ALT+SHIFT RightMB−click

select/edit grob double RightMB−click
add new grob to a selection SHIFT double LeftMB−click on grob

MODES

side−by−side stereo on/off CTRL+S
hardware stereo on/off ALT+S
full screen on/off CTRL+F
perspective view on/off CTRL+P

34 2.3. Graphics controls

fog (depth cueing) on/off CTRL+D
change resLabelStyle
preference CTRL+L

change resLabelStyle
preference CTRL+A

change background color CTRL+E / CTRL+Q
change "skin" color of the
selected grob(s) CTRL+E / CTRL+Q

change "wire" color of the
selected grobs ALT+E / ALT+Q

change display modes of the
selected grobs CTRL+X

MISCELLANEOUS

delete string label pointed by
the cursor BACKSPACE

gui (graphical user interface) CTRL+G
drag the box MiddleMB−click at boxCorner

2.4. Editing pairwise sequence−structure alignments
ICM has a simple editor for pairwise alignments. It requires that one of the sequences is linked to a
structure displayed in the Graphics window. The display cursor command followed by an arrow
movement displays the alignment int the top section of the graphics window. Example:

 nice "1eoc.a/"
 make sequence a_1.1
 read pdb sequence "3pcc.a/"
 aa = Align(3pcc_a 1eoc_a)
 display cursor a_/15 # start moving cursor with arrows

The modified alignment can be now returned by the Align(a_1.1) command The alignment editing
operations are:

OPERATION KEYS

move cursor to the C−terminus LeftArrow

move cursor to the N−terminus RightArrow

move tethers to the left CTRL+LeftArrow

move tethers to the right CTRL+RightArrow

2.4. Editing pairwise sequence−structure alignments 35

align 2 res./add tethers for cursor residue INS

unalign 2 res./delete tethers for cursor res DEL

undo editing PAGE UP

redo editing PAGE DOWN

2.5. Constants
The values of most of the ICM−shell objects may also be represented explicitly in the ICM−shell as so
called "constants" (i.e. in the myFactors={1.2, −4., 5.88} line, myFactors is an ICM−shell
variable of the rarray type, while {1.2, −4., 5.88} is an "rarray" constant. The following constants
are defined in the ICM−shell:

integers:−9999 12•
reals: 12.0 −0.00003 2.•
logicals:yes no•
strings: "I see M", "Backslash (\\) and quote (\")" "line1\nline2"•

Escape sequences which can be used inside strings:

\a − bell
\b − backspace
\f − formfeed
\n − newline
\r − carriage return
\t − horizontal tab
\v − vertical tab
\\ − backslash
\" − double quote

integer arrays: {2, −1, 6, 0} {−8, −1, 2} The comma is compulsory before a
negative number, it can be skipped otherwise. See also: read iarray.

•

real array: { −1.6 , 2.150 3., −160.} See also: read rarray•
string arrays: {"do","re","mi","fa","sol"} {"\n(newline), \t
(tab)","\a (bell)"} See also: read sarray

•

selections (find a detailed description below):•

 a_hiv?. a_1,2. a_*. # objects
 a_h*.a a_m1 a_*.!w2,w15,z* # molecules
 a_1.*/2:15,18:26 a_/18,his* # residues
 a_//ca,c,n a_1.c a_/2:4/!h* # atoms
 v_//phi,psi V_2//?vt* # variables

36 2.5. Constants

2.6. Subsets and index expressions
one can refer to an element or a subset of ten kinds of ICM−shell variables:

Variable type Expression Result type Example

string string[i] string lastChar=str[Length(str)]

string[i1:i2] string resName=pdbStr[18:21]

iarray
iarray[i] integer CurrSize=sizes[i]

iarray[i1:i2] iarray frag=list[4:nitems]

iarray[I_] iarray sublist=list[{1,3,5}]

rarray
rarray[i] real the=same[i]

rarray[i1:i2] rarray all=as[for:iarr]

rarray[I_] rarray Part=R1[{1,2,3}]

sarray
sarray[i] string best=menu[ibest]

sarray[i1:i2] sarray fish=list[4:8]

sarray[I_] sarray some=all[{1,2,3}]

matrix

matrix[i1,i2] real Element=M[4,5]

matrix[i1] rarray atomCaVec=CoordMatr[15]

matrix[i1,i2:i3] rarray thirdRow=M[3,1:5]

matrix[i1,?] rarray thirdRow=M[3,?]

matrix[i1:i2,i3] rarray firstColumn=mm[1:3,1]

matrix[?,i3] rarray firstColumn=mm[?,1]

2.6. Subsets and index expressions 37

matrix[i1:i2,i3:i4] matrix upperSqr=rot[1:2,1:2]

sequence sequence[i] string amino4=bpti[4]

sequence[i1:i2] sequence domain=seq[139:302]

alignment
alignment[i] alignment column4=globins[4]

alignment[i1,i2] string AminoAcIn2ndSeq=globins[4,2]

alignment[i1:i2] alignment motif=EFhand[15:27]

profile profile[i] profile His=prof[18:18]

profile[i1:i2] profile motif=prf[14:35]

selection selection[i] selection ca18=ca[18]

selection[i1:i2] selection frag=ca[14:35]

table table[i] table show t[3]

table[i1:i2] table delete t[3:5]

Important note. When both lower and upper limits are explicitly specified, even if they are equal (e.g. list
[3:3]), the type of the subset object remains the same. If only one element is specified, the rank may be
reduced. The upper limit may be larger than the actual limit (e.g. t[3:9999]). You may also use 0 instead of
the last element number (e.g. t[3:0]).

38 2.6. Subsets and index expressions

2.7. Molecule intro

Molecules are the main inhabitants of
the ICM shell. The shell can contain
many objects, each of which can be a
soup (this expression belongs to my
friend Gert Vriend) of separate
molecules. Molecules, in turn contain
residues and atoms. ICM can handle
both raw objects, as they come from a
PDB file or a mol−file, and a fully
prepared for molecular modeling
"ICM"−objects.

The non−ICM objects can be visualized, but they need to be converted into ICM−objects to perform the
most interesting modeling operations. To specify the subsets of objects, molecules, residues, atoms and
internal variables, you need to learn the language of molecular selections.

A quick preview of the selection language, using the picture above as an example:

 display a_2. cpk # object selection (the second object)
 display a_1.1 ribbon green # molecule 1 from object 1
 display a_1.2/his xstick # residue his12 shown as balls and sticks
 color a_/1.2/12/n* xstick blue # atoms: color nitrogens in blue

For an in−depth description of selections, read the next section.

2.8. Selections
Let us imagine that we decided to compare two structures deposited in the PDB. We will read both entries
in the ICM shell, and define the following levels or organization. Each entry will form an object, each
object will contain one or several molecules, protein molecules will naturally contain amino acid residues
and residues will consist of atoms. Now, in the superimpose command, we will need to specify, or select,
the molecules, residues or atoms which should be superimposed. The ICM shell language has a
flexible way of selecting subsets of atoms, amino−acid residues, molecules, objects, as well as torsion
angles and other internal geometrical parameters of molecules. Most of the ICM commands and functions
dealing with molecules, for example, display, delete, minimize, etc., will operate on an arbitrary selection.
What does a selection look like? For example, selection a_2./2:14/c* selects carbon atoms of residues
from 2 to 14 of the second object. The general syntax of a selection is the following:

prefix _ [object(s) .] molecule(s) / residue(s) / atom(s) or variable(s)

2.7. Molecule intro 39

The object section including the dot (e.g. 1crn.) may be omitted. In this case the selection will be
performed in the current object.

There can be as many as five sections separated by _ . / and /,

Examples:

 a_2ins.a,b/lys,arg/ca,cb,n* # atom selection, '*' − any string
 a_2ins.a,b/2:10/n,ca,c # atom selection
 v_crn./lys,arg/phi,PSI # variable selection

(Note use of PSI torsion in the last example.)

Storing selections in named variables.

Selections can be assigned to a variable (e.g. x = a_//c*) and can be combined in an expression by
logical and (&) or logical or (|), e.g. (a_//n* a_//ca).

Selection Types

Three prefix types: a_ v_ and V_ . The Prefix defines one of the three selection types:

atoms, residues, molecules and objects (a_..)•
free variables (v_..)•
all variables (V_..)•

The a_ selection is the most popular and selects atoms, residues, molecules or objects. Therefore, there
are four atom selection subtypes which are abbreviated as follows:

abbr.selection name example
os_ object selection a_ ; a_1. ; a_1crn. ; a_*.
ms_ molecule selectiona_1.2 ; a_a,b ; a_*.*
rs_ residue selection a_/3:9 ; a_/* ; a_/"GKS"
as_ atom selection a_1.2//ca,c,n ; a_//c*
Two additional types of selections let you select amongst the free internal coordinates or all internal
coordinates (both free and fixed). These selections are widely used in commands and functions related to
energy minimization and sampling:

abbr.selection name example
vs_ selection from free internal variable v_ ; v_1. ; v_1.2//x* ; v_2//?vt*
Vs_ selection from all internal coordinatesV_ ; V_1. ; V_1crn.//!phi,psi,omg
A selection can also be assigned to a named variable:

Example:

 aa = a_//ca,c,n # the backbone
 show aa

40 Selection Types

The object and molecule sections are separated by a period, all other sections are separated by slashes.
Inside each section, arguments in a list are separated by comma (,) while ranges are separated by colon (
from:to).

Selection levels

There are four principal levels of selection: object selection, molecular selection, residue selection and
atom or variable selection. The level is defined by the "lowest" section explicitly specified in a selection
(e.g. a_1.1/2:4 is a residue level selection, while a_//ca is an atom selection). These selections are
referred to as os_ ms_ rs_ as_ or vs_ , respectively. If selection level is not important or the level is the
lowest one (atoms or variables), selections are referred to as as_ or vs_.

The selection level of the interactive graphics selections is controlled by the
GRAPHICS.selectionLevel preference. To change it from the command line, assign this variable to
an appropriate level, e.g. GRAPHICS.selectionLevel="atom" .

Selection levels can be changed from the GUI interface, by changing the selection level

Examples

Examples of different selection levels (note that object and molecule names are arbitrary):

 a_1,3. a_mod*. a_*. a_"*benz?n*". # object selections
 a_3.mol1 a_zinc a_$molNum a_*.* # molecule selections
 a_/3:29,as?,ala a_/* a_*./"VHC?[!W]A" # residue selections
 a//h?,c* a_//T v_//phi,psi # atom or variable selections

For example, a_1,3. is an object selection, and a_/ala is a residue selection.

Each section may contain a negation symbol ! in the beginning. It selects all, but the specified. You can
only use the negation symbol in the first position of a section and the negation will always apply to the
whole section. For example, a_/!ala,gly is right, while a_/ala,!gly is wrong.

If object section together with the separating period is skipped, selection addresses the current object rather
than all objects.

Select by number, range, name or pattern

Matching. Objects, molecules, residues, atoms and variables may be referred to by their names. Objects
and molecules can be additionally referred to by their sequential numbers (e.g. a_1.2). Metacharacters,
such as * ? [], can also be used for pattern matching (e.g. v_//?vt*).

Full syntax. A complete description of selection syntax for each level is as follows:

2.8.1. Object selection

(a_ obj. or just a_ for the current object):

a_ name . (a_1crn. , note the dot at the end)

 Selection levels 41

a_ namePattern. (a_1c?n.)
a_ relNumber. (a_2. means the second object)
a_ num1:num2. (a_2:5. range from object 2 to object 5)
a_ the current object, it is a special case.
a_ " commentPattern ".select by pattern matching in the object comment field.
a_ICM. objects of ICM type (a_!ICM. − non−ICM objects)
Other object types (e.g. "NMR","Fiber","Ca−trace", etc.) can be selected or checked with the
Type (os_ 2) function.

Example:

 read object s_icmhome+"all"
 show a_ # the current object
 show a_1,2:3.
 show a_s1?.
 show a_"*Th[iy]o*".//!h*

2.8.2. Molecule selection

a_obj.mol in specified object(s),
a_mol in the current object or
a_*.mol in any object
by name:

a_s_name e.g. a_m2 or a_1.m2 in the current (a_), or the first (a_1) object, respectively. (Note that
there is no dot at the end)

by pattern

a_s_namePattern (a_w* − all water molecules in the current object)

by number(s)

a_number (a_2 , a_3.2,4,7) − relative number of molecule(s)

by range(s)

a_num1:num2 (a_2:5 , a_2:5,10:12) − number range

by special symbol for types of molecules:

a_specialSymbol[,specialSymbol2..]

A peptides and proteins•
H hetatm, usually ligands and water molecules•
N nucleic acids•
S sugars•
L lipids•

42 2.8.2. Molecule selection

W water including deuterated water (dod)•
U unknown (miscellanea)•

Examples:

 nice "1dnk" # one peptide, two dna chains and other mols
 a_A # the peptide
 a_N # the two DNA chains
 a_A,N # the peptide and the DNA chains
 read pdb "2ins"
 delete a_W

Some special cases:

 a_* # all molecules in the current object
 a_a # molecule 'a' in the current object
 a_.a # molecules 'a' in all objects
 a_*.a # the same as a_.a

selecting water molecules from pdb−files by their 'residue−field' number.

Water molecules in PDB files are numbered and the numbers are stored in the residue field. For
consistency, we convert these numbers into residue numbers. At the same time the names of water
molecules are built sequentially like this: w1,w2,w3 . This way one can use both sequential numbering
via molecule names and PDB−file numbering via residue numbers.

 read pdb "1sri"
 show a_w12:w15 # by molecule name, sequential numbering
 show a_w*/719:721 # by original pdb number

converting any selection to molecules with the Mol function

Selection of any level, e.g. atoms, residues, and objects can be converted to molecules with the Mol (
selection) function. Example:

 Mol(Sphere(a_zinc a_1,2 8.)) # Sphere returns atoms

2.8.3. Residue selection

With respect to objects and molecules there are the following possibilities:

a_obj.mol/rescomplete specification, (e.g. a_*.*/14:19 or a_2.3/ala).
a_mol/res the current object and the specified molecules, (e.g. a_w*/*)
a_/res all molecules of the current object, (e.g. a_/23:25)
Residue field specifications (for all molecules in the current object).

by name:

a_/resName (e.g. a_/his)

by pattern:

2.8.3. Residue selection 43

a_/resNamePattern (e.g. a_/as? − asn or asp). A useful tip for DNA or RNA selections. Quite often
bases are modified. To select A,T,G,C,U and their modifications, use a_/??a or a_/??t or a_/??g or
a_/??c or a_/??u, respectively.

by residue number(s):

a_/numChar (a_/3 or a_/15A) − PDB residue number may contain additional characters.

by residue range(s):

a_/numChar1:numChar2 (a_/4:15,20:25) − reference residue number range

by amino acid sequence pattern:

a_/"seqPattern" (a_/"G?GTE") − selects the fragment with matching aminoacid sequence.

Example selecting all residues preceding prolines (the first expression selects dipeptides with the second
proline, the second one excludes prolines):

 show a_/"?P" a_/!pro*

by special symbols and expressions

by residue type

a_/A − residues of "Amino" type (N− and C−termini have different type) displayed residues

a_/D − displayed residues in the ribbon representation only residues identical to their homology target
residues

a_/I − if atoms of one molecular object are tethered to atoms of another object, selection a_/I shows those
tethered residues (i.e. they contain tethered atoms) which have identical names to the residues to which
they have been tethered.

by absolute number

a_/N absNumber (a_/N15) − absolute number (all residues

of all objects are numbered sequentially starting from one.) by secondary structure

a_/S sec_struct_chars − residues with certain secondary structure (e.g. a_/SH − only helices; a_/SEH −
sheets and helices; a_/S_ − only coil)

by alignment consensus

a_/C resConservationCode − selects residues according to the consensus of the alignment linked to a
molecule. The symbols can be combined, e.g. a_/CYnh for conserved tyrosines, negatively−charged
residues and hydrophobics. Possible codes:

A , C ... − particular conserved amino acid types (one−letter code)•

44 2.8.3. Residue selection

X − all absolutely conserved residues•
h − conserved hydrophobic residues (#)•
s − conserved small residues (^)•
p − conserved polar residues (~)•
o − conserved positive residues (+)•
n − conserved negative residues (−)•
a − conserved aromatic residues (%)•
x − not conserved but in the ungapped block (.)•
g − gap in one of the sequences of the alignment (' ')•

(e.g. a_/CXh − selects all identities in the alignment and hydrophobic residues, a_/CACg − all conserved
alanines, cysteins and gapped regions)

by functional features

a_/F[SiteChars] or a_/F"siteID"

residue selection by the one−letter site type or the site ID, respectively. Letter F refers to the word feature
as in the FT (feature table) field of Swissprot entries. The types along with their one−letter codes are listed
in the glossary site entry. The default string, the a_/F selection, is defined by the SITE.defSelect
string (you may redefine it), which defines important local features such as binding sites as opposed to
domain−type sites such as signal peptides, zinc fingers and other protein domains. The PDB entries do not
comply with the standard SWISSPROT site definitions, such as ACT_SITE BINDING etc., and are
assigned by the user type F (selection a_/FF).

Example:

 nice "1as6"
 show site
 color ribbon a_/F magenta
 show a_/FF
 show a_/F"cu3" # select only site named cu3
 show a_/F"MUTAGEN" # sites so defined in Swissprot
 set site a_1.1 "FT SITE 15 15 My favourite residue"

converting selections to residue level: The Residue (selection) will convert any selection of higher
level or lower level to the residue level. Example

 a_/SH a_/pro # a proline in a helix
 Res(Sphere(a_/pro 2.)) # expand to the neighboring residues

2.8.4. Atom selection

(a_//atoms):

by name

a_//name (a_.//ca , ca is a usual name for alpha carbon) by name pattern

a_//namePattern (a_.//c* for all carbons)

2.8.4. Atom selection 45

by special symbols and expressions

alternative atom positions in X−ray structures

a_//A alterCharacter − select alternative positions of the specified type (e.g. read pdb "1cbn" ;
show a_//Ab). See also the set comment "A" as_ command.

by atom code

a_//CatomCodeNum[:atomCodeNum2] − select by atom code as described in the icm.cod file, e.g.
a_//C2,C4 selects aromatic and methylene hydrogens, a_//C2:15 selects codes from 2 to 15

a_//MatomMmffCodeNum[:atomCodeMmffNum2] − by mmff code

displayed atoms

* a_/D[displayTypes] − Displayed atoms (e.g. a_//D for all displayed atoms, or a_//DWC for wire or
cpk). The following graphical types can be selected:

A − labelled atoms•
B − ball•
C − cpk•
S − skin•
W − wire•
X − xstick (i.e. ball or stick)•
no arguments − any graphical representation•

Special named selections: as_graph graphically selected atoms:

as_graph selection contains graphically selected objects, molecules, residues, or atoms The level of
selection depends on the GRAPHICS.selectionLevel preference. The level can be changed from the
GUI interface or from command line.

strained atoms (atoms with high energy gradient)

a_//G − strained atoms (Gradient vector longer than selectMinGrad) You can also use the display
gradient command.

Example:

 buildpep "his trp trp"
 display
 randomize v_//phi,psi
 selectMinGrad = 100.
 show energy
 display a_//G ball
 display gradient

hydrophobic atoms a_//H

46 2.8.4. Atom selection

aromatic atoms a_//R It selects heavy atoms connected by aromatic bonds and hydrogens attached to
them. Example:

 buildpep "HWYP"
 display skin
 color skin a_//R magenta

tethered atoms

a_//T − Tethered atoms (see also a_//Z − tether destination atoms)

tether−target atoms

a_//Z − Tether destination/target atoms (see also a_//T − tethered atoms)

chiral atoms a_//X[0123RLB] − chiral atoms. Each atom has two bits characterizing its chiral properties. If
the two bits are presented as an integer, the chiral number has the following values:

zero − a non−chiral center•
1 − a left topoisomer (L)•
2 − a right topoisomer (R)•
3 − a racemic mixture of both isomers (B)•

The chiral symbols can be appended. For example a_//X123 means a_//X1 | a_//X2 | a_//X3 .
A short form of this selection, a_//X means all non−chiral atoms and is identical to a_//X123 (or
a_//!X0) Examples: a_m/3:4/X1 , a_//XLR (only left or only right chiral centers, but no racemic
centers), a_//XB (only racemic centers)

by absolute number

a_//absNumber − absolute number (all atoms of all objects are numbered sequentially starting from one)

converting to atom level: The Atom (selection) will convert any selection of higher level to the atom
level.

2.8.5. Free and all variables (v_ and V_)

The v_selection selects free
variables in molecular
objects of ICM−type.

The main types of internal
coordinates , or geometrical
variables, are shown below:

2.8.5. Free and all variables (v_ and V_) 47

The position of each atom branch is determined by the positions of the preceding atoms and three
parameters: dihedral angle, planar angle and bond length. The dihedral angle for the main branch atom is
the torsion angle itself, while for the secondary branch atoms the dihedral angle consists of the torsion
angle plus the phase angle. The default fixation is given in the ICM−residue library and can be changed by
fix and unfix commands. Individual free variables can be rotated interactively with
Ctrl−LeftMB−Atom−Click and drag. A vselection can also be assigned to a named variable:

Example:

 aa = v_//phi,psi # the backbone torsions
 unfix only aa
 unfix only v_/10:15/phi,psi

V_ : selecting among all internal coordinates

Finally, the V_ selection selects both free and fixed variables in molecular objects of ICM−type. You
always need this type of selection in the unfix command. It makes no sense to unfix variables which are
free already.

Here is a list of variable selection specifications:

by name:

v_//name (v_//phi)

by name pattern:

48 2.8.5. Free and all variables (v_ and V_)

v_//namePattern (v_//x*) use asterisk * for any string, and question mark ? for any character. Example:
v_//?vt* selects the 6 " virtual" variables defining rigid body rotation and translation.

torsion variables

v_//TtorsionCodeNum[:torsionCodeNum2] − select by torsion angle code as described in the icm.tot file,
e.g. v_//T11 selects the amide group torsion angle v_//T10:15 selects torsion codes from 10 to 15

angles (planar angle variables)

v_//AangleCodeNum[:angleCodeNum2] − select by planar angle code as described in the icm.bbt file.

bond length variables

v_//BbondCodeNum[:bondCodeNum2] − select by bond length code as described in the icm.bst file.

Psi torsions not shifted to the next residue

v_//PSI − psi torsion angle which belongs to the residue you would expect. The reason for this definition is
that from ICM point of the psi backbone torsion with rotation axis between Ca and C of residue i belongs to
N−atom of the next residue i+1 because N is the first atom this torsion angle moves. E.g.,
v_/3/phi,psi selection will contain the psi from residue 2 and then phi from residue 3. The definition
PSI allows you to use the conventional attribution of angles, e.g. v_/3/phi,PSI is a pair of angles with axes
around Ca atom or residue 3. Important. However, note that if you use selection expressions like

v_//phi,PSI a_/2,3 it will not work (in contrast to a_/2,3/phi,PSI) and you will have to use
the Next function.

Example:

 vPhi = v_/3/phi
 vPsi = v_/3/PSI
BUT !!!
 vPhi = v_//phi* a_/3
 vPsi = v_//PSI Next(a_/3)

methyl group torsions

v_//M − torsion angles rotating Methyl−type terminal hydrogens (excluding polar hydrogen)

polar hydrogen torsions

v_//P − torsion angles rotating Polar hydrogens (e.g. hydroxyl group)

essential (non−hydrogen) torsions:

v_//H − side chain torsion angles rotating "Heavy" atoms

standard set of free torsions (excludes rings)

2.8.5. Free and all variables (v_ and V_) 49

v_//S − all "Standard" free torsion angles as defined in the icm.tot file.

Note that v_//M, v_//P, and v_//H do not overlap, they are mutually exclusive. v_//S contains
v_//M, v_//P, and v_//H as well as other standard torsion angles.

2.8.6. Functions returning selections

Acc − select solvent−accessible atom/residues.•
Atom − convert to the atom selection•
Deletion − residues deleted according to the alignment•
Insertion − residues inserted according the alignment•
Mol − convert to the molecule selection•
Next − extract the next atom•
Obj − convert to the object selection•
Res − convert to the residue selection•
Sphere − expand a selection by r_radius or 5Å.•
Select − selection of atoms according to their coordinates, bfactors, or other properties•

Substituting ICM−shell variables into a selection. You can insert the value of an integer or string
ICM−shell variable anywhere inside your selection by using a $ (dollar sign) prefix. (Note, this is a general
ICM−shell substitution mechanism).

Examples:

 selstr="!w*/14:19" # a string constant
 display a_$selstr

Logical operations. You can also assign selection to a variable, (i.e.: backbone=a_//ca,c,n)
combine several selections using logical operators (example: show a_/3:6 backbone) .

2.8.7. Finding contiguous residue ranges with the String function

To identify contiguous ranges of residues in residue selection, use the String (rs_) function which will
convert your selection into a string expression suitable for entering into a ICM−shell. For example, if we
want to find all prolines surrounded by two other helical residues helical proline plus next and prev.
residues we might do the following:

 read pdb "1dkf"
 rrange = String(a_/"?P?") # the result would look like "a_a.b/5:7,30:32"
 rg = Split(rrange,"/,|") # split into sarray with {"a_a.b","5:7","30:32"}
 # bar (|) helps with multiple chains
 okrg={""}
 k=0 # counter for good residue triplets with HHH and ?P?
 for i=2,Nof(rg)
 if Nof(Split(rg[i],":")) != 2 continue # ignore molecular names
 if Sstructure(a_/$rg[i]) == "HHH" then # compare with ss−pattern
 k = k+1
 okrg[k] = rg[i]
 endif
 endfor
now ok−ranges are stored in okrg string array e.g. {"5:7"}
to use them Sum(okrg,",")

50 2.8.6. Functions returning selections

2.9. Arithmetics
Most of the ICM−objects can be used in arithmetical, logical of comparison expressions. In this section we
describe operations defined in the ICM−shell.

Members of the arithmetic, logical and comparison expressions

Abbreviations: integer (i), real (r), string (s), logical (l), iarray (I), rarray (R),
sarray (S), matrix (M), sequence (seq), profile (prf). alignment (ali), map (m),
graphics object (grob) (g), atom selections (as), selections of internal coordinates, for example torsion
angles, (vs) , and table (T). Table arrays are abbreviated as T.I, T.R and T.S, depending on the type

2.9.1. Assignment

allows you to assign a value to a variable.

Syntax: ICM−shell−variable−name = Value or expression

If the name is new, a new ICM−shell variable is created.

Examples:

 a=1 # create new integer variable a
 b=a*a # create variable b as product a*a
 c=a*Sin(45.) # create new real variable c

2.9.2. Arithmetic operations

The following operations are defined in the ICM−shell:

addition (+) :•

i+i returns i (e.g. 2+3 returns 5),♦

i+r, r+i, r+r return r (e.g. 2+3. returns 5),♦

I+I returns I (e.g. {1,2}+{2,3} returns {3,5}),♦

I+R, R+I, R+R return R (element by element),♦

s+s, s+i, s+r return s (i.e. "what" + "If" returns "whatIf","file"+2 return "file2"),♦

S+S, S+I, S+R return S (the above three operations for each element),♦

M+M returns M of the same dimensions (element by element addition),♦

prf+prf returns prf,♦

grob + R3 return grob with coordinates translated by R3,♦

2.9. Arithmetics 51

map+map, map+i, map+r, i+map, r+map returns map of the same dimensions.♦

subtraction (−) :•

i−i returns i,♦

i−r, r−i, r−r return r,♦

I−I returns I,♦

I−R, R−I, R−R returns R (element by element),♦

M−M returns M of the same dimensions (element by element subtraction),♦

map−map, map−i, map−r, i−map, r−map returns map of the same dimensions.♦

multiplication (*) :•

i*i returns i,♦

i*r, r*i, r*r returns r,♦

I*I returns I (element by element, e.g. {1,2}*{3,4} returns {3,8}),♦

I*R, R*I, R*R return R (element by element). The scalar product is returned by
Sum(R_1,R_2), and the vector product is returned by Vector(R_1,R_2) (two
3D vectors)

♦

M*M returns a matrix product of the two matrices (M[nk]*M[km]==>M[nm]),♦

M*R, R*M returns R,♦

prf*prf returns prf,♦

map*r, map*i, i*map, r*map, map*map return map (operations on each element),♦

grob*r, grob*i, r*grob, i*grob return grob with transformed coordinates.♦

division (/) :•

i/i returns i (integer division, e.g. 3/4 returns 0),♦

i/r, r/i, r/r return r (real division, e.g. 3/4. returns 0.75),♦

I/I returns I (integer division of elements),♦

I/R, R/I, R/R return R (real division of elements),♦

map/r, map/i return map (operations on each element),♦

52 2.9. Arithmetics

grob/r, grob/i return grob with transformed coordinates.♦

concatenation, appending into array (//) :•

i//i returns I[2] (e.g. 2//3 returns {2,3}),♦

r//r returns R[2] (e.g. 2.2//3.3 returns {2.2,3.3}),♦

s//s returns S[2] (e.g. "a"//"b" returns {"a","b"}),♦

I//i returns I[n+1] extended by the integer (e.g. {1,2}//3 returns {1,2,3}),♦

I//I returns I[n+m] (e.g. {1,2}//{3,4} returns {1,2,3,4}),♦

R//r returns R[n+1] extended by the real (e.g. {1.,2.}//3. returns {1.,2.,3.}),♦

R//R returns R[n+m] (e.g. {1.,2.}//{3.,4.} returns {1.,2.,3.,4.}),♦

S//s returns S[n+1] extended by the string (e.g. {"a","b"}//"c" returns
{"a","b","c"}),

♦

S//S returns Sn+m (e.g. {"a","b"}//{"c","d"} returns {"a","b","c","d"}
),

♦

M[n,m]//M[n,k] returns M[n,m+k] (matrix concatenation row by row),♦

seq//seq returns concatenated seq (similar to s+s);♦

prf//prf returns concatenated prf;♦

ali1//ali2 returns projected alignment. Projected concatenation of two alignments
sharing the same sequence. The shared sequence serves as a ruler for merging the two
alignments. The alignments can be of arbitrary size and number of sequences. In the
simplest case of three sequences a,b, c and alignments ab and bc, the operation
ab//bc will create an alignment of three sequences a b c . The function
Align(ab//bc,{1,3}) will extract the, so called, projected alignment of a and c
through b. Example:

♦

 ali1 // ali2 returns Projected ali.
a VYRWA−W b FK−WG−−KW a VYR−WA−−−W
b −FKWGKW c AKGWAPGKW b −FK−WG−−KW
 c −AKGWAPGKW

Additionally, character arrays (strings) can be projected from sequence to alignment and back with the
String (..) function and numerical residue properties can be projected from sequence via alignment with
the Rarray (..) function.

2.9. Arithmetics 53

2.9.3. Logical operations

Logical operations with table arrays are described separately (see table in Glossary).

and (&):•

l & l returns logical, e.g. yes no returns no♦
as & as returns selection as with objects molecules residues present in both initial
selections, (e.g. a_2//ca a_//T returns the tethered Ca atoms of the 2nd molecule),

♦

as & s, multiplication by a string mask, e.g. a_//ca "x−" returns the odd Ca atoms.♦
as & seq returns residue subselection of as with the matching sequence, e.g. a_*.
1crn_m returns residues matching the crambin sequence.

♦

as & R returns atom subselection with coordinates within a six dimensional box array R
(see also function Box) , e.g.

♦

 read pdb "1crn"
 display ribbon
 color ribbon green Res(a_//* {0.,0.,0.,9.,9.,9.})

More types of selections are returned by the Select, Sphere, and Acc functions.
vs & vs returns selection vs of internal coordinates present in both initial selections, (do
not forget that v_ are free variables, and V_ are all variables);

♦

vs & as returns subset of initial variables vs which is related to selection as, e.g.
side−chain torsion angles in the sphere around loop 14:18 can be selected as follows:

♦

 V_//xi* Sphere(a_/14:18)

multiplication comments on logical multiplication of two selections below.

or (|) :•

l|l returns l (e.g. yes|no returns yes),♦
as|as returns as with members of both selections (e.g. a_/4:6 | a_//ca)♦
vs|vs returns vs with variables from both selections (e.g. v_//phi,psi | v_/3)♦
vs|as returns vs is equivalent to vs | (V_//* as)♦

not (!) :•

!l returns logical negation to the argument (e.g. !yes returns no),♦
!as returns aselection of the same level with members not included in the selection
argument (e.g. !a_//ca)

♦

!vs returns vselection with variables not included in the selection argument (e.g. !
v_//phi,psi)

♦

Negation can also be applied to each section between slashes of as_ or vs_. E.g. a_//!h* (all
non−hydrogens).

54 2.9.3. Logical operations

2.9.4. Comparison operators

Most of them are true comparison operators and return logicalyes or no. In comparisons of table
arrays or string arrays with strings, the comparison returns a subtable or subarray, respectively. Comparison
operations with the table arrays are described separately (see table in Glossary).

equal (==):•

i==i, i==r, r==i, r==r, s==s, I==I, R==R, S==S, M==M, as==as, vs==vs, exact
equality of two objects;

♦

p==i, p==s return l. Test the value of an ICM−shell preference . Example:♦

 if(wireStyle==1) print "int. or string is ok" # or
 if(wireStyle=="chemistry") print "double bonds"

S==sreturns S, a sub−sarray of elements exactly matching s (e.g.
{"aa","b","aa","c"}=="aa" returns {"aa","aa"}, see also S ~ s),

♦

not equal (!=) :•

i != i, i != r, r != i, r != r, s != s, I != I, R != R, S != S, M != M, as != as, vs != vs
inequality of two objects;

♦

p!=i, p!=s return l. Test an ICM−shell preference . Example:♦

 if(wireStyle != 2) print "No chemistry, sorry"

S!=s returns S, a sub−sarray of elements not matching s (e.g.
{"aa","b","aa","c"}!="aa" returns {"b","c"}, see also S !~ s).

♦

greater than (>) :•

i > i, i > r, r > i, r > r♦
s > s lexicographic comparison for sorting ("apple" <"orange")♦

less than (<) :•

i < i, i < r, r < i, r < r, s < s♦

greater or equal (>=) :•

i >= i, i >= r, r >= i, r >= r, s >= s♦

less or equal (<=) :•

i <= i, i <= r, r <= i, r <= r, s <= s♦

fuzzy−equality, inclusion or pattern matching (~):•

s~sreturns logicalyes if string matches a pattern.♦

2.9.4. Comparison operators 55

S~sreturns S of sarray elements matching the pattern s. This comparison is similar to the
UNIX grep command; it returns a subarray of lines matching the pattern rather than yes
or no. Do not forget to add flanking asterisks (*) if the pattern occurs in the middle of a
string. Example:

♦

 show {"abc","bcd","ee"} ~ "*[be]?"
 # Another example
 read database s_icmhome + "foldbank.db"
 # sarray SE contains sequences
 CxCseqs = SE ~ "*C?C*" # all strings containing C?C pattern

fuzzy−not−equal (!~) :•

s !~ s returns logicalyes if string does not match a pattern s.♦
S !~ s returns S of sarray elements not matching the pattern s. S!~s is similar to the UNIX
grep −v command; it returns a subarray of lines not matching the pattern.

♦

2.9.5. Advanced operations and some comments

Integers are automatically converted to reals in binary operations containing both integers and
reals. However, in expressions like integer1 / integer2 (the same for iarrays) they are not
converted into reals and the result will be different from what you might expect. For example,
3/4 returns 0, but 3/4. returns 0.75.

1.

In s+i, s+r, S+I, S+R expression numbers are automatically converted into strings. In the s+s
expression the second string is simply appended to the first one.

2.

Examples:

 show "one " + "two" # result: "one two"
 file = "aa"+ 4 # result: "aa4"
 show {"a","bb"} + {1.2,3.2} # result: {"a1.2","bb3.2"}

Selection arithmetics. The level of the expression as_1 as_2 as_3 ... or as_1 | as_2 | ... (the same
with vs_) is defined by the lowest level selection in the chain (atoms − the lowest < residues <
molecules < objects). For example, in an expression a_/10 | a_2/15/cg the second selection is an
atom−level−selection and the first one is a residue−level one. The result is the atom selection of
all atoms of residue 10 plus Cg atom from residue 15.

3.

Selection logically multiplied by string, array, or mask4.

Multiplication of a selection to a string−mask or sequence. The resultant selection inherits level of
the first argument. The mask is applied periodically to switch off some of the selected elements.
For example mask "0001111" will switch off the first three elements in every seven. The 'switch
off' characters may be the following: ' ' (space),'−','0'. Example masks to switch off the third
element of five: "xx xx", "11011", "++−++" .

Operations upon the sequence will select only the fragment with the specified sequence from the
original selection. Multiplication by an array of 6 numbers {x,y,z,X,Y,Z} selects atoms within the
specified box.

56 2.9.5. Advanced operations and some comments

Example:

 read object "crn" # load crambin object
 rs_ = a_/11:15 # define residue selection rs_
 rs_ = rs_ "xx xx" # switch off the third element (res. 13)
 display cpk a_//* {1. 0. 1. 5. 7. 6.} " # a box

Transitional (or projected) alignment5.

Projected concatenation of two alignments sharing the same sequence. If two−sequence
alignments share the same sequence, they may be merged with the shared sequence as a ruler. In
the simplest case of three sequences a, b, c and alignments ab and bc, the operation ab//bc will
create an alignment of three sequences a b c. The function Align(ab//bc,{1,3}) will
extract the, so called, projected alignment of a and c through b.

Examples of expressions:

 i = i1/i2 + (i3−r4)*2.5/Pi

 l_results=(l_beer l_wine !l_snacks) | l_vodka
 if (l_results n_glasses >= 4) print "Hangover.."

 for i=1,215 # list streets of Manhattan north from Houston
 print "Street " + i
 endfor

 prices = { 25. 6. 12.6 }
 tips = { 4. 1. 2. }
 print prices + tips # the result is { 29. 7. 14.6 }

2.10. Flow control
ICM contains a complete set of control statements to allow looping, jumping and conditional branching.

2.10.1. Loops

Two types of loops are allowed, namely for−loop and while−loop.

For−loop

 for <i_index> = <i_from> , <i_to> [, <i_increment>]
 ...
 ...
 endfor

While−loop

 while(<logical_expression>)
 ...
 ...
 endwhile

Examples:

2.10. Flow control 57

 for i = 1, 9
 print "ICM−shell proudly announces that i=" i
 endfor

 for i = 1, 4
 print "ICM−shell proudly announces that i=" i
 for j = 1, 3
 print "ICM−shell proudly announces that nesting is possible and j=" j
 endfor
 endfor

 read object "crn"
 for i = 1, Nof(a_/*) # Nof(a_/*) means 'the number of residues'
 print Label(a_/$i)
 endfor

 i = −2
 while (i != 4)
 i = i+1
 print i
 endwhile

 while(yes)
 print "endless loop, please wait 8−)"
 endwhile

Any number of nested loops may be used.

2.10.2. Conditional branching

Several types of conditional statements are allowed in the ICM−shell.

if

 if (<logical_expression>) <command>

if−then−endif

 if (<logical_expression>) then
 ...
 ...
 endif

if−then−elseif−..else−endif

 if(<logical_expression>) then
 ...
 else
 ...
 endif

or

 if (<logical_expression>) then
 ...
 elseif (<logical_expression>) then

58 2.10.2. Conditional branching

 ...
 elseif (<logical_expression>) then
 ...
 else
 ...
 endif

Note: end if or else if (instead of endif or elseif) are not accepted by ICM−shell.

Examples:

 JohnnySaid = "The gloves didn't fit"
 if (JohnnySaid == "The gloves didn't fit") print "You must acquit"
#
 grade = "bad"
 if (grade == "excellent") then
 print "It's great!"
 elseif (grade == "good") then
 print "It's good!"
 elseif (grade == "bad") then
 print "It's not so bad!" # do not be harsh on your kids
 endif

2.10.3. Jumps

Three types of jump controls are possible, namely commands break, continue and goto. break interrupts
the loop, continue skips commands until the nearest endfor or endwhile and continues looping, and goto
jumps to any point below.

break

 <for−loop> or <while−loop>
 ...
 if (<logical expression>) break
 ...
 <end of loop>

continue

 <for−loop> or <while−loop>
 ...
 if (<logical expression>) continue
 ...
 <end of loop>

goto

 ...
 if (<logical expression>) goto <label>
 ...
 ...
 <label>:
 ...

Examples:

2.10.3. Jumps 59

 for i = 1, 6
 print "currently i=", i, "and it will be increased at the next step"
 if (i == 3) then
 print "... but at this point we should stop it, sorry..."
 break
 endif
 endfor
 print "end of the loop demonstrating *break*, bye"

 for i = 1, 6
 if (i == 3) then
 print "... let us skip over step 3 and continue looping"
 continue
 endif
 print "currently i=", i, "and it will be increased at the next step"
 endfor
 print "end of the loop demonstrating *continue*, bye"

 for i = 1, 5
 if (i == 3) then
 print "... but at this point we decided to skip 3−rd step, sorry..."
 goto A
 endif
 print "currently i=", i, "and it will be increased at the next step"
A: print " "
 endfor
 print "end of the loop demonstrating 'goto', bye"

Note: go to (instead of goto) is not accepted by the ICM−shell. Any combination of alphanumeric
characters beginning with a letter (upper or lower case) may serve as a label. Also keep in mind that goto
can jump only forward; the backward goto is not allowed.

2.11. ICM molecular objects
An ICM molecular object represents one or several molecules which can coexist in physical space, so that
the energy of the molecular system can be calculated. For example, if you have two homologous molecules
superimposed, multiple conformations of the same structure such as NMR structure determinations or
alternative positions of a side chain, they must belong to different objects. The number of objects that may
be loaded in ICM is limited only by the available computer memory. Objects may be of several types (see
also: the Type (~os_ 2) function):

"ICM" − the only complete type which is good for everything including energy calculations•

"X−Ray" − incomplete (stripped) object created by read pdb. The structure is determined by
X−ray crystallography. Good for graphics and geometrical analysis

•

"NMR" − incomplete (stripped) object, structure determined from NMR data, similar to the
"X−ray" type above.

•

"Model" − incomplete (stripped) object, theoretical model also similar to the "X−ray" type
above.

•

"Ca−trace" − incomplete (stripped) object, only alpha−carbon atoms.•

60 2.11. ICM molecular objects

"Simplified" − simplified representation.•

ICM−molecular objects are created from residues and molecules described in the ICM residue library. Its
content (sequences and names of molecules) is specified in an ICM sequence file (see also IcmSequence
function). An ICM−object can also be created from a non−ICM object (e.g. of X−Ray type) with the
convert command.

2.12. Energy and Penalty Terms
The energy function calculated for any conformation of an ICM molecular object consists of individual
terms described in this section. For most of them ICM calculates analytical derivatives which use gradient
minimization. The terms can be switched on and off with the set terms [only] "xx,yy,.."
command, e.g.

 set terms "el" # activate electrostatic term
 set terms only "vw,14" # reactivate only "vw" and "14" terms

van der Waals ("vw")

nonbonded interatomic pairwise interactions (1−5 and further, i.e. two atoms separated by more than 3
covalent bonds). If not for tests, this terms should always be used with the "14" energy term which
considers 1−4 interactions. The ECEPP/3 force field is used. Parameters are specified in the icm.vwt file
and are taken from Momany et al., 1975. Both the usual 6−12 term and a soft van der Waals terms are
available. See also: vwMethod, vwSoftMaxEnergy .

1−4 van der Waals ("14")

A part of the total van der Waals energy for atoms separated by exactly three covalent bonds. Repulsion for
1−4 pairs is cut in half according to the ECEPP energy function. This term is complementary to the "vw"
term and is usually used with the "vw" energy term.

Hydrogen bonding energy ("hb")

A different form of the "vw" term (10−12 instead of 6−12 for "vw") for hydrogen bonding donors and
acceptors as specified in icm.cod and icm.hbt files. Parameters are taken from Momany et al., 1975.
The electrostatic contribution to a given hydrogen bond is not included in "hb" and is calculated as part of
the electrostatic energy.

The cutoff distance for hydrogen bonding interactions is controlled by the hbCutoff parameter.

Torsion energy ("to")

dihedral angle deformation energy K*(1+−cos(n*Phi)). The parameters K, sign and n are given in
icm.tot file. Parameters are taken from Momany et al., 1975,

Electrostatic energy ("el") This term is calculated in four different ways depending on the value of
electroMethod preference. If electroMethod="boundary element" the solvation component
is in r_out and the envelope surface area in r_2out .

2.12. Energy and Penalty Terms 61

A special case: if the van der Waals energy is calculated with the vwMethod="soft" , the electrostatic
energy will be automatically buffered to avoid singularities. You will see that the electrostatic term "el"
changes upon switching from vwMethod=1 to vwMethod=2 . The buffering artifically increases the
distance between two charged atoms to avoid having negative energy values better than the van der Waals
repulsion and, therefore, will prevents collapse of oppositely charged atoms.

A simple electrostatic energy (electroMethod="Coulomb"). The Coulomb law is used to
evaluate the energy. The dielectric constant is constant.

1.

the distance dependent electrostatics (electroMethod="distance dependent" ;
currentDielConst = dielConst * DISTANCEij) Advantage: this term has analytical derivatives
and can be used in local energy minization.

2.

A better electrostatic free energy (electroMethod="MIMEL"), uses the Modified
IMage ELectrostatics approximation (Abagyan and Totrov, 1994) to evaluate both the
internal Coulombic energy and electrostatic polarization free energy. Disadvantage: this term has
no analytical derivatives and has no effect on local energy minimization. It can be a part of the
energy function in global optimization such as montecarlo or ssearch . The solvation
component is stored separately in r_out . REBEL provides a more accurate evaluation of the
electrostatic solvation energy. For small molecules, use mimelDepth = 0.3 (default 0.5).

3.

The most accurate electrostatic free energy: (electroMethod="boundary element")
which uses so called boundary element method to solve the Poisson equation to calculated a
electrostatic free energy of a protein surrounded by a continuous aqueous solution. In addition to
the total energy, one can extract the two components: the electrostatic solvation energy from
r_out , and the Coulomb energy can be calculated as a difference between the total electrostatic
energy and r_out.

4.

Surface term ("sf"). Map m_ga

Surface energy is based on atomic solvent−accessible surfaces. Depending on the surfaceMethod
preference this term is either a surface tension which is evaluated as a product of the total solvent
accessible area by the surfaceTension parameter (currently 0.012 kcal/mole/A2) or is a product of
atomic accessibilities by the atomic energy density parameters similar to those proposed by Wesson and
Eisenberg (1992) (check icm.hdt file). The "sf" term is evaluated at each Monte Carlo or systematic
search step, but not during local minimization (we do not calculate analytical energy derivatives).

The atomic accessible surfaces are calculated using a faster modification of the Shrake and Rupley, (1973)
algorithm. This algorithm analyzes all atom neighbors for each atom and Sometimes a part of molecular
system is represented with the grid energy terms ("gc","gh") rather than by explicit atoms. In this case
the atomic accessibilities need to be corrected.

This correction can be introduced with a special map, called m_ga which stores implicit neighbor
information from the parts represented with the grid potentials. The m_ga map is calculated with the make
map potential "sf" .. command (see the make map potential command), along with other
grid maps.

Entropic free energy term (conformational entropy of side−chains) ("en")

62 2.12. Energy and Penalty Terms

Configurational entropy of side−chains is evaluated on the basis of their maximal possible entropy which is
read from the residue library. Note that this term is calculated at room temperature (300 K), so that the
ICM−shell variable temperature does not affect the entropic contribution (see Abagyan and Totrov,
1994 for values) and solvent−accessible area of a side−chain.

Phase angle bending term ("af")

Harmonic term U*(f1−f0)2. Parameters U and f0 are taken from icm.bbt file. Sometimes referred to as
improper torsion.

Bond stretching energy ("bs")

Harmonic term U*(b1−b0)2. Parameters U and b0 taken from icm.bst file.

Distance restraints ("cn") a penalty term restraining two atoms to a certain distance range. The shape of
the potential is soft square well with lower and upper bounds. This term may be used to determine
three−dimensional structure from a set of interproton distances (NOEs) resulting from NMR experiments.
There are local and global distance restraints (drestraints). Local restraints become weaker and vanish as
the distance grows (similar to the van der Waals forces), while global restraints become stronger as you
deviate further from the required distance range.

See also files: icm.cnt and icm.cn .

Disulfide bonds and covalent bridges ("ss")

a penalty term establishing the additional (extra−tree) covalent bridges. Currently there are three types of
covalent bridges: disulfide bonds, peptide bonds and thioester bonds. In each case several distance
constraints are imposed to enforce the correct covalent geometry. The constraints for the disulfide bonds
include Sg1−Sg2, Sg1−Cb2, Sg2−Cb1, Cb1−Cb2 atom pairs. The extra CO−NH bond involves C−N, C−H,
O−N and O−H constraints. Similarly, CO−SH bond involves C−S, C−H, O−C, O−H, C−C and O−H
constraints. The functional form of this penalty term is identical to local distance restraints. The disulfide
SS bonds are automatically formed when you load the object. The disulfide bonds may be LOCAL, i.e.
when two sulfur atoms feel each other ONLY at small distances. See also: icm.cnt, disulfide bond,
make disulfide bond, make peptide bond, delete disulfide bond, delete
peptide bond.

Tethers ("tz")

Quadratic restraint E= tzWeight *Distance2 between atoms in the current object and static atoms in a
different object (as opposed to distance restraints "cn" between atoms in the same object). The target value
of the distance is zero. See also: read pdb, set tether, and tether .

Multidimensional variable restraints ("rs")

Energy associated with multidimensional ellipsoidal attraction zones (in which dimension they look like
soft square wells with flat bottom) in a hyperspace of internal variables (e.g. preferred side−chain or
backbone torsion angles). Vrestraints are defined in icm.rst and icm.rs files and are earmarked to be
used in energy calculations (as opposed as for the BPMC) with the rse field (as opposed to rs). Use set
vrestraint energy command to assign vrestraints. Described in Abagyan, Totrov and Kuznetsov,
1994 (pp. 494,495).

2.12. Energy and Penalty Terms 63

Density correlation ("dc")

Penalty function associated with correlation between the static map (the current map is used by default)
and a virtual map generated from atomic positions on the fly. The densityCorrMethod preference
allows you to choose between several different functional forms of this term:

DC = 1 − Sum(Di −<D>)(Ai −<A>)/(N * Rmsd(D)*Rmsd(A))

and
DC = 1 − Sum(Di −<D>)(Ai −<A>)/ N

where Di is the map value, and Ai is the density generated dynamically from atomic positions.

The term has analytical derivatives with respect to the internal coordinates and can be efficiently locally
minimized. By adding this term one can combine energy minimization with the real space fitting into
electron density.

A more detailed description can be found in the densityCorrMethod section.

Crystallographic correlation between Fobs and Fcalc ("xr")

van der Waals grid potential for carbon probe ("gc")

van der Waals interaction between explicit non−hydrogen atoms of an ICM object and a van der Waals
potential calculated on the grid. To calculate this term one needs an ICM object and map named m_gc
which is calculated with make map potential "gc" .. . The calculation also counts the number of
atoms in the area with Evw>0.8 * GRID.maxVw and stores this number in r_2out .

van der Waals grid potential for hydrogen probe ("gh")

hydrophobic potential ("gs")

electrostatic grid potential ("ge")

Calculates the electrostatic potential contribution from the atoms specified in the make map
potential as_ command. The contributions are calculated by the Coulomb formula with distance
dependent−dielectric constant (4*Dij)

hydrogen bonding grid potential ("gb")

Potential of mean force ("mf" and pmf)

Note that term name is "mf", while icm keyword for some commands is pmf

The mean−force "mf" potential was designed as a generic energy term which is calculated for pairs of
atoms according to their pmf−types and interatomic distances. The definitions of the pmf−types and
energy−distance dependencies for each contributing pair of atom types can be loaded from a .pmf file.

The list of pmf−interacting pairs is calculated dynamically and only the pairs at smaller that vwCutoff
threshold distance are considered. Note: It is important that vwCutoff = 9.5 is used in binding score

64 2.12. Energy and Penalty Terms

evaluation.

There is a preference called mfMethod which controls if the atoms in the same molecule can interract. By
default only intermolecular pairs of atoms are considered (mfMethod = 1). Switching mfMethod to 2
(or "all") allows to include all atomic pairs regardless of which molecule they belong to in the "mf"
term calculation.

Since this term is quite general one can prepare different pmf−parameter files for solving different
problems. The default file icm.pmf has been derived from receptor−ligand complexes and allows
pmf−scoring of docked ligands. Another file: ident.pmf was designed to specify attraction of the same
atom types and allows to solve a problem of chemical superposition.

The relative weight of the pmf−term is controlled by the mfWeight parameter.

An example in which we evaluate a binding score:

read object "rec"
read object "anwers1"
move a_2. a_1.
vwCutoff = 9.5
mfMethod = 1
show energy "mf" a_1 a_2
e = Energy("mf")

An example in which flexible superposition of two molecules is performed:

 buildpep "his ; gly trp" # two molecules
 read pmf "ident.pmf"
 fix v_//omg
 display
 montecarlo "mf"

See also: mfMethod , pmf−file, mfWeight .

2.13. Integer shell parameters.
Here is the alphabetically sorted dump of integer parameters defined in the ICM−shell. These parameters
are used by various commands and functions and can be changed interactively, e.g.

 mncallsMC= 10000
 montecarlo

ICM−shell integer variables are the following.

2.13.1. autoSavePeriod

In the course of a montecarlo or ssearch procedures which may run for days, the current stack of
conformations which accumulates the best energy representatives of different conformational areas is saved
periodically to allow access to intermediate results of the simulations. The above parameter defines the
number of stack changes after which it is saved to a disk file. Set autoSavePeriod to 1 if you want to be
conservative.

2.13. Integer shell parameters. 65

If you set autoSavePeriod to 0 , the stack will not be saved at all.

Default (10).

2.13.2. defSymGroup

defines a crystal space group number. To find the group name and symmetry operations use the
Symgroup function. Default (0) means that the group is not defined.

Examples:

 defSymGroup = 19 # direct assignment. You know group 19, don't you?

 defSymGroup = Symgroup("P212121") # Oh, you do not! ..

 defSymGroup = Symgroup("P61 2 2") # This one you do not remember for sure

2.13.3. i_out

an integer where some commands or functions store their integer output:

Rmsd saves the number of aligned equivalent points;•
Srmsd saves the number of aligned equivalent points;•
convert saves the number of heavy atoms missing from the pdb−template (e.g. atoms of the
flexible lys side−chain are not given in the pdb−file).

•

superimpose saves number of aligned equivalent points;•
set tether saves the number of tethers imposed;•
set drestraint saves the number of distance restraints imposed;•
set vrestraint saves the number of variable restraints imposed;•
make disulfide bond saves the number of imposed disulfide bonds;•
minimize saves the number of function evaluations;•
montecarlo saves the total number of function evaluations during minimization;•
show area skin saves the total number of triangles in the Connolly construction.•

Default (0).

2.13.4. iProc

the current of process number filled by the fork command. This number is zero for the parent process.

Default (0).

2.13.5. maxColorPotential

local electrostatic potential in kcal/e.u.charge units at which the surface element is colored by extreme red
or extreme blue. All higher values will have the same color. This absolute scaling is convenient to develop
a feeling of electrostatic properties of molecular surfaces.

See also: dsRebel , Potential , make grob potential .

66 2.13.2. defSymGroup

Example:

 build string "se glu arg" # dipeptide
 maxColorPotential = 3.
 dsRebel a_ yes
 maxColorPotential = 6.
 dsRebel a_ yes

2.13.6. maxMemory

maximal memory size requested by the program in megabytes. It is used to read blocks of databases in the
search commands. Make sure that this parameter is reasonable. If your maxMemory is larger than what
your computer actually has, expect serious delays. However, usually computers can handle it by swapping
memory onto disk, which can be slow.

Recommendation: divide your available RAM by a factor from 2 to 4. Current memory resources are
reported by the chkdsk command on a PC or by the top command on a UNIX workstation. Do not forget
that ICM itself will additionally allocate some BufferSpace specified in the icm.cfg file.

Default (10.0) Mb

2.13.7. minTetherWindow

maximal number of preceding torsions strictly speaking rigid bodies which are locally minimized during
the chain growth procedure (the minimize tether command) to create an ICM−object with ideal
geometry on the basis of a set of arbitrary atom coordinates (ofter referred to as the regularization
procedure).

Default (30).

2.13.8. mnSolutions

this parameter limits the number of hits retained by the program after a search. It is used in several
icm−search functions:

find molecule − chemical substurcture search•
find pattern − find sequence pattern in sequences of mol. objects.•
find database − advanced sequence similarity search•
align ms_1 ms_2 − alternatives solutions for 3D superposition•
find profile − find protein Prosite profiles in a sequence•
find prosite − find protein Prosite patterns in a sequence•

Default (100).

2.13.9. mncalls

maximal number of function calls in local minimization performed in minimize, and as a part of one step
of a multistep procedure in montecarlo, ssearch, convert . The number of function evaluations
required to find the local minimum varies widely depending on the terms used (i.e. the "tz" term makes
minimization very slow, if structure is far from its target). If the minimum is found according to the

2.13.6. maxMemory 67

tolGrad criterion, the procedure will be terminated anyway.

Default (100).

See also: minimizeMethod , tolGrad , drop .

2.13.10. mncallsMC

maximal number of function calls in the montecarlo command. Since the procedure performs random
steps accompanied by local minimization (controlled by the mncalls parameter), the number of function
evaluations for the whole procedure can be roughly evaluated as a product of mncalls and the number of
MC iterations. mncallsMC should be sufficiently large to ensure convergence of the global optimization
procedure and may range from 10,000 for a single side−chain, 100,000 for a 3−4 residue peptide to several
million calls for 15−20 residue peptide or a large protein loop.

Default (1000). The default value is small to minimize damage of the unintentional calls of the
montecarlo command.

See also: montecarlo , mncalls .

2.13.11. mnconf

maximal number of conformations in the conformational stack . The stack stops growing after this
number is achieved and starts replacing representative conformations with higher energy values by new
conformations with superior energies, if the latter are found.

Default (50)

See also: montecarlo , ssearch .

2.13.12. mnhighEnergy

maximal number of consecutive accepted trial conformations which do not change the conformational
stack because their energies are higher than energies of the stack conformations. Therefore, the
montecarlo procedure is walking in the high energy area and is probably wasting its time. When this
threshold is reached the procedure acts according to the highEnergyAction parameter.

Default (50)

See also: mnvisits , mnreject , stack .

2.13.13. mnreject

maximal number of consecutive rejections (due to the Metropolis criterion) of trial conformations
generated by the montecarlo procedure. When this threshold is reached the procedure acts according to
the rejectAction parameter (which usually increases the simulation temperature).

Default (10)

68 2.13.10. mncallsMC

See also: mnvisits , mnhighEnergy .

2.13.14. mnvisits

maximal number of visits to the same slot of the conformational stack in the course of a montecarlo
procedure. When this threshold is reached the MC procedure acts according to the visitsAction
parameter. A visit is an event when a newly generated conformation finds a slot with a similar
conformation in it, but the stack conformation is not replaced by the new one because it has a better energy.

The optimal mnvisits parameter grows with the size of the problem (it may be several hundred for a 15−20
residue peptide).

Default (50)

See also: mnreject , mnhighEnergy .

2.13.15. nLocalDeformVar

Number of backbone torsion angle variables (excluding omegas) which are changed simultaneously to
provide local deformation. This parameter can be less than the actual number of backbone torsion angles in
the loop. In other words it is OK if the loop contains more than nLocalDeformVar variables, however, if it
contains less than nLocalDeformVar variables, it will not be deformed.

Default (10), minimal number (8).

See also: montecarlo local.

2.13.16. nSsearchStep

number of steps per variable for ssearch . Normally the whole [−180., 180.] range is divided into
nSsearchStep parts. In the local mode (i.e. the search is performed around a particular conformation)
the total search range around each variable is defined by the ssearchStep parameter (30. deg. by
default)

Default (3) .

2.13.17. nProc

Number of processors used by the parallel version of the program.

Default (1). Range [1: maximum_number_of_processors_available].

2.13.18. randomSeed

is a seed used by the random−number generator in the montecarlo , randomize , Random function.
Helpful if you need to reproduce exactly a calculation which uses random number(s). If the variable has its
zero default value, the random function is seeded from the current time. Otherwise, if you explicitly
redefine it before, let us say, a montecarlo run, it will use the specified number.

2.13.14. mnvisits 69

Default (0).

Examples:

 randomSeed=2493059372 # this number you took from the previous run
 montecarlo # simulation will reproduce the previous one

2.13.19. segMinLength

secondary structure segments shorter than this threshold will be ignored when a simplified quantitative
representation of the polypeptide fold is constructed using the assign sstructure segment
command.

Default (3).

2.13.20. sequenceBlock

length of the contiguous sequence block in sequence output.

Default (10).

See also: sequenceLine .

2.13.21. sequenceLine

maximum sequence length printed on each line. Usually sequence is additionally subdivided into smaller
blocks.

The same parameter also controls the size of alignment block as saved by the write alignment
command.

Example:

 read alignment s_icmhome+"sh3"
 sequenceLine=1000
 write sh3 "aaa"

Default (60). Values >= 1 .

See also: sequenceBlock

2.13.22. surfaceAccuracy

accuracy level used in surface calculations (not graphics). By reducing the level, you can speed up the
accessibility calculation in the show area surface command. The corresponding number of dots per
sphere is the following:

Level 1 (89 dots)•
Level 2 (144 dots)•
Level 3 (233 dots)•

70 2.13.19. segMinLength

Level 4 (377 dots)•
Level 5 (610 dots)•

Default (3)

See also: show area surface, "sf" energy term .

2.13.23. windowSize

number of elements used for sliding window averaging by the Smooth function.

Default (7).

2.14. Real shell variables
ICM−shell real variables are the following.

2.14.1. addBfactor

additional B−factor which may be added to the current atomic B−values to create a smoother electron
density map from a set of atoms. See also: make map

Default (0.0)

2.14.2. alignMinCoverage

a threshold for the ratio of the aligned residues to the shorter sequence length. All alignments shorter than
alignMinCoverage*minLength will not be reported by find database command.

The default value is 0.5. However the parameter can be tuned with the respect to the database and the
nature of the query sequence.

Search against the protein domain sequence database: use 0.5 or higher•
Search a multidomain sequence against long multidomain sequences: use 0.1 or lower•

See also: 'alignMinMethod , find database .

Default (0.5)

2.14.3. alignOldStatWeight

a parameter influencing the statistical evaluation of sequence comparison significance in the find
database command.

Statistical significance can be evaluated in two ways: first, a priori, i.e. before the database search and
based only on the individual score of an alignment of interest and its theoretical distribution, or, second, a
posteriori, i.e. on the fly and on the basis of all empirically observed scores of other alignments in the
course of the database search.

2.13.23. windowSize 71

The parameter ranges from 0. to 1. and sets how two different statistical criteria of alignment significance,
a precomputed (the old one) and a run−time, should be mixed. Zero corresponds to only the run−time
measure (the new way) in which the significance is evaluated on the run−time statistics of the observed
alignment scores, while one corresponds to the statistics evaluated before the search using the formula from
Abagyan and Batalov, 1997 . If the database is small then the run−time score statistics may be incomplete
and alignOldStatWeight closer to 1. is a better choice. On the other hand, the run−time statistics has
several principal advantages:

Precomputed statistics (1.) based on
individual alignment score and length

Run−time statistics (0.) based on distribution of
scores

works always relies on database diversity

is trained only in 64 condition sets and
ZEGA alignment

automatically adjusts to any set of conditions, e.g.
gapFunction, or alignMinCoverage

does not reflect compositional bias automatically reflects all seq. properties

does not reflect extra terms to the score accounts for solvent accessibility correction (see
accFunction)

The run−time statistics will fit the scores to an optimized empirical function. This function avoids the
problems of the normal distribution, and certain pitfalls of a popular EVD function. The resulting P−value
is a reliable estimate of the false positive rate if the database is sufficiently diverse, i.e. the fraction of
sequences similar to the query is small. For example, searching a tyrosine kinase through a database of
tyrosine kinases will yield incorrectly low pP−values (pP = −Log(P)).

Reliable expect−values: P * Nof(sequences) <= 0.1 .

Example:

Swissprot has N=89,000 sequences. LogN = 4.95•
Reliable pP = LogN + 3, twilight pP is from LogN + 1. to LogN + 3.•

2.14.4. axisLength

length (in Angstroms) of the X,Y,Z axes of the coordinate frame. The axes can be displayed by the
display origin or display virtual command. The axes are marked X Y Z . Example:

 buildpep "ala ala his his"
 display
 axisLength=10.
 display origin

Default (1.5)

72 2.14.4. axisLength

2.14.5. cnWeight

weighting factor for the interatomic distance restraints penalty term. See also: tzMethod ,
drestraint and Bfactor .

Default (1.0)

2.14.6. dcWeight

weighting factor for the density correlation term "dc".

Default (1.0)

2.14.7. densityCutoff

The neglected fraction of the total atomic electron density in the course of calculation of the grid electron
density from atomic positions. Atomic density distribution is approximated by two gaussian functions
which need to be truncated for computational efficiency. See also: make map command and related
operations with the electron density, penalty term "dc"

Default (0.1)

2.14.8. dielConst

dielectric constant of the solute used in Coulomb, distance−dependent, MIMEL, and boundary element
electrostatic calculations. If electroMethod="distance dependent" the actual dielectric
constant is a product of dielConst and a distance from a change.

See also: dielConstExtern, term "el"

Default (4.0)

2.14.9. dielConstExtern

dielectric constant of the solvent exterior used in MIMEL and boundary element electrostatic
calculations.

Default (78.5)

2.14.10. drop

expected initial function drop in local minimization. The parameter is used to evaluate initial step size.
If your function is already very close to its minimum, it is a good idea to reduce the parameter, otherwise
the procedure will start with an inappropriately large step.

Default (10.0)

2.14.5. cnWeight 73

2.14.11. fogStart

relative Z−depth with respect to the front clipping plane at which fogging starts. With this parameter you
can keep some area in front without any fog and than start gradually increasing the effect until the back
clipping plane.

To activate fog use Ctrl−D . Clipping planes can be moved with Ctrl−MiddleMB (front plane) and
MiddleMB − left 5% margin (back plane). Actually the mapping of these operations to particular
keystrokes is flexible and is defined in the icm.clr file. For Linux it is useful to redefine the
back−clipping plane movements to

 mode 9 Right5−Mid # Move rear clipping plane

Right5 means that you use the 5% right margin of your window.

Usually the fog color is the same as the background color. You can change the fog color with the

color volume Color

command.

Default (0.3)

2.14.12. gapExtension

Relative gap extension penalty used in an alignment procedure. The absolute gap penalty is calculated
as a product of gapExtension and the average diagonal element of the residue comparison table

Default (0.15)

See also gapFunction , Align .

2.14.13. gapOpen

Relative gap opening penalty used in an alignment procedure. The absolute gap penalty is calculated as
a product of gapOpen and the average diagonal element of the residue comparison table You may vary
gapOpen between 1.8 and 2.8 to analyze dependence of your alignment on this parameter. Lower pairwise
similarity may require somewhat lower gapOpen parameter. A value of 2.4 (gapExtension=0.15) was
shown to be optimal for structural similarity recognition with the Gonnet et. al.) matrix, while a value of
2.0 was optimal for the Blosum50) matrix (Abagyan and Batalov, 1997).

Default (2.4).

See also gapFunction , Align .

2.14.14. hbCutoff

(Angstroms) cutoff radius for hydrogen bonding interactions.

74 2.14.11. fogStart

Default (3.0)

2.14.15. lineWidth

the real width of lines used to display the wire representation of chemical bonds. See also
IMAGE.lineWidth parameter which controls line thickness in molecular images generated by the
write postscript command, and the PLOT.lineWidth which controls the width for the plot
command.

Default (1.0)

Example:

 build string "se nad" # NAD molecule
 lineWidth = 3.
 wireStyle="chemistry"
 display

2.14.16. mapSigmaLevel

(in Rmsd values over the mean value). Margin value used for making graphical objects contouring
the 3D density map .

Default (1.5)

2.14.17. mcBell

average relative size of normally distributed montecarlo step from the center of an ellipsoid surrounding
the multidimensional variable restraint zone.

Example:

 mcBell = 1.0 # places one standard deviation at the rs border
 mcBell = 2.0 # distribution is two times broader etc.

Default (1.0)

2.14.18. mcJump

maximum value (in degrees) of random angular distortion per variable. This local random perturbation
occurs if visitsAction, highEnergy or rejectAction ICM−shell variables are set to the
"random" value. Randomization is a possible action in three problematic situations in montecarlo
procedure.

Default (30.0)

2.14.19. mcShake

2.14.15. lineWidth 75

amplitude [Angstrom] of Brownian type the montecarlo random move applied to a molecule when one
of the 6 variables defining its relative position is picked. Usually these variables may be selected by
v_myMolecule//?vt*selection. The center of mass of the molecule randomly moves in an xyz
sphere of mcShake radius. The molecule is also randomly rotated around a random axis with an amplitude
equal to mcShake divided by the MolecularRadius . This parameter is also used as a default amplitude for
the randomize command where the six position/orientation variables are selected.

Default (2.0)

2.14.20. mcStep

montecarlo step size (degrees). Maximum random change of one variable. This parameter is also used
as the default amplitude for the randomize command

Default (180.0)

2.14.21. mfWeight

the overall weighting factor for the "mf" penalty term. This term may contain any user−defined energy or
penalty function depending on pairs of atom types and interatomic distances. The parameters for the term
are stored in icm.pmf file.

The weighting factor will determine the "mf" term contribution with respect to the energy terms.

See also: "mf" term, cnWeight, dcWeight, rsWeight, ssWeight, tzWeight, ssWeight .

Default (1.0)

2.14.22. mimelDepth

The fraction of an estimated molecular radius which is taken as a radius of the probe sphere used by the
MIMEL algorithm. The accessible surface of this probe sphere is used to calculate the distance between a
charge and the effective dielectric boundary. Described in detail on p. 991−992 of (Abagyan and Totrov,
1994). For small molecules mimelDepth = 0.3 is recommended.

Default (0.5).

2.14.23. mimelMolDensity

a coefficient used to calculate the effective molecular radius from a number of atoms. Recommendation: do
not touch it, unless you are an advanced user. See also the description of the MIMEL method.

Default (1.0).

2.14.24. r_out

a real variable where some commands and functions (e.g. show area, show volume, superimpose,
minimize tether, Corr , Axis , Align) store their output. Also, in the electrostatic calculations
with the MIMEL or REBEL method, the solvation energy part of the electrostatic energy is returned in

76 2.14.20. mcStep

r_out.

Default (0.0). See also: r_2out.

2.14.25. r_2out

a real variable where some commands and functions (e.g. Axis) store their output.

Default (0.0). See also: r_out .

2.14.26. resLabelShift

is the translation towards the viewer (normal to the graphics screen) used to display a label in front of
cpk's or skin's rather than bury the label under them. The recommended value is 4. See also:
resLabelStyle

Default (0.0) to be used with more popular wire representation.

2.14.27. rsWeight

weighting factor for the multidimensional variable restraints penalty term.

Default (1.0).

2.14.28. selectMinGrad

default minimal gradient vector length for gradient atom selection (a_//G). This parameter is also used by
the montecarlo fast command, which requires a value of 1.5 for optimal performance.

Example:

 read pdb "1fox"
 convertObject a_ yes no yes no
 show energy
 selectMinGrad=80.
 show a_//G
 display
 display a_//G cpk

Default (1.5).

2.14.29. selectSphereRadius

default sphere radius (in Angstroms) for atom selections in Sphere() function, as well as the gaussian 3D
averaging radius in the color ribbon command with ribbonColorStyle="reliability".

Default (5.0).

2.14.25. r_2out 77

2.14.30. shininess

parameter defining the shininess of solid surfaces such as cpk, ribbon, ball, stick, xstick, and
skin when they are displayed. Only values in the range [0.,128.] are accepted.

Example in which we generate a high quality CPK image:

buildpep "ASDW"
GRAPHICS.quality = 15.
shininess = 100.
display cpk

Default (20.0). Range: from 0. to 128.

2.14.31. ssThreshold

threshold distance between two Sg atoms of cystein residues. This distance controls the automatic
formation of disulfide bonds in some commands (e.g. read pdb).

Default (2.35).

2.14.32. ssWeight

weighting factor for the disulfide bridge ("ss") penalty term.

Default (1.0).

2.14.33. ssearchStep

angular increment (in degrees) for variables in the systematic search (ssearch command) in so called
"local" mode when the search is performed around the current conformation.

Default (30.0).

2.14.34. surfaceTension

surface energy density in kcal/mole/A2. The surface energy which is a product of this parameter by the total
solvent accessible area will be stored in the "sf" term, if surfaceMethod preference is set to
"constant tension" .

Note, that if a part of the system is represented with grid potentials, one needs a special m_ga grid map for
correct calculations of the surface accessibilities.

Default (0.012)

2.14.35. tempLocal

montecarlo simulation temperature for local deformation random moves. This temperature can be set
higher than the normal temperature since a local deformation includes a larger number of variables and

78 2.14.30. shininess

may require a higher temperature for efficient sampling. To set the same simulation temperature, specify:

tempLocal=temperature

in your script.

Default (5000.).

2.14.36. temperature

montecarlo simulation temperature. A new trial conformation with a higher energy than the current one
is accepted with the probability of exp(−(Etrial − Enew)/RT)). RT is 0.6 kcal/mole for T = 300 Kelvin.

The effect of temperature on the montecarlo procedure is the following:

to find the global minimum successfully one needs a combination of persistense if a chosen place
with a good sense of when to stop searching in this place and move along to the next one.

•

if the temperature is too high, the acceptance ratio improves (gets higher) and wider sampling
becomes easier since more high energy conformations are accepted. The downside of this is the
low "persistence" (or "lack of patience") of the search procedure. Instead of spending more time in
each conformational vicinity to find the real global minimum, the procedure just tries a couple
of sub−optimal conformations and jumps away.

•

if the temperature is too low the procedure may not cover the global conformational space of
interest.

•

Default (300.).

2.14.37. tolGrad

gradient tolerance criterion for local minimization. Minimization is stopped if the gradient
root−mean−square deviation from zero is less than the parameter value.

Default (0.05).

2.14.38. tzWeight

the overall weighting factor for the tether penalty term. You may need to increase it while minimizing a
highly energetically strained molecule resulting from the initial steps of the conversion or
regularization procedure. Additional atom specific weights can be introduced through atomic
bfactors with tzMethod="weighted"

Default (1.0).

2.14.39. vicinity

maximum angular root−mean−square deviation per variable (degrees) or cartesian root−mean−square
deviation per atom (Angstroms) when two structures are still considered belonging to the same
conformational family in conformational stack manipulations. The type of comparison is defined by the
compare command.

2.14.36. temperature 79

Examples:

 compare a_//ca,c,n # compare by Cartesian RMSD
 vicinity = 3.0 # conf. are similar if RMSD< 3 A

 compare v_//phi,psi # compare by angular RMSD
 vicinity = 40.0 # conf. are similar if aRMSD < 40 deg

Default (15.0) . Do not forget to set it to a lower value if Cartesian RMSD is compared.

2.14.40. vwCutoff

(Angstroms) cutoff radius for van der Waals interactions and Coulomb electrostatics .

Default (7.5).

2.14.41. vwExpand

radius of a probe sphere used to display a dotted surface of a molecule. All van der Waals radii are
expanded by this value. vwExpand=0 corresponds to the CPK surface, vwExpand=1.4 corresponds to the
water−accessible surface. Be aware of the difference between the waterRadius and vwExpand
parameters: waterRadius is used in

show energy "sf"•
show [area|volume] skin•
display skin•

while vwExpand is used in

show [area|volume] surface•
display surface•

Default (1.4).

2.14.42. vwSoftMaxEnergy

Parameter defining maximal energy value of van der Waals repulsion at r −> 0. for the finite approximation
van der Waals function (vwMethod = "soft"). This parameter must be greater than 0. kcal/mole.

Note that in the "soft" mode, the electrostatic energy will be automatically buffered to avoid singularities.
You will see that the electrostatic term "el" changes upon switching from vwMethod=1 to
vwMethod=2 .

Default (7.0).

2.14.43. waterRadius

radius of water sphere which is used to calculate an analytical molecular surface (referred to as skin) as
well as the solvent−accessible surface (centers of water spheres). Because of the complexity of skin
calculations, it is not recommended that one play's with this parameter (of course, you rushed to do exactly

80 2.14.40. vwCutoff

that). Be aware of the difference between the waterRadius and vwExpand parameters:
waterRadius is used in

show energy "sf"•
show [area|volume] skin•
display skin•

while vwExpand is used in

display surface•
show [area|volume] surface•

Default (1.4).

2.14.44. wireBondSeparation

the distance between two parallel lines representing a chemical double bond if wireStyle =
"chemistry".

Default (0.15 Angstroms).

2.14.45. xrWeight

the overall weighting factor for the structure factor correlation penalty term. See also: xrMethod .

Default (1.0).

2.15. Logical variables
ICM−shell logical variables are the following.

2.15.1. l_antiAlias

if yes, invokes antialising for lines displayed in the graphics window. This feature is not supported on all
the platforms.

Default (no).

2.15.2. l_autoLink

if yes, tries to link molecules and alignments/sequences automatically. In case of degeneracy, i.e.
identical sequences exist with different names, a molecule can be linked to two different alignments
containing its sequence etc., the autolink procedure chooses the first occurrence. Use the link command
to impose links explicitly, and the show link command to see them. Links can be used by the following
commands and functions:

superimpose•
Rmsd and Srmsd•

2.14.44. wireBondSeparation 81

set tether ali_ ...•

Default (yes).

2.15.3. l_bpmc

if yes, use Biased Probability Monte Carlo moves in the Monte Carlo procedure. See Abagyan and
Totrov, 1994 for reference. Important: the probability zones are described in the icm.rst file and
should be assigned to a peptide before the montecarlo command with the

set vrestraint a_/*

command.

Default (yes).

2.15.4. l_breakRibbon

if yes, break too the ribbon if the distance between the reference atoms is larger than 9 Angstroms.
Default (yes).

2.15.5. l_bufferedOutput

if no, suppresses paging in the output of ICM commands. Useful in batch jobs.

Default (yes).

2.15.6. l_bug

if yes, print some debug information

Default (no).

2.15.7. l_caseSensitivity

active in most commands and functions using string comparisons.

Default (no).

2.15.8. l_commands

if no, do not show commands in batch mode

Default (yes).

82 2.15.3. l_bpmc

2.15.9. l_confirm

if no, overwrite the contents of an existing file; ask permission to overwrite it otherwise.

Default (no).

2.15.10. l_easyRotate

allows faster handling of images in the graphics window. If yes, then the currently displayed solid
representations (e.g., ribbon, skin, cpk, etc.) are temporarily hidden if an operation like rotation or
translation is undertaken. Only the wire representation remains allowing quick manipulation with the
object in use. The previous type of display is restored when rotation or translation is completed. The
parameter can be toggled by a keystroke if you assign the l_easyRotate = !l_easyRotate with
the set key command.

Default (no).

2.15.11. l_info

if yes, print info messages

Default (yes).

2.15.12. l_minRedraw

if no, suppresses redrawing of a displayed structure at each minimization step. The new minimized
structure will be redrawn only at the end of minimization. Useful when the graphics is slow or the structure
is heavy.

2.15.13. l_neutralAcids

Several commands such as read mol, read mol2, build smiles and set bond auto include
automated assignment of aromatic systems as well as some resonance structures in O−C=O, O−S=O, PO3,
O−N=O, and NO3. The automated conversion invoked with the l_readMolArom variable set to yes
reassigns the bonds in the group to be equivalent. For the acidic groups it leads to the charged form with
two partial charges of −1/2 or −1/3. If you want to suppress this transformation for the CO2,SO2 and PO3
groups only set the l_neutralAcids flag to yes . In this case the acidic groups will be kept
unchanged.

Example:

 l_neutralAcids = yes
 read mol s_icmhome+"ex_mol.mol"
 wireStyle=2
 display only a_ # the acidic group is uncharged
 build hydrogen

Default (no).

2.15.9. l_confirm 83

See also: read">readmol">read mol, read mol2, build smiles and set bond auto.

2.15.14. l_out

a logical variable similar to i_out and r_out .

Default (yes).

2.15.15. l_print

if yes, show print command with arguments as well as the result of its action.

Default (no).

2.15.16. l_readMolArom

if yes, automatically assigns aromatic rings and resonant structures (CO2,SO2,PO3,NO2,NO3) from
patterns of single and double bonds upon reading objects, mol and mol2 files or build from smiles. The
automated assignment module is also called by the set bond auto command.

If this flag is set to no , the build hydrogen command will have problems with resonant structures,
such as carboxyl groups, − a hydrogen will be attached to the oxygen connected with a single bond to the
carbon.

Example of a recommended best convertion procedure for chemical library files:

 l_readMolArom = yes # it is the default, but just in case
you also want to use l_neutralAcids = yes
 read mol s_icmhome + "ex_mol"
 for i=1,Nof(object)
 build hydrogens # may have problems if l_readMolArom = no
 set type mmff # also improves the aromatic system assignment
 set charge mmff
 convert # makes an ICM object
 endfor

Default (yes).

See also: l_neutralAcids which allows to keep acidic groups unchanged and uncharged.

2.15.17. l_showAccessibility

show the residue accessibility string assigned to a sequence generated from a three dimensional structure
in the commands show sequence , show alignment, write alignment . The relative residue
accessible area is expressed by an integer number in a scale from 0 to 9 (0−fully buried, 9−fully exposed).
Example:

 read pdb "1crn"
 show surface area # calculate atomic and residue accessibilities
 make sequence a_1 # generate a sequence
 l_showAccessibility=yes

84 2.15.14. l_out

 show 1crn_m

Default (yes).

2.15.18. l_showMC

display one−line info about each Monte Carlo trial conformation.

Default (yes).

2.15.19. l_showMinSteps

display every step of the local minimization procedure.

Default (no).

2.15.20. l_showSpecialChar

if yes, displays unprintable characters with the show string and list string commands in text
format (like \a \t \n). This flag does not apply to the print command.

Default (no).

2.15.21. l_showSites

show the site string assigned to a sequence in the commands show sequence, show alignment,
write alignment. The one−letter site codes are given below.

Default (yes).

2.15.22. l_showSstructure

show the secondary structure string assigned to a sequence in the commands show sequence, show
alignment, write alignment.

Default (no).

2.15.23. l_showWater

if yes, all water molecules are shown in the output of commands such as show molecule or show
a_* . Set it to no to skip the usually long lists of water molecules in PDB structures.

Default (yes).

2.15.24. l_showTerms

Obsolete. Now you can achieve the same via s_icmPrompt variable.

2.15.18. l_showMC 85

Examples:

 s_icmPrompt = "icm/%o/%e> " # equivalent to l_showTerms=yes

2.15.25. l_warn

if yes, print warning messages. If you want to see warning messages (i.e. l_warn = yes), but
suppress some of the messages, use the s_skipMessages variable (e.g. s_skipMessages =
"[147][148]") .

Default (yes).

2.15.26. l_wrapLine

wrap long lines if yes. If no truncate long lines and add a dollar sign ($) to indicate that truncation has
occurred.

Default (yes).

2.15.27. l_writeStartObjMC

write the starting object in the montecarlo command to a file. This object will have the same fixation
(set of free and fixed variables) as in your montecarlo simulation. In case the variable is set to no, the
same object can be generated if you repeat the fix and unfix command as in your simulation script.

Default (yes).

2.15.28. l_xrUseHydrogen

defines whether hydrogen atoms are used in calculations of crystallographic structure factors from atom
coordinates (the term).

Default (yes).

2.16. String variables

2.16.1. s_blastdbDir

return directory with Blast−formatted sequence files for ICM sequence searches. By default the directory is
set to the $BLASTDB system shell variable. The variable can also be explicitly defined in the
user_profile.icm or _startup file. In order to start using the $BLASTDB shell variable, delete
explicit assignment of the s_blastdbDir from your _startup file or add

s_blastdbDir=Getenv("BLASTDB")

to your ~/.icm/user_startup.icm file.

The find database family of sequence/pattern search commands use the s_blastdbDir directory.

86 2.15.25. l_warn

2.16.2. s_editor

a string to invoke an external editor.

Attention!!! Always use the call to the program which starts the program in the foreground. For example:
use "jot −f" rather than just "jot", since the default is running in the background.

Examples:

 s_editor = "vi" # good old vi, does not require a separate window
 s_editor = "jot −f" # popular SGI editor
 s_editor = "xedit" # simple and exists for X on every platform
 s_editor = "notepad" # exists for PCs

2.16.3. s_entryDelimiter

a string which delimits entries in the database output of a table or a set of arrays, generated by the
show database or write database commands. The %i specification at the end will be replaced by
the current number of the entry and carriage return.

Default: ("#____________________________ %i")

Example:

 s_entryDelimiter="//\n" # EMBL−database delimiter

2.16.4. s_errorFormat

defines the exact appearance of the ICM error messages. Specification %s corresponds to the minimal ICM
error message. If %s is missing all error messages are reduced to the specified text. If s_errorFormat is
equal to the empty string (""), all error messages will be suppressed. If icm is started in the "web" mode
(i.e. with the −w path flag), the variable is automatically set to "<hr><h3>Error: %s</h3><hr>" .

Examples:

 s_errorFormat="" # do NOT print error messages
 s_errorFormat=" Error> %s" # standard error messages
 s_errorFormat=" Erreur> %s" # French version
 # html−padding
 s_errorFormat="<hr><h3>%s</h3><hr>"
 s_errorFormat=" Fehler> der Betrieb ist verboten"
 # replace all the messages by this text

2.16.5. s_fieldDelimiter

contains characters which are considered as field delimiters by the Field and Split functions, as well as
by read column and write table commands. In "Split" and "read table" one can also specify the
field delimiter explicitly.

Important. If a character is duplicated in s_fieldDelimiter (e.g. s_fieldDelimiter="::"), then
multiple occurrences of this character will be ignored. Otherwise, EMPTY fields will be created between

2.16.2. s_editor 87

each pair of identical delimiter characters.

In write table s_fieldDelimiter is honored only if is a one−letter symbol, like "," or "\t".

See also the opposite operation, merging members of string array into one string: Sum(S_, s_separator)

Examples:

 s_fieldDelimiter="\t" # "aaa\t\t bbb" splits into "aaa",""," bbb"
 s_fieldDelimiter="\t\t" # "aaa\t\t bbb" splits into "aaa"," bbb"

Default (" \t\t" i.e. two blanks, two tabs, meaning skip multiple blanks or tabs). Another reasonable
possibility is " \t\t\n\n" which means skip blanks,tabs and carriage returns.

2.16.6. s_helpEngine

path to the HTML help file browser program. If you have no HTML browser, the default setting is
s_helpEngine="icm", so you can use the simple internal ascii help−file viewer more filter ('q' − to
stop, '/' to find a string, 'Enter' − next screen). If the desired help information is not found, just type help and
then use '/' plus the search pattern to perform the context search in the whole help file.

Examples:

 s_helpEngine="/usr/bin/netscape"
 s_helpEngine="mozilla" # make sure you can start it in the UNIX shell
 s_helpEngine="icm" # why would one need more?

2.16.7. s_icmhome

defines the home directory of the ICM program. This directory contains all standard ICM databases, all
scripts, examples, documentation, initial configuration files (later users can override them with the files
stored in the s_userDir directory.

The Linux icm−rpm package creates s_icmhome in /usr/icm directory.

2.16.8. s_inxDir

defines directory from which icm − index files for large sequence or chemical databases are stored. This
variable is used by the write index command. By default s_inxDir is set to s_icmhome +
"/data/inx/" .

See also: read index , write index table, write index .

2.16.9. s_icmPrompt

defines the ICM−prompt string. This string contains text and a bunch of wild cards for:

%o − name of the current molecular object•
%e − list of the active energy terms (see the set terms command)•
%t − time spent in ICM (may be convenient for scripts)•

88 2.16.6. s_helpEngine

%T − astronomical Time•
%% − % character•
%# − icm−command order number•

Be smart, see the energy or penalty terms you are using by adding %e to the prompt string.

Examples:

 s_icmPrompt="%## " # for askets
 s_icmPrompt="" # for super−askets
 s_icmPrompt="%T> " # for anxious paranoiac freaks
 s_icmPrompt="MY_ICM/%o/%e/%T/%#> " # for the verbose
 s_icmPrompt="Hi−hi|%e−^%o+%T> " # for the messy
 s_icmPrompt="Icm command number %#> " # for the retarded
 s_icmPrompt="Hey dude, type something" # for dudes
 s_icmPrompt="%o/%e> " # for humble and wise researches

Default: "icm/%o> "

2.16.10. s_imageViewer

defines the command to view the image files (tiff,png, targa and rgb formats) if the display
option is specified. An alternative to the default is the "xv" program. See also the write image
command.

Default for SGIs ("imgview").

2.16.11. s_labelHeader

defines a prefix string for all labels. For example, when displaying CPK atoms you may move the label to
the right of the atom center by

 s_labelHeader=" "

Default ("" − an empty string).

2.16.12. s_lib

ICM library name root. If you redefine it to say "new", ICM will start to look for the following library files:
new.cod, new.bbt, new.bbs, etc. in the $ICMHOME directory.

Default ("icm").

2.16.13. s_logDir

when you quit an icm−session, a _seslog.icm file is automatically stored. If the s_logDir variable is
empty, it is stored to the s_userDir + "/log/" directory. However one can redirect it to the current
working directory (".") or any other directory.

The same logic applies to the _crashlog.icm file which is created when ICM crashes.

2.16.10. s_imageViewer 89

Examples:

s_logDir = "." # _seslog.icm stored in the current working directory
s_logDir = "" # to the current working directory

2.16.14. s_out

a string where some commands store their string/text output. See also: printfread database read
string, read table, and read unix,

Default ("is where the string/text is stored").

2.16.15. s_pdbDir

directory containing the PDB database of 3D structures. These files can also be easily downloaded directly
from the PDB site if the variables are set as in the example below. PDB distributions can exist in several
styles (all files in the same directory, or divided etc.). The style is defined by the pdbDirStyle
preference.

The pdb directory also contains the derived_data subdirectory with useful files (pdb sequences, index
files etc.)

Example:

 s_pdbDir ="ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"
 pdbDirStyle = "ab/pdb1abc.ent.Z"

 s_pdbDir = "/data/pdb/"
 read sarray s_pdbDir+"/derived_data/index/source.idx"
 source = Tolower(Trim(Field(source,1)))
 for i=1,Nof(source)
 read pdb source[i]
do some analysis
 delete a_*.
 endfor

Default ("/data/pdb/"). It is usually redefined in the _startup file.

2.16.16. s_projectDir

a relative path to the directory in which icm−projects (all the icm−objects in a session) are stored. This
path is appended to the s_userDir directory.

2.16.17. s_printCommand

a command to print text or postscript files. This command is invoked if the print option is specified in
the write image postscript or write postscript commands. Customize this string. Default
("lp −c").

Example:

90 2.16.14. s_out

 s_printCommand = "lp −c −d ColorPrn22"
 write image postscript print # save image and print

2.16.18. s_prositeDat

is a file containing the full file name of the prosite database of protein patterns. This file is not large and
is distributed with ICM. If you have your own copy of prosite, redefine the variable and delete prosite.dat
in the $ICMHOME directory to avoid redundancy.

Default ("prosite.dat"). It is usually redefined to s_icmhome+"prosite.dat" in the
_startup file.

2.16.19. s_psViewer

a PostScript viewer used while you are in ICM session. A command to invoke is to be:

 unix $s_psViewer </tt><i>your PostScript file name</i>

Default ("/usr/opt/bin/gs −q").

2.16.20. s_reslib

name of the icm residue library. The file will be loaded from the $ICMHOME directory.

Default ("icm").

2.16.21. s_skipMessages : ignore specific error messages

In ICM all error and warning messages are numbered (e.g. " Warning> [123] .. "). You may
specify a set of message numbers which you want to suppress. While the messages are suppressed the error
code can still be returned with the Error(number) function.

Example:

 a = 1
 if = 2 # deliberately generate error
 Error> [2073] illegal IF: wrong condition in if=2

 s_skipMessages = "[2073]"
 if = 2 # now no message is generated
 if Error(number)==2073 quit

 a = yes # generates another error
 Error> [696] wrong assignment or name conflict
 s_skipMessages = "[2073][696]"
 a = yes # hides the error message

 234*2352352532
 Warning> [147] number 2352352532 is too big for an integer (>2147483647)
 0
 s_skipMessages = "[2073][696][147]" # suppress the warning
 234*2352352532

2.16.18. s_prositeDat 91

 0

See also: errorAction , s_errorFormat .

Default ("[3000][3012]" just to show an example).

2.16.22. s_tempDir

scratch directory for temporary files (some montecarlo files will be saved there).

Default ("/usr/tmp/").

2.16.23. s_translateString

a set of characters used in the ascii representation of numerical values of arrays, matrices and maps. See
also the String function and the show map command.

Default (".:*0#").

2.16.24. s_userDir

The path to the user directory containing ICM−related and ICM−generated data files.

The suggested _startup file sets this variable to a subdirectory .icm of the user $HOME directory (
$USERPROFILE for Windows), but you may set it anywhere you want.

Default ("$HOME/.icm/").

2.16.25. s_usrlib (obsolete)

an obsolete variable. The new mechanism to add new icm residue libraries uses the LIBRARY.res sarray.
You can generate the entries using the write library command.

Default ("usr").

2.16.26. s_webEntrezLink

defines the NCBI Entrez link.

See also: webEntrezOption, Default (
"http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6.

2.16.27. s_webViewer

an HTML browser invoked by ICM by the following commands: web dbEntryCode, web T_, write
html.

Examples:

92 2.16.22. s_tempDir

 s_webViewer="/usr/bin/netscape"
 s_webViewer="Mozilla"

Default ("netscape").

2.16.28. s_xpdbDir

path to the ICM XPDB database of compact binary ICM objects which are annotated with the site
information. The advantage of the XPDB database is the speed of reading and smaller size than PDB.
XPDB entries are read about 80 times faster!

Here we compare the execution times for the pdb and xpdb files:

eos:/home/ruben/icm> time ./icm −s −e 'read object "/data/xpdb/1ffk.ob"'
0.450u 0.090s 0:00.54 100.0%
eos:/home/ruben/icm> time ./icm −s −e 'read pdb "/data/pdb/ff/pdb1ffk.ent.Z"'
38.800u 0.430s 0:42.11 93.1%

2.17. Preferences
Preferences are multiple choices. You can show and list them. You can change a preference by
assigning it to:

the item number•
the item name•
"nextItem" string•
0 (the same as "nextItem")•

Examples:

 resLabelStyle = 3 # 3−rd choice
 resLabelStyle = "Ala 5" # assign by string
 resLabelStyle = "nextItem" # go to the next item in the list

2.17.1. atomLabelStyle

style of atom labels invoked by clicking on an atom or the display atom label as_ command. You
may display name, electric charge (q) and/or mmff atom type. Options are the following:

"cb1" <== default1.
"cb1 q" (atomic charge)2.
"cb1:FC" (formal charge)3.
"cb1 all" (different atomic properties)4.
"cb1 mmff q"5.
"C" (chemical atom name)6.
"[C]" (chem. name on a rectangle)7.

The last two choices use periodic table convention to label atoms, and the label is positioned into the center
of atom. In the latter case ("[C]") a rectangle of the background color is used to highlight the label.

2.16.28. s_xpdbDir 93

The standard _aliases file contains the set key"Ctrl−A"
"atomLabelStyle=\"nextItem\"\n" command, which means that you may switch between
different styles interactively by pressing Ctrl−A.

Examples:

 build string "se his"
 atomLabelStyle = "[C]"
 wireStyle = "chemistry"
 lineWidth = 3.
 display atom label wire black # press Ctrl−A
 color background white
 write postscript "tm" # save the results
#
 atomLabelStyle = "C"
 display xstick
 set type mmff # press Ctrl−A again

2.17.2. alignMethod

alignment method used in the Align and Score functions and find database command (as
described in Batalov and Abagyan, 1999).

"ZEGA"1.
"H−align" <− the best choice2.
"frame−H−align" # allows to align DNA sequence against protein sequence or protein sequence
database

3.

See also:

gapFunction,•
accFunction,•
alignMinCoverage (0.5) − minimal ratio of the aligned residues with respect to the shorter
sequence length.

•

2.17.3. atomSingleStyle

display style of isolated atoms in the wire mode.

"tetrahedron"1.
"cross"2.
"dot"3.

The size of the first two representation is controlled by the GRAPHICS.ballRadius parameter and the
line width (especially important for the "dot" style) is controlled by the lineWidth parameter.

2.17.4. dcMethod

defines the algorithm for the density correlation calculation which is the correlation between the
static density distribution and a virtual map generated from atomic positions on the fly.

94 2.17.2. alignMethod

"exact" <− default1.
"unnormalized"2.

Explanation:

The "exact" density correlation penalty function uses the Pearson's correlation coefficient. The
correlation coefficient is then shifted by +1 so that the function ranges from 0. to 2. rather than
from 1. to −1.

1.

DC = 1 − Sum(Di −<D>)(Ai −<A>)/(N * Rmsd(D)*Rmsd(A))

The term has analytical derivatives with respect to the internal coordinates and can be efficiently
locally minimized. This term requires additional memory allocation equal to the current map size
and is two times slower than the unnormalized term.

The "unnormalized" density correlation. Formula:2.

DC = 1 − Sum(Di −<D>)(Ai −<A>)/ N

where Di is a map value in point i , and Ai represents the density generated dynamically from
atomic positions.

The differences from the "exact" term are the following:

scaling is arbitrary in contrast to "exact" term. Therefore you have to estimate a
reasonable dcWeight value if "dc" is optimized along with the other energy or penalty
terms.

♦

The "unnormalized" term does not require additional memory and is two times
faster than the "exact" term. The term has analytical derivatives with respect to the
internal coordinates and can be efficiently locally minimized.

♦

2.17.5. electroMethod

defines method used for the electrostatic energy evaluation. Four options are available:

"Coulomb"1.
"distance dependent" <− default2.
"MIMEL"3.
"boundary element"4.

The meaning:

The Coulomb electrostatics is defined as U = q 1 *q2 /D*r 12 with D = dielConst .1.
In the distance−dependent dielectric model D in the above formula is set to dielConst*r,
where r is an interatomic distance.

2.

The "MIMEL" electrostatics allows to evaluate the free energy of a molecule in water
environment by the Modified IMage ELectrostatics approximation at every iteration
of the Monte Carlo, or search procedure. This energy will only be calculated for a static
structure or at the end of local minimization (so called "double energy scheme", see Abagyan and

3.

2.17.5. electroMethod 95

Totrov, 1994 section (e) on p.992, or Abagyan, Totrov and Kuznetsov, 1994 p. 10, for reference).
). The MIMEL energy consists of the Coulomb energy, which is calculated for all the atom pairs at
the current dielConst value, and the electrostatic solvation energy which is a sum of
"selfEnergy" and "crossEnergy" and is returned in the r_out real variable upon completion of the
calculation in the show energy command. A more accurate evaluation of the electrostatic
solvation energy can be obtained with the boundary element method.
The boundary element method provides an accurate solution of the Poisson equation. The
dielectric boundary is defined by the accurate analytical molecular surface (skin) and all the local
charges stay exactly where they are. The boundary element method does not rely on any 3D grid
and is free from dependence on the grid size. The ICM implementation of the boundary element
method is fast and accurate. During the local minimization the derivatives with respect to the
internal coordinates are not calculated (similar to the MIMEL method). The distance dependent
dielectric model is used during minimization instead. At the end of the local minimization the
electrostatic energy is replaced by the more rigorous boundary element energy.

4.

2.17.6. errorAction

action taken after an error has occurred.

= "none" # error flag is set (see the Error() function)1.
= "break" <− default # exit from loops and macros2.
= "exit" # exit from a script into shell3.
= "quit" # quit ICM: useful for CGIs4.

Specific error messages can be suppressed with the s_skipMessages (e.g. s_skipMessages =
"[696][2073]")

See also: s_errorFormat, interruptAction

2.17.7. ffMethod

force field used in the show energy, minimize, and montecarlo commands.

= "ecepp" <− default1.
= "mmff"2.
= "icmff" a new experimental force field obtained by reparametrization of the mmff force field
into the internal coordinate space and derivation of the parameters specific for a particular
covalent geometry.

3.

Note that minimize cartesian temporarily enforces ffMethod = "mmff", since the ecepp force field
is not applicable to the carterian minimization.

To use the force fields you need to do the following:

"ecepp"
read library (if it is not included in your _startup.icm file)♦
modify terms with the set terms command.♦
use show energy , minimize, or montecarlo.♦

•

96 2.17.6. errorAction

"mmff" in cartesian space (free covalent geometry). The command requires at least the
"vw,af,bb,bs" terms and needs correct atom types and charges.

read library mmff♦
assign atom types: set type mmff a_ . This operation requires correct♦

•

chemical structure (when you build the molecule, make sure it is complete),•
bond types (check graphically with wireMethod=2, and change with the set bond type
command), and

•

formal charges (check graphically with the atomLabelStyle=3, and assign with the set
charge formal .. command).

assign charges: set charge mmff a_♦
modify terms with the set terms command. The full set is: set terms
"vw,el,to,af,bb,bs"

♦

use show energy , minimize, or montecarlo.♦

•

"mmff" in the internal coordinate space according to the current fixation. The use of the mmff
force field is not recommended.

•

"icmff". This new force field is designed to be used with the fixed covalent geometry and is faster
than both mmff−cartesian and "ecepp". The icmff force field is still experimental and should be
used with caution. The vacuum part of icmff requires only three terms: "vw,to,el". The solvation
terms "sf,en" can be added.

•

Icmff calculates parameters on the fly for a particular geometry. To use this force field use the
following procedures:

assign mmff types and charges, and load the mmff libraries (see above)•
to generate the starting conformation, minimize your molecule with ffMethod = 2 and
minimize cartesian "14,to,bb,bs,af" .

•

set ffMethod to 3 and set terms ""vw,to,el,sf,en" only .•
use show energy or montecarlo•

2.17.8. gcMethod

method defining how the m_gc map is used in the "gc" grid energy calculation. The "gc" method allows
to calculate interactions of a molecule with grid energy field representing another molecule (the first
method), or treat the m_gc map as the electron density map.

"vw" <− default choice: current object interacts with the van der Waals field. Positive values
repel, negative attract; Contribution from one non−hydrogen atom is Eatom = 1.*Egc

1.

"density" : treats the m_gc map as positive electron density and pulls the object into it. The
contributions of atoms are proportional to atomic number (the number of electrons), hydrogens are
ignored: Eatom = −AtomicNumber*Egc

2.

"field" : uses user−defined atomic field value, which can be set by the set field
command and extracted with the Field (as_) command, as the relative weight of each atom.
Anticipates that van der Waals type of the map (attractive negative values, repulsive positive) as in
the first method. Eatom = Field(atom)*Egc

3.

2.17.8. gcMethod 97

2.17.9. highEnergyAction

action taken upon achievement of the maximal allowed number of montecarlo steps resulting in no
modification of a stack mnhighEnergy, (it means that conformations are dissimilar to those in the stack
and have higher energy). Four actions can be taken:

" heat"1.
" stackjump" <− default2.
" random"3.
" exit"4.

2.17.10. interruptAction

action taken upon ICM−interrupt (^\ Control backslash).

= "break loop"1.
= "break all loops" <− default2.
= "exit macro"3.
= "exit to the main macro"4.
= "exit all macros"5.

2.17.11. mfMethod

atom pair selection algorithm used when "mf" energy term is calculated by the show energy,
montecarlo, or minimize commands.

Allowed values:

"intermolecular" (or 1) <− default•
"all" (or 2)•

(e.g. mfMethod = 2)

In contrast to the "vw" term, only intermolecular atom pairs are considered by default, since usually
intramolecular interactions are calculated with the standard energy terms.

In the "all" mode the atom pairs are taken from the van der Waals interaction lists calculated
dynamically in the show energy, montecarlo, or minimize commands. All atom pairs except
atoms separated by 1 or 2 bonds (so called 1−2 and 1−3 interactions) and within the vwCutoff distance
are taken into account.

See also: term "mf", pmf−file, mfWeight .

2.17.12. minimizeMethod

algorithm used for local energy minimization which takes place in the minimize command, and is a
part of one step of a multistep procedure such as montecarlo, ssearch, and convert .

Allowed values:

98 2.17.9. highEnergyAction

"conjugate"1.
"newton"2.
"auto" <− default3.

"conjugate" means conjugate gradient minimization. Uses analytical first derivatives and takes 6*
n_free_variables memory.

"newton" − quasi−Newton method. It uses analytical first derivatives and takes
n_free_variables*n_free_variables memory. We recommend this method for energy minimization of small
molecules.

"auto" <− default; use the more efficient quasi−Newton if the number of free variables (Nof(v_//*) is
less than 100 (additional memory requirement of about 2 MB) and switch to the conjugate gradient method
if the number of free variables is more than 100.

2.17.13. pdbDirStyle

The style of your Protein Data Bank directory/directories. ICM will understand all of the listed styles,
including distributions with compressed *.gz , *.bz2 and *.Z files. In all cases, if the s_pdbDir variable is
set correctly, it is sufficient to refer to the file by its four−character code, e.g.

read pdb "1abc"

= "1abc.brk" <− default1.
= "pdb1abc.ent"2.
= "ab/pdb1abc.ent"3.

Do not forget to set the right pdb−style in your _startup file.

2.17.14. rejectAction

what to do, if the MC procedure rejects mnreject trial conformations in a row. Four actions can be taken:

" heat" <− default choice1.
" stackjump"2.
" random"3.
" exit"4.

2.17.15. resLabelStyle

style of residue labels invoked by double clicking on the residue or display residue label rs_
command. Possibilities:

"A5" <− default choice1.
"Ala 5"2.
"ALA 5"3.
"Ala"4.
"ALA"5.
"Alanine 5"6.

2.17.13. pdbDirStyle 99

"5"7.
"A"8.
" A"9.
"Mol" − displays MOLECULAR name.10.

See also : resLabelShift, atomLabelStyle .

2.17.16. ribbonColorStyle

− sets the ribbon coloring scheme.

1 = "none" default. colors by secondary structure type or explicit color
2 = "NtoC" colors each chain gradually blue−to−red from N− to C− (or from 5' to 3' for DNA)
3 = "alignment" if there is an alignment linked to a protein, color gapped backbone regions gray
4 = "reliability" 3D gaussian averaging with selectSphereRadius of alignment strength in space
If ribbonColorStyle equals to 4, the conserved areas will be colored blue, while the most divergent
will be red, and the intermediate conservation areas will be colored white. Example:

 nice "1eoc.a/"
 make sequence a_1.1
 read pdb sequence "3pcc.a/"
 aa = Align(3pcc_a 1eoc_a)
 ribbonColorStyle=3 # color gaps gray
 color ribbon
 ribbonColorStyle=4 # see alignment strength
 color ribbon

2.17.17. ribbonStyle

specifies type of representation when display ribbon
command is used. Options are the following:

"ribbon" <− default choice1.
"segment"2.
"segmentNum"3.
"both"4.

The first choice is a solid ribbon representation. The second, "segment" refers to a style where secondary
structure elements are represented by vectors (see Abagyan and Maiorov, 1988).

Note The segment parameters must be pre−calculated with the assign sstructure segment
command. The segment description is used in fast searches for related topologies in the databank.
The last option ("both") will display both representations of the backbone topology.

100 2.17.16. ribbonColorStyle

2.17.18. shineStyle

defines how solid surfaces of cpk , skin and grobs reflect light. Possibilities:

"white" <− default1.
"color"2.

The first option gives a more shiny and greasy look.

2.17.19. surfaceMethod

defines how the surface energy is calculated. Options available:

"constant tension"1.
"atomic solvation" <− default choice2.
"apolar"3.

Explanations:

"constant tension" means that the energy terms are just the product of the total
solvent−accessible surface by the surfaceTension parameter. This term is intended to
represent the surface energy if electrostatics takes the solvent polarization energy into
account (see electroMethod)

1.

"atomic solvation" option is designed to evaluate the solvation energy purely on the basis
of the atomic accessible surfaces instead of using the proper electrostatic evaluation of
the polarization free energy. This fast but approximate scheme was proposed by Wesson and
Eisenberg, (1992) . Atomic surface parameters derived from the experimental vacuum−water
transfer energies are given in the icm.hdt file.

2.

"apolar" option is designed to evaluate the stabilization energy, which is the difference
between denatured and folded states. The "atomic solvation" energy should be used with the van
der Waals term while the "apolar" energy takes it into account and should be used without any
other energy terms. The "apolar" atomic surface parameters were derived from the experimental
octanol−water transfer energies and are given in the icm.hdt file.

3.

Note, that if a part of the system is represented with grid potentials, one needs a special m_ga grid map for
correct calculations of the surface accessibilities.

2.17.20. tzMethod

method of imposing and calculating tethers. The three alternatives are the following

"simple" : equal weight tethers to 3D points1.

"weighted" : individual weights are calculated from atomic B−factors by dividing 8*PI2 by
the B−factor value. All the weights additionally are multiplied by the tzWeight shell variable.

2.

"z_only" : tethers are imposed only in the Z−direction towards the target Z−coordinate. These
type of tethers pulls a molecule into a z−plane. This may be useful if you are trying to generate a
flat projection of a three−dimensional molecule.

3.

2.17.18. shineStyle 101

Example for the "z_only" method in which we generate a more or less flat image of a chemical.

build smiles "c1c(ccc(c1)N(=O)=O)N2CCC(CC2)=CC(=O)NNC(=O)Nc3cc(ccc3)C(F)(F)F"
tzMethod = "z_only"
set tz a_ # sets tethers to x,y,z=0. coordinates for each atom
minimize "vw,tz" 200
dsChem a_//!h*

2.17.21. varLabelStyle

style of labels for free torsions, angles and bonds (i.e. internal variables) display variable label
vs command. Possibilities:

"greek" <− default choice1.
"name"2.
"value"3.

2.17.22. visitsAction

what to do, if one stack conformation is overvisited, i.e. mnvisits has been reached. The following
actions are allowed:

"random"1.
"heat" <− default choice2.
"stackjump"3.
"exit"4.

Explanation of actions:

"heat" − double the simulation temperature•
"stackjump" − jump to the conformation of the least visited slot in the stack.•
"random" − randomize all free variables according to the mcJump parameter•
"exit" − exit the MC procedure•

2.17.23. vwMethod

specifies the function type of the van der Waals term ("vw"). The following three functions can be chosen:

"exact" <− default choice:1.

Fvw = A/r12 − B/r6 . This is the usual van der Waals formula tending to infinity at r close to 0.

"soft":2.

Fsoft = Fvw , for Fvw <= 0. and Fsoft = Fvw *(t/(t+F vw)) for Fvw > 0. (repulsion).

This form preserves the function for the most populated part of the curve but smoothly reaches the
limit t (defined by the vwSoftMaxEnergy real system variable)

"old soft":3.

102 2.17.21. varLabelStyle

another smooth approximation with the finite value at r=0, depending on the well depth.

2.17.24. webEntrezOption

defines how to interpret the NCBI Entrez links.

"none"1.
"g:GenPept" <− default2.
"r:Report"3.
"f:FASTA"4.
"a:ASN.1"5.
"d:Entrez document summary"6.
"m:MEDLINE links"7.
"p:protein neighbors"8.
"n:nucleotide links"9.
"t:structure links"10.
"c:genome links"11.

See also: s_webEntrezLink, web, show html, write html.

2.17.25. wireStyle

style of the display wire mode. The choices are the following:

"wire" <− default choice1.
"chemistry"2.
"tree"3.

Style "chemistry" shows different types of chemical bonds. Style "tree" shows a directed graph of the
ICM−molecular tree. Yellow triangle indicates the entry atom of an ICM object. The tree can be rerooted
with the write library a_newEntryAtom command. The topology of the complete tree including
the virtual atoms can be shown with the display virtual command.

Note: The "tree" graph does not exist for objects of non−ICM type, e.g. those created by the read pdb
command, and this preference will have no effect. The tree representation elucidates the ICM topology
graph imposed on molecules and is crucial in the modify command, since it removes a branch up−tree
from the specified entry atom, and replaces it by another branch. Use Ctrl−W to toggle between these
styles (see set key command). The line width is controlled by the lineWidth parameter.

2.17.26. xrMethod

The penalty function of correspondence between observed and calculated structure factors.

"corr Fc:Fo" <− default1.
"corr Fc2:Fo2"2.

2.17.24. webEntrezOption 103

2.18. Tables (structures)
The following predefined icm−shell tables are collections of different icm−shell−objects related to a certain
topic. Note that these tables (as opposed to user−defined ICM tables) usually only have the header
section. You can show and list them. You can also change any table element by the usual icm
assignment:

Examples:

 IMAGE.color = yes # this member is a logical
 IMAGE.stereoBase = 2.5 # redefine real distance between stereo panels

2.18.1. FILTER

contains filters which can be applied to the input stream in the read command. Components have names
corresponding to standard file name extensions; their string value is a unix filter. Token %s is a
placeholder for the file name. The provided defaults can be redefined in your _startup file. You can also
add your own extensions and filters by doing the following:

 z = "pcat %s" # define the action for the unix packed files
 group table append FILTER header z # append new filter to the structure

The mechanism ICM employs allows to keep the transformed files intact and avoid creating temporary files
when possible (e.g. uuencode unix command always creates an output file). Existing extensions and
defaults are given below. You may need to redefine the defaults by adding the exact path to the utility or
using alternatives.

FILTER.Z

allows you to read the compressed files (*.Z) directly leaving the compressed file intact. The default value:
"zcat %s" . If you do not have zcat utility, try

FILTER.Z = "uncompress −c %s"

FILTER.gz

The default value is "gunzip −c %s" .

FILTER.uue

The default value is

"sed 's:begin .*:begin 600 /tmp/UUPtm:' %s | uudecode &cat /tmp/UUPtm &rm −f /tmp/UUPtm"

This works for UNIX file system, write your own on the PC, if needed.

2.18.2. FTP

table which controls reading from ftp.

104 2.18. Tables (structures)

FTP.createFile

(default no). This flag is not active yet. The file is always created in the s_tempDir directory.

FTP.keepFile

(default no). If yes, the temporary file is kept in the s_tempDir directory. Otherwise the file is
deleted.

FTP.proxy

string path to the proxy server for connections through firewall. Default: "" (empty string).

2.18.3. GRAPHICS

display parameters for different graphics representations.

GRAPHICS.ballRadius

radius (in Angstroms) of a small ball displayed as a part of ball or xstick graphical representations
of a molecule.

Default (0.15)

GRAPHICS.dnaBallRadius

DNA bases in ribbon representation are shown as balls controlled by the above real parameter. You can
undisplay them with the: undisplay ribbon base command.

Default: 1.5

GRAPHICS.dnaRibbonRatio

real ratio of depth to width for the DNA ribbon .

Default: 0.3

GRAPHICS.dnaRibbonWidth

real width (in Angstroms) of the DNA ribbon .

Default: 2.

GRAPHICS.dnaRibbonWorm

logical which, if yes, makes the DNA backbone ribbon round, rather than rectangular.

Default: no

2.18.2. FTP 105

GRAPHICS.dnaStickRadius

real radius of the sticks representing bases in DNA ribbon .

Default: 0.72

GRAPHICS.quality

integer parameter controlling quality (density of graphical elements) of such representations as cpk,
ball, stick, ribbon . Do not make it larger than about 20 or smaller than 1. This parameter supersedes the
previous ballQuality parameter.

We recomment to make this parameter at least 15 if you want to make a high quality image. You can also
increase the number of image resolution by making the image window 2,3,4 times larger (in the example
below it is 2 times larger) than the displayed window.

GRAPHICS.quality = 15
display ribbon

press Ctrl−D for the fog effect, move clipping planes, change fogStart

write image png window=2*View(window)

Default: 5.

GRAPHICS.rainbowBarStyle

determines if and where the color bar will appear after a molecule is colored by an array. Coloring by an
array is one of the options of the display and color commands.

= "text at left" <− default choice1.
= "text at right"2.
= "no text"3.
= "no bar"4.

The bar can be dragged (use middlebutton), removed (point into the bar and press BACKSPACE), just like
a string label. To assign your own numbers to the bar, you may choose option "no text" and use several
display s_label commands. The bar, if displayed, is exported to TIF, RGB images and
postscript.

GRAPHICS.resLabelDrag

if yes, enables dragging of the displayed residue labels with the middle mouse button. The labels can be
reset to their initial positions with the set residue label distance rs_

command. The intial position is defined by the relative displacements of {0. 0. 0.} from the special "residue
label−carrying" atom of the residue, see the set label as_ command. See also resLabelStyle

Default (no).

106 2.18.3. GRAPHICS

GRAPHICS.ribbonRatio

real ratio of depth to width for the protein ribbon .

Default: 0.3

GRAPHICS.ribbonWidth

real width of the protein ribbon .

Default: 1.

GRAPHICS.ribbonWorm

logical parameter, if yes, makes the ribbon round, rather than rectangular.

Default: no

GRAPHICS.selectionLevel

preference for the selection level of as_graph selection. The atoms, residues, molecules or objects
selected interactively in the graphics window are automatically stored in the as_graph variable. The
preference may have the following values.

 GRAPHICS.selectionLevel = "atom"
 1 = "object"
 2 = "molecule"
 3 = "residue"
 4 = "atom" # default
 5 = "variable"

The GRAPHICS.selectionLevel can be switched either interactively, e.g.

 GRAPHICS.selectionLevel = 3

or from GUI by selecting the level combo box with the following choices: O (object), M (molecule), R
(residue), x (atom), or an icon of a torsion (variable).

GRAPHICS.selectionStyle

preference for the style in which the graphical selection is shown. The preference may have the following
values.

 GRAPHICS.selectionStyle = "color"
 1 = "none"
 2 = "cross"
 3 = "color" # the default choice
 4 = "cross and color"

In the 1−st mode ("none") only a single selection mark is shown. It is convenient when you do not want
multiple selection marks to overwhelm the image. The 3−rd mode is incovenient if you want to try different

2.18.3. GRAPHICS 107

colored displays for the selected fragments.

GRAPHICS.stickRadius

radius (in Angstroms) of a cylinder displayed as a part of stick or xstick graphical representation
of a molecule.

Default (0.4).

GRAPHICS.wormRadius

radius of coiled segments (i.e. those where the secondary structure is marked as "_") of a polypeptide
chain in ribbon representation.

Default (0.3).

2.18.4. GRID

parameters for the grid energy calculations (see also "gh,gc,ge,gs,sf" energy terms).

GRID.gcghExteriorPenalty

A preference to allow automatically impose a repulsive penalty outside the area covered by the van der
Waals maps (m_gc and m_gh).

= "repulsive" <− the default1.
= "zero"2.

In the default mode a volume penalty is imposed automatically outside the map box expanded by the
GRID.margin . The penalty potential is set to the GRID.maxVw value.

GRID.margin

real parameter determining the extra penalty−free space around the
map bounding box if GRID.gcghExteriorPenalty =
"repulsive" (see above). For any atom which gets outside the
map−bounding box expanded by GRID.margin, its grid van der
Waals energy ("gc" or "gh") is penalized by the GRID.maxVw
value. This is the same penalty value which atoms get if they severely
clash with other atoms.

Therefore, if you set up grid energy calculations it is essential either to create a big enough box or set a
sufficient margin to allow ligand rearrangements near the receptor surface. If GRID.margin is very large,

108 2.18.3. GRAPHICS

your ligand will be "on the loose" and may spend too much time flying in open air. It is recommended that
the margin is not larger than the diameter of your ligand.

Default: 0.00 A

GRID.maxEl

real truncation parameter. Default: 20.0 kcal/mole.

GRID.minEl

Default: −20.0 kcal/mole.

GRID.maxVw

The truncation level of the van der Waals repulsion energy precalculated in the "gc" grid energy term.
This number also is used as a penalty for the atoms outside the map box expanded by GRID.margin .

Default: 3.0 kcal/mole.

2.18.5. GROB

Parameters related to graphics objects. See also the Grob family of functions.

GROB.relArrowSize

a real relative arrow size ([0.,1.]). Default: 0.2.

GROB.arrowRadius

a real arrow radius in Angstoms used by the Grob("ARROW", R_) function. Default: 0.5.

GROB.relArrowHead

a real ratio of the arrow head radius to the arrow radius. This parameter is used by the Grob("ARROW",
R_) function. Default: 3.0.

2.18.6. GUI

table contains some settings for the GUI. Most of the settings are stored automatically in the s_userDir
+ "/config/icm.cfg" file

GUI.workspaceTabStyle

allows to change the style of ICM−object tabs created in the workspace panel of ICM GUI.

= "icon title" # default1.
= "icon"2.
= "title"3.

2.18.4. GRID 109

2.18.7. IMAGE

table contains settings used by the following commands creating image files:

write image,•
write postscript,•
display movie image.•

IMAGE.quality

this integer parameter allows to improve quality of vectorized postscript images saved by the write
postscript command. Actually this parameter only changes one number in the header of a postscript
file. You can also manually edit the file to correct this number. This number defines the number of
divisions of larger triangles into smaller ones accompanied by interpolation of colors which occurs during
printer interpretation of the postscript stream to provide smooth continuous transitions. The optimal value
of this parameter depends on the maximal triangle size. It may grow as large as 100 for a single triangle on
a page. Typically for a molecular image with molecular surface IMAGE.quality=3 is sufficient.

Important. Do not set the parameter to values higher than 5 for the molecular image, your printer will die!

Default: 3

IMAGE.printerDPI

this integer parameter the printer resolution in Dot Per Inch (DPI). Important for the write image
postscript command.

Default: 300

IMAGE.lineWidth

this real parameter specifies the default line width for the postscript lines.

Default: 1.0

IMAGE.scale

real variable. If non zero, controls the image scale with respect to the screen image size. The screen
image resolution (or Dots−Per−Inch) is usually 72. Let's assume printer DPI to be 300 (see the
IMAGE.printerDPI parameter). In this case IMAGE.scale=1. will make the printed image the same
pixel size (which is about 4 times smaller) than the screen image. For pixel images saved by write
image postscript command integer IMAGE.scale values (2., 3., 4.) are preferable. That is what
auto mode (IMAGE.scale=0.0) is trying to do. This consideration is NOT important for the vectorized
postscript images created by the write postscript command.

Default: 0.0 (i.e. auto mode: maximum size fitting the page in given IMAGE.orientation)

110 2.18.7. IMAGE

IMAGE.stereoBase

real variable to define the stereo base (separation between two stereo panels) in the write image
postscript and write postscript command.

Default: 2.35 inches, (~ 60mm)

IMAGE.stereoAngle

real variable to define stereo angle (relative rotation of two stereo images) in the write image
postscript and write postscript command.

Default: 6.0 degrees.

IMAGE.gammaCorrection

real variable to to lighten or darken the image by changing the gamma parameter. A gamma value that is
greater than 1.0 will lighten the printed picture, while a gamma value that is less that 1.0 will darken it.
You may adjust your gamma correction parameter for your printer with respect to your display and add this
setting to the _startup

Default: 2.0

IMAGE.color

logical to save color or black_and_white ('bw') images. You can override this parameter by using the
explicit bw option in the write image command.

Default: yes

IMAGE.compress

logical to toggle simple lossless compression, standard for .tif files. This compression is required to be
implemented in all TIFF−reading programs.

Default: yes

IMAGE.generateAlpha

logical to toggle generation of the alpha (opacity) channel for the SGI rgb, tif and png image files to
make the pixels of the background color transparent.

Be careful. The alpha channel is set to 1. for every pixel in your image which has the same color as the
background. Therefore there is a danger that the same color will be accidently used inside your image. If
you nevertheless want to generate the alpha−channel, use a rare color your background (not black, but
rather green, e.g. rgb = {0.,0.976,0.} .

Default: yes

2.18.7. IMAGE 111

IMAGE.stereoText

logical to make text labels for only one panel or both panels of the stereo diagram.

Default: yes

IMAGE.previewer

a string parameter to specify the external filter which creates a rough binary (pixmap) postscript preview
and adds it to the header of the ICM−generated high resolution bitmap or vectorized postscript files saved
by the write image postscript, and write postscript , respectively . This preview
information is compliant with EPSI (encapsulated Postscript interchange file format) and is useful to see a
draft image instead of a empty rectangle upon inclusion of the postscript file into other drawing and
imaging software like IRIS showcase.

Default: "gs −sDEVICE=pgmraw −q −dNOPAUSE −sOutputFile=− −r%d −− %s"

IMAGE.previewResolution

integer resolution of the rough bitmap preview added to the vectorized postscript file in lines per inch.
Recommendations:

10 − very rough (1/10th of an inch)•
20 − a reasonable preview but no fine details•
30 − a fine preview, do not increase it any higher since the file will become too large.•

IMAGE.orientation

preference to specify image orientation.

= "portrait" <− default1.
= "landscape"2.
= "auto"3.

Default: "portrait"

IMAGE.paperSize

preference to specify paper size.

= "Letter (8.5x11")" <− default1.
= "Legal (8.5x14")"2.
= "11x17""3.
= "A4 (210x297mm)"4.
= "A3 (297x420mm)"5.

Default: "Letter (8.5x11")"

112 2.18.7. IMAGE

IMAGE.rgb2bw

rarray of 6 elements defining translation of rgb colors into black and white ('bw') grades. The array is
{RED_scale, GREEN_scale, BLUE_scale, RED_bias, GREEN_bias, BLUE_bias} and the default values
are {0.3125, 0.5, 0.1875, 0., 0., 0.}.

2.18.8. LIBRARY

table containing string paths of the icm parameter files, which are loaded by the read library
[mmff] command. The library files will be taken from the s_icmhome directory if no explicit directory
is provided. Extensions are automatically added. Defaults:

 LIBRARY.bbt="icm" # bond bending types
 LIBRARY.bci="icm" # mmff bond charge increments
 LIBRARY.bst="icm" # bond stretching types
 LIBRARY.clr="icm" # colors, gui controls
 LIBRARY.cmp="icm" # amino−acid comparison matrix
 LIBRARY.cnt="icm" # distant restraint types
 LIBRARY.cod="icm" # atom codes
 LIBRARY.hbt="icm" # hydrogen bonding types
 LIBRARY.hdt="icm" # hydration types
 LIBRARY.lps="icm.lps" # loop database, rebuilt with write model [append]
 LIBRARY.men="icm.gui" # GUI commands
 LIBRARY.mmbbt= "mmff" # mmff bond bending
 LIBRARY.mmbst= "mmff" # mmff bond stretching
 LIBRARY.mmtot= "mmff" # mmff torsions
 LIBRARY.mmvwt= "mmff" # mmff van der Waals
 LIBRARY.rst="icm" # variable restraint types
 LIBRARY.tor="icm" # precomputed icmff torsion params
 LIBRARY.tot="icm" # torsion types
 LIBRARY.vwt="icm" # van der Waals types
 LIBRARY.res={"icm","usr"}

Example:

 LIBRARY.res=LIBRARY.res // "./benz.res" # just append
 LIBRARY.cod="./newCodes.cod"
 read library

2.18.9. OBJECT

Controls atom requisites which are written to a file in the write object command. Extensions are
automatically added. Defaults:

 OBJECT.bfactor =yes
 OBJECT.charge =yes
 OBJECT.occupancy=yes
 OBJECT.site =yes
 OBJECT.display =no
 OBJECT.library =no
 OBJECT.auto =no

Example:

2.18.7. IMAGE 113

 OBJECT.auto = no
 OBJECT.display = yes
 read object "crn"
 display ribbon a_/1:40
 set plane 2
 display cpk a_/12
 write object "tm" # graphics and planes are written
 delete a_*.
 read object "tm"

2.18.10. PLOT

Contains settings used by the plot command. All real sizes are expressed in the Postscript "points" equal
to 1/72" (about 1/3 mm).

PLOT.numberOffset

integer offset for the X−coordinate with the number option. This option is used in a number of macros
generating multisection plots for amino−acid sequences.

Default (0).

PLOT.fontSize

real font size. Any reasonable number from 3. (1 mm, use a magnifying glass then) to 96.

Default (10.0).

PLOT.lineWidth

real line width for graphs (not the frame and tics)

Default (1.0).

PLOT.markSize

real mark size in points. Allowed mark types: line, cross, square, triangle, diamond, circle, star, dstar,
bar, dot, SQUARE, TRIANGLE, DIAMOND, CIRCLE, STAR, DSTAR, BAR. Uppercase words indicate
filled marks.

Default (1.0).

PLOT.Yratio

real aspect ratio of the ICM plot frame. Using link option of the plot command is equivalent to
setting this variable to 1.0. If PLOT.Yratio is set to 0. , the ratio will be set automatically to fill out the
available box optimally.

Default (0.8).

114 2.18.10. PLOT

PLOT.logo

logical switch for the ICM−logo on the plot.

Default (yes).

PLOT.color

logical to generate a color plot. Usually it does not make sense to switch it off because your b/w printer
will interpret the color postscript just fine anyway.

PLOT.orientation

preference for the plot orientation. Currently inactive. Default (yes).

PLOT.seriesLabels

preference to indicate position of a series/color legend inside the plot frame. You can provide
individual names for each series in the optional string array argument of the plot command. (e.g.
plot M_XY1Y2 {"Title","X","Y","Ser 1","Ser 2"}) Available choices:

1 = "none"•
2 = "right" <− default choice•
3 = "left"•
4 = "top"•
5 = "bottom"•

PLOT.font

preference for the title/legend font. The font size can only be redefined by editing the *.eps file (search
for the number before the scalefont string). Available choices:

1 = "Times−Bold"•
2 = "Times−Roman" <− default choice•
3 = "Helvetica"•
4 = "Courier"•
5 = "Symbol"•

PLOT.labelFont

preference for the data point label font. You can also redefine the font size with the PLOT.fontSize
variable. Available choices:

1 = "Times−Bold"•
2 = "Times−Roman" <− default choice•
3 = "Helvetica"•
4 = "Courier"•
5 = "Symbol"•

2.18.10. PLOT 115

PLOT.rainbowStyle

preference defining the color spectrum used by the plot area command. This command lets you
plot a function of 2 arguments and show the function value by color. By default the plot command uses the
minimal and maximal values of the provided matrix. You can enforce the range with the color option.
Available choices:

1 = "black/white"•
2 = "blue/white/red" <− default choice•
3 = "blue/rainbow/red"•

Example:

 read matrix # def.mat is the default one
 PLOT.rainbowStyle=1
 plot area def display # grey−scale, automatical min and max
 PLOT.rainbowStyle=3
 plot area def color={−10.,0.} display # enforce new range
 PLOT.rainbowStyle=2
 plot area def transparent={−2.,8.} display
low values − blue, middle [−2.,8.] − invisible, large red

PLOT.box

rarray of the origin and relative sizes of the ICM plot frame: { X_origin, Y_origin, X_size, Y_size }.
Box {0. 0. 1. 1.} fits the page optimally.

Default ({0. 0. 1. 1.}).

2.18.11. SITE

This table contains parameters and preferences used to display the sites, or important residues.

SITE.defSelect

string of significant site types (shown as one letter abbreviations) Sequence identity in the alignment
positions which have one of those sites is additionally rewarded in the alignment score calculation.

Default: "ABFGLMstepm"

SITE.labelOffset

(default 5. A) the real offset of the site label with respect to the residue label atom.

SITE.labelStyle

the style preference of the displayed site information:

"none"1.
"symbol" # one letter symbol, see site .2.
"TYPE" # < −− default choice3.

116 2.18.10. PLOT

"RES.TYPE"4.
"comment"5.
"full"6.

SITE.labelWrap

0.5 (inactive)

SITE.showSeqSkip

the string of the site types skipped in the show sequence (or alignment) commands.

2.18.12. WEBLINK

This table contains definitions of types of web links used in the web, show html, and write html
commands. The table is read from "WEBLINK.tab" file from the $ICMHOME directory. Change this file
for your own definitions. The weblink specification is used to extend the argument string substituted for %s
(e.g. "IL2_HUMAN" element of the table array linked according to the type

SP %s "http://www.aaa?%s" will be transformed into the IL2_HUMAN link. If %Ns specification is used, only
N characters of the argument string will be retain in the link. For example,

PDB %s "http://www.pdb?%4s" and 1xyz_a15_25 (specifying chain and residue range) will be
translated into

1xyz_a15_25 which in your browser will look like
this:

"AUTO" is another type which can be used in the link S_ "TYPE" ... expression. In this case the DB type is
automatically recognized according the database reference string pattern (see also WEBAUTOLINK). An
example table:

#>T WEBLINK
#>−DB−−−−−−DR−−LINK−−−−−−−
 PDB %s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6&uid=pdb|%4s|&Dopt=g
 NCBI g%s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6&uid=%s&Dopt=g
 EMBL %s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6&uid=emb|%s|&Dopt=g
 SP %s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6&uid=sp||%s&Dopt=g
 SPA %s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=s&form=6&uid=sp|%s|&Dopt=g
 PROSITE %s http://saturn.med.nyu.edu/srs/srsc?[PROSITE−acc:%s]
 MED %s http://www3.ncbi.nlm.nih.gov/htbin−post/Entrez/query?db=m&form=6&uid=%s

Example:

 read table "seqcomp.tab" #contains references to different databases
 web SR link SR.NA1 "PDB" SR.NA2 "AUTO"

2.18.11. SITE 117

2.18.13. WEBAUTOLINK

This table contains definitions of web link string patterns for automatic recognition in the web, show
html, and write html commands. The table is read from the "WEBLINK.tab" file in the $ICMHOME
directory. Change the file for your own definitions. Recognition is not perfect because the patterns overlap.

Example:

 read table "seqcomp.tab" #contains references to different databases
 web SR link SR.NA1 "AUTO" SR.NA2 "AUTO"

118 2.18.13. WEBAUTOLINK

2.19. Other shell variables

2.19.1. defCell

the real array of the default cell parameters. This definition is used in the Resolution and MaxHKL
functions if cell parameters are not provided as arguments.

Default: {1. 1. 1. 90. 90. 90.}

2.19.2. accFunction

the real array of the solvent accessibility penalty parameters
(as described in Batalov and Abagyan, 1999).

It contains the values of a, b, c and E damping parameters for
aminoacid substitution scores. Generally, if a residue is completely
buried (Area=0), its substitution scores will be used without
changes. If it is completely exposed, its substitution scores will be
multiplied by the minimal possible value of a. Between these cases
the substitution scores are modulated by a smooth ("arctangent")
function with a saddle point at Area=c, where the slope will be −b.
The fourth parameter is reserved for development.

This definition is effectively implemented in the Align(seq_1 seq_2area) }, Score functions and
find database command.

Default: {0.33 2.35 0.211, −15.0}.

See also: alignMethod .

2.19.3. gapFunction

the real array of the gap penalty parameters, which represent a piecewise−linear concave function (as
described in Batalov and Abagyan, 1999).

ATTENTION: at the present time this gapFunction is only active when alignMethod =2.

The first two values replace gapOpen and gapExtension traditional values. If present, the third
element of the array represents the length of the gap, starting at which further gapExtensions become
equal to the fourth element of the array. Likewise, if more elements are present, they represent pairs of the
threshold lengths of the gap and the new gapExtensions values. For example,

 gapFunction = {2.4 0.15 10. 0.05 20. 0.}

means that

gap penalty=2.25+0.15*L for L={ 0..10} (and for L=1 it is 2.4= gapOpen),•

2.19. Other shell variables 119

gap penalty=3.25+0.05*L for L={11..20} and•
gap penalty=4.25 for L>20•

The calculations are fastest for the traditional two−element
gapFunction. The three− or four−element
gapFunction invokes the optimized routines and is
50−70% slower. The general kind gapFunction costs
approximately 70−90% additional time for every pair of
gapFunction values. If the last gapExtension is zero,
it may be omitted. This definition is effectively implemented
in the Align , Score functions and find database
search command.

Default: {2.4 0.15}.

Recommended (put it in your _startup file): gapFunction = {2.4 0.15 10.}

This set will produce fast and structure−like alignments.

See also alignMethod, and accFunction (the accessibility attenuation parameters).

2.19.4. I_out

an integer array in which the output of some commands is stored.

2.19.5. M_out

matrix in which the output of some commands is stored.

2.19.6. R_out

real array in which the output of some commands is stored.

2.19.7. S_out

string array in which the output of some commands is stored.

2.19.8. swissFields

string array of SWISS−PROT fields to be read by default in read sequence swiss

120 2.19.4. I_out

2.19.9. readMolNames

string array in which the SDF−file comment fields containing database compound identifier and
description are preset. There is a standard place where database compound identifier should be stored in
SDF (MOL)−files. This is the first line of the entry. However most of the database providers got used to
leaving this line empty. Instead they put identifier and description in the end of the file in the following
fashion:

...
M END
> <CAT_NO>
R150002

> <NAME>
(5−OXO−HEXAHYDRO−PYRANO[3,2−B]PYRROL−1−YL)−ACETIC ACID METHYL ESTER

$$$$

In this particular case before using such database set

readMolNames = {"<CAT_NO>" "<NAME>"} # useful for Sigma−Aldrich files

Another example:

readMolNames = {"<CODE>" "<IUPAC_NAME>"} # useful for ACD database

2.19.10. Named Atom/Residue/Molecule/Object Selections

Examples:

 cc = a_//ca # created named selection variable cc
 show cc a_/3:15 # use it in the expression

In this case the named selection cc is a true ICM−shell variable, not just an alias for the Ca selection. Please
do not confuse it with another useful mechanism which allows you to use a string in a selection. This
mechanism is used in scripts and macros.

Example:

 cc = "a_//ca" # in this case cc is a string, not a selection
 show $cc a_/3:15 # $cc is replaced by a_//ca before parsing

2.19.11. as_out

an atom/residue/molecule/object selection variable where some commands or functions store their
output:

Rmsd•
Srmsd•
superimpose•
set tether•

2.19.9. readMolNames 121

show drestraint•
show tethers•

If atoms a_1./3/ca,c,n relate to atoms a_2./45/ca,c,n, then the first set will end up in as_out and the
second in as2_out.

2.19.12. as2_out

the second set of atoms (selection) returned by the following commands and functions:

Rmsd•
Srmsd•
superimpose•
set tether•
show drestraint•
show tethers•

See also as_out above.

2.19.13. Named Selections of Internal Variables (Dihedrals, Angles and
Bonds)

2.19.14. vs_out

The variable selection where some commands or functions store their output:

read variable saves a selection of loaded variables;•

2.20. Commands

2.20.1. alias

alias abbreviation word1 word2 ...

create alias

alias delete abbreviation

delete alias

It is important that the abbreviation is not used in the ICM−shell. The same names can not be given later to
ICM−shell objects.

Alias may contain arguments $0, $1, $2, etc. ICM−shell will pick space−separated words following the
alias name and substitute $1, $2, etc. arguments by the specified argument. $0 stands for all the arguments
after the alias name.

Examples:

122 2.19.12. as2_out

 alias seq sequence # seq will invoke sequence
 alias delete seq # delete alias name seq
 alias dsb display a_//ca,c,n # abbreviate several words to
 # reduce typing efforts
 # aliases with arguments
 alias NORM ($1−Mean($1))/Rmsd($1)
 show NORM {6,7,8,4,6,5,6,7,5,6} # make sure there is no space

2.20.2. align

align number: renumber residues sequentially

align number rs_residuesToBeRenumbered [i_firstNumber]

align number ms_chainsToBeRenumbered [i_firstNumber]

renumber selected residues, or residues in selected molecules or objects sequentially in all of them from
starting one or the specified first number. May be useful to deal with messy numbering in some pdb−files.
Example:

 read pdb "1crn"
 align number a_1 # renumber all res. 1 to N
 align number a_1/10:20 101 # just the selected residues from 101
 align number a_1 101 # renumber all res. 101 to 100+N

align number ms_chainsToBeRenumbered seq_master [i_offset]
renumber the residues of the selected molecule according to seq_master master sequence which is aligned
to the sequence of the selected chain. The alignment (pairwise or multiple) need to be linked to the
molecule/chain and both the chain sequence and the master sequence need to be covered by the alignment.
The molecular sequence can be generated with the make sequence [ms_chainsToBeRenumbered]
command. The can be either aligned anew the the master sequence with the Align function or appended
to a multiple sequence alignment using alignment projection.

This command may be useful in cases in which a structural model does not represent the entire sequence
because of omitted loops, N− and C− termini, while you still want to keep the numbering according to the
full master sequence. You might want to use the command also on models by homology generated with the
build model command.

Example:

 seqmaster = Sequence("ACDEFGHIKLMNPQRST")
 buildpep "−−DEFGH−−−−−PQRST" # dashes are skipped
 make sequence a_1 name="seqmodel" # sequence is auto−linked
 a = Align(seqmodel,seqmaster) # linked alignment
 align number a_1 seqmaster
 # Info> residues of a_def.m renumbered by sequence 'seqmaster' from alignment 'a'
 display residue label

align: ICM multiple alignment algorithm

align ali_SequenceGroupName [tree= s_epsFileName]

2.20.2. align 123

make a multiple alignment of specified sequences a sequence group resulting from the group sequence
s_groupName command. For pairwise alignment use the Align(seq1 seq2) function. The algorithm
includes the following steps (inspired by corridor discussions with Des Higgins, Toby Gibson and Julie
Thompson):

align all sequence pairs with the ICM ZEGA algorithm, and calculate pairwise distances
between each pair of aligned sequence with the Dayhoff formula, e.g. the distance between two
identical sequences will be 0. , while the distance between two 30% different sequences will be
around 0.5. The distance goes to an arbitrary number of 10. for completely unrelated sequences.
The distance matrix Dij can later be extracted from the alignment with the Distance(ali_)
function.

1.

build an evolutionary tree from Dij with the "neighbor−joining algorithm" of Saitou, N., Nei, M.
(1987) to determine the order of the alignment and calculate relative weights of sequences and
profiles from the branch lengths. The tree will be saved in the file defined by the tree option
(aligTree.eps file by default). The so−called Newick tree description string will be saved in
s_out .

2.

traverse the tree from top to bottom, aligning the closest sequences, sequence and profile or two
profiles. After each Needleman and Wunsch alignment, build the profile.

3.

generate the final neighbor−joining evolutionary tree and write the PostScript file with the tree to
disk.

4.

Examples:

 read sequences s_icmhome+"zincFinger"
 list sequences # see them, then ...
 group sequence alZnFing # group them, then ...
 align alZnFing # align them, then ...
 unix gs aligTree.eps # ... evolutionary tree ready
 # (gs is a PostScript previewer)

EST,DNA alignment and assembly

align new ali_sequenceGroup [seq_seed]

multiple alignment of ESTs and genomic DNA and consensus derivation. This command uses the external
the sim4 program to generate pairwise alignments between expressed DNA sequence and a genomic
sequence. The sim4 program can be downloaded from the
http://globin.cse.psu.edu/globin/html/docs/sim4.html site.

The procedure has the following steps:

sequences are sorted by length•
the longest sequence is chosen as the
seed sequence unless it is explicitly
provided

•

the longest sequence from the remaining
set is aligned to the seed sequence using
the external sim4 program.

•

the output of this program is parsed and
translated into the icm alignment

•

124 2.20.2. align

the consensus sequence is created and
becomes the master sequence

•

the procedure is repeated until all the
sequences are processed

•

the multiple sequence alignment is
further cleaned to compress spurious
gaps when possible. This cleaning
makes the consensus much more
compact.

•

The result of this command is best displayed with
the show color ali_ command.

An example:

 read sequence "http://www.ncbi.nlm.nih.gov/UniGene/" + \
 "download.cgi?ID=5198/tt> #
 read sequence "../Hs5198"
 group sequence unique u # squeeze out obvious redundancies and form group 'u'
 align new u # form multiple alignment and build consensus
 show color u

See also:

filtering, group sequence unique=".."•

Trans ()•
show [color] ali_•

align two molecules by their backbone topology

align [distance] ms_1 ms_2 [i_windowSize=15] [r_seqWeight=0.5]

This command finds the residue alignment (or
residue−to−residue correspondence) for two
arbitrary molecules having superimposable parts of
the backbone conformations. The structural
alignment identification and optimal superposition is
primarily based on the C−alpha−atom coordinates,
but the sequence information can be added with a
certain weight (the default value of r_seqWeight is
0.5 which was found optimal on a benchmark). The
structural alignment algorithm is based on the ZEGA
(zero−end−gap−alignment) dynamic programming

2.20.2. align 125

procedure in which substitution scores for each
i,j−pair of residues contain two terms:

structural similarity in a i_windowSize window between two fragments surrounding residues i and
j, respectively. This similarity is calculated as local Rmsd of the residue label atoms (these atoms
are C−alpha atoms by default but can be reset to other atoms with the set label command, e.g.
set label a_*.//cb). If the option distance is specified the deviation of the interatomic
distances between equivalent pairs of atoms (so called distance rmsd) is calculated instead of a
more traditional root−mean square deviation between atom coordinates of equivalent atoms. The
latter method is less accurate but an order of magnitude faster.

•

sequence similarity (if r_seqWeight > 0.). Average local sequence alignment score in the
i_windowSize window is calculated for i,j−centered pair of fragments. In this sense this sequence
similarity is different from the one used in pure sequence alignment (see the Align function), in
which just the i,j residue pair is evaluated. The default value of r_seqWeight of 0.5 is rather mild
(about a half of the structural signal).

•

The output:

ali_out contains structural alignment (if sequences linked to the molecules do not exist, they
will be created on the fly). The alignment can be further edited with the interactive alignment
alignment editor.

•

as_out contains the residue selection of the aligned residues in the first molecule•

as2_out contains the residue selection of the aligned residues in the second molecule•

M_out , the matrix of local structural/sequence similarity in a window is retained and can be
visualized by:

•

126 2.20.2. align

make grob color 10.*M_out name="g_mat # x,y,z scales
display g_mat
or
plot area M_out display grid link

See also:

Align(seq_1 seq_2 distance|superimpose). This function creates the first unrefined
structural alignment as described above.

•

find alignment which refines initial structural alignment.•

The overall result of the align command is equivalent to:

 a = Align(... superimpose) # superposition/RMSD based local str. alignment
 a = Align(... distance) # distance RMSD based local str. alignment

 find a superimpose 4.0 0.5

Example:

 read object s_xpdbDir + "/1brl.b/"
 read object s_xpdbDir+"/1nfp"
 rm a_*.!A
 display a_*.//ca,c,n
 color molecule a_*.
 align a_2.1 a_1.1
 center
 show String(as_out) String(as2_out)
 color red as_out
 color blue as2_out
 show ali_out

align heavy command for multiple alternative structural alignments.

align heavy rs_1 rs_2 [r_rmsd] [i_windowSize [i_minFragment]] [r_elongationWeight]

This method, as opposed to the default align ms_1 ms_2 generates many possible solutions and does
not depend on sequential order of the secondary structure elements. However, it leads to a combinatorial
explosion and is intrinsically less stable computationally, and generally requires more time. The command
finds the optimal 3D superposition between two arbitrary molecules/fragments (two residue selections rs_1
and rs_2).

The procedure generates structural fragments of certain initial length and superimposes all of them to
calculate the structural similarity distance. Then the "islands" of similarity are merged into larger pieces.
This process is controlled by the following arguments: i_windowSize is the residue length of structural
fragments for the initial fragment superposition. Fragment pairs with the rms deviation less than r_rmsd are
then combined, giving composite solutions of total residue length larger than i_minFragment. Acception or
rejection of the composite solutions is governed by the following score (the smaller, the better)

score = rmsd − (1.37 + Sqrt(1.16 * length − 15.1)), length >= 14

If length>14 , we use linear extrapolation of the score dependence:

2.20.2. align 127

score = rmsd − (1.37 + 1.068*(length−13))

The score is required to be less than r_rmsd. Practically, for longer fragments one can find much larger
RMS deviations according to the length correction of the score.

Defaults:

r_rmsd = 1. A•
i_windowSize = 15 residues•
i_minFragment = i_windowSize•
r_elongationWeight=0.1•

There may be several different reasonable solutions. All the solutions are sorted, shown and stored in the
memory. The two output selections as_out and as2_out contain the best scoring solution. Any solution
can be loaded and displayed. Additionally, a residue alignment is created for each solution. The decision
about which residues are aligned is based on the overall score described above for the of combined
fragments.

See also: How to optimally superimpose without the residue alignment

Example:

 read pdb "4fxc"
 read pdb "1ubq"
 display a_*.//ca,c,n
 color molecule a_*.
 align heavy a_1.1 a_2.1 12 1.5 .1
 center
 load solution 2 # load the second best solution
 color red as_out
 color blue as2_out
 for i=1,10
 load solution i
 color molecule a_*.
 color red as_out
 color blue as2_out
 pause # rotate and hit 'return'

 endfor

Note. Increase i_minFragment parameter (12 in the above example) to something like 20 if the program
hangs for too long. Interrupt execution with the ICM−interrupt (Ctrl \) if you want only the top solutions.

2.20.3. assign

assign sstructure: derive secondary structure from a pattern of hydrogen bonds

assign sstructure rs_ [{ s_SecondaryStructTypeCharacter | s_SSstring }]

Manual assignment of a desired secondary structure annotation to a residue fragment

assign specified secondary structure to the selected residues rs_ , e.g.

128 2.20.3. assign

 read pdb "1est"
 assign sstructure a_/* "_" # make everything look like a coil
 cool a_
 assign sstructure a_/1:10 "HHHH_EEEEE"
 cool a_

This command does not change the
geometry of the model, it only
formally assigns secondary
structure symbols to residues.

Note: to change the conformation
of the selected residue fragment,
according to a desired secondary
string, use the ICM −object and the
set command applied to both
sequences and molecular objects.

Automated derivation and assignment of secondary structure from atomic coordinates

assign sstructure rs_

If the secondary structure string is not specified, apply ICM modification of the DSSP algorithm of
automatic secondary structure assignment (Kabsch and Sander, 1983) based on the observed
pattern of hydrogen bonds in a three dimensional structure.

The DSSP algorithm in its original form overassigns the helical regions. For example, in the structure of T4
lysozyme (PDB code 103l) DSSP assigns to one helix the whole region a_/93:112 which actually consists
of two helices a_/93:105 and a_/108:112 forming a sharp angle of 64 degrees. ICM employs a modified
algorithm which patches the above problem of the original DSSP algorithm. Assigned secondary structure
types are the following: "H" − alpha helix, "G" − 3/10 helix, "I" − pi helix, "E" − beta strand, "B" −
beta−bridge, "_" or "C" − coil.

Examples:

 nice "1est" # notice that many loops look like beta−strands
 assign sstructure # now the problem is fixed
 cool a_

See the set rs_ s_SecStructPattern command to actually set new phi, psi angles to a peptide
backbone according to the string of secondary structure.

assign sstructure segment

assign sstructure segment [ms_molecules]

create simplified description of protein topology (referred to as segment representation). Segments
shorter than segMinLength are ignored. The current object is the default.

See also show segment, ribbonStyle, display ribbon.

2.20.3. assign 129

2.20.4. break

is one of the ICM flow control statements. It permits a loop (e.g. for or while) to be broken
before calculations have completed.

Examples:

 for i = 1, 8
 print "Now i = ", i, "and it goes up"
 if (i == 4) then
 print "... but at i=4 it breaks, Ouch!"
 break
 endif
 endfor

See also goto.

2.20.5. build

The build family of functions allows to create molecular objects

from sequence file (build s_seqfile)•
from sequence string (build string)•
from a linear chemical notation (build smiles)•
from a sequence and a template by homology (build model)•

It also adds implied hydrogens (build hydrogen) to a molecule and to find a loop in a database (
build loop)

build from sequence file

build [s_IcmSeqFileName] [library= { s_libFile | S_libFiles}]

reads s_IcmSeqFileName.seICM−sequence file and builds an ICM molecular object. This sequence
file is different from a simple sequence file and contains three (sometimes four) character residue names
defined in the icm.res residue library file (try show residue types to see the list). Use macro
buildpep if you want to build an object from a string with one letter coded sequences or a named
sequence (see the build string command below). The buildpep macro also allows to easily create
several molecules by using a semicolon ; separator. To get a D−amino acid instead of L−ones simply use D
as a prefix: DalaDarg. Specify N− or C−terminal modifiers directly in the file if needed. The build
command will create them in some default conformation (extended backbone with different molecules
oriented around the origin as a bunch of flowers). Several molecules can be specified in the ICM sequence
file.

Residue names can contain numbers (i.e. 4me). However, the residue numbers with a modification
character, such as 44a, 44b should contain a slash before the modification character (i.e. 44/a , 44/b). An
example in which we create a sequence of residues ala and 4me with numbers 2a and 2b, respectively: "se
2a ala 2b 4me".

130 2.20.4. break

Option library= lets you temporarily switch the library file. It can also be done by redefining the
LIBRARY.res array of the LIBRARY table.

Examples:

 build # def.se file
 build "alpha" # alpha.se file
 build "wierd" library="mod.res" # get residues from mod.res
#
 LIBRARY.res = {"icm","./myres"}
 build "a"

Use a convenient macro buildpep to build one or several−chain peptides with one− or three− letter code.
E.g.

 buildpep "ASFGDH;FFF" # two molecules
 buildpep "ala his trp" # one chain of three residues

build model by homology

build model seq_1 seq_2 ... ms_Templates ... [ali_1 ...] [margin= { i_maxLoopLength, i_maxNterm,
i_maxCterm, i_expandGaps }

build a comparative model (homology model) of the input sequences based on the similarity to the given
molecular objects. The margin arguments:

name default description
i_maxLoopLength999 longer loops are dropped

i_maxNterm 1 the maximal length of the N−terminal model sequence which extends beyond
the template

i_maxCterm 1 the maximal length of the C−terminal model sequence which extends beyond
the template

i_expandGaps 1 additional widening of the gaps in the alignment. End gaps are not expanded

Possible modes:
simple one−to−one mode: build model seq_1 [ms_1] [ali_1]•
N sequences − N corresponding molecules: build model seq_1 seq_2 .. seq_N ms_1,2,..N•

Example:

 l_autoLink = yes
 read pdb "x"
 read alignment "sx"
 build model ly6 a_
 ribbonColorStyle = "alignment" # grey−gaps, magenta−insertions
 display ribbon
#
 read pdb "2ins" # multichain
 read sequence unix cat
> a
GIVEQCCASV CSLYQLENYC N
> b

2.20.5. build 131

VNQHLCGSHL VEALYLVCGE RGFFYTPKA
> c
GIVEQCCASV CSLYQLENYC N
> d
VNQHLCGSHL VEALYLVCGE RGFFYTPKA
^D
 build model a b c d a_1.
Now optimize the side chains
 selectMinGrad = 1.5
 set vrestraint a_/*
 montecarlo fast v_/!I/x*
!I means residues which are not Identical to their template residues
use refineModel to energetically optimize the model

The algorithm performs the following steps:

Alignment adjustment: modifies the alignment according to i_expandGaps, and prepare a sequence with
the ends and the long loops truncated according to the alignment and the { i_maxLoopLength , i_maxNterm
, i_maxCterm } parameters.

Building a straight polypeptide from the model sequence: builds a full−atom polypeptide chain for this
new sequence. The residues in your model are numbered according to the template and all the inserted
loops residues are indexed with 'a','b', etc. E.g. the numbering may look like this:
200,201,203,204,204a,204b,204c,205 ... This numbering allows one to follow more easily the
correspondence between the template and the model. If you do not like this numbering scheme, just use the

align number a_/*

command and the model residues will be renumbered from 1 to the number of residues.

Backbone topology transfer: inherits the backbone conformation from the aligned (but not necessarily
identical) parts of the known template

Identical side−chain building: inherits conformations of sidechains identical to their template in the
alignment

Non−identical side−chain placement: assigns the most likely rotamer to the side chains not identical in
alignment. If you want to do more than that apply:

set vrestraint a_/* # assigns the rotamer probabilities
montecarlo fast v_/Cx/x* # x* selects for all chi (xi) angles

You can also manually re−optimize any side chains either interactively (right−mouse click on a residue
atom, then select Shake Amino−Acid Side−Chain) or from a script, e.g. for residue 14:

set vrestraint a_/* # assigns the rotamer probabilities
montecarlo v_/14/x*
ssearch v_/14/x* # systematic conformational search for the 14−th sidechain

Loop searches:

searches the icm.lps which may contain entire PDB−database for suitable loops with matching loop
ends and as close loop sequence as possible, inserts them into the model and modifies the side−chains

132 2.20.5. build

according to the model sequence.

The loop file can be easily customized, updated and rebuilt with the write model [append]
command in a loop over protein structures. To use your custom loop file, redefine the LIBRARY.lps
variable.

Loop refinement and storing alternatives:

adjusts the best loops found and keeps a stack of loop alternatives which can later be tested (see the
Homology gui−menu)

The output

The build model command returns the following variables:

LoopTable master table containing list of all the loops, their conformation in alphanumeric code, a
measure of the deviation of the database loop ends and the model attachment sites, the loop length and the
numerical conformation type (not really important). E.g.

#>T LoopTable
#>−1_Loop−−−−−−2_Conf−−−−−−3_Rmsd−−−−−−4_Nof−−−−−−−5_Type−−−−−
 a_ly6.a/7:10 31R21 0.1 11 1
 a_ly6.a/60:63 1RRR32 0.1 8 1
 a_ly6.a/43:46 211331RRRR 0.240658 4 1

Individual loop tables

Tables called LOOP1 , LOOP2 , etc. for each inserted loop. The tables contain the coded conformational
string, relative energy, the position of the offset in the structure database file (offset) to be able to
extract this loop again, and the rmsd of the loop ends. Example:

icm/ly6> LOOP1
#>T LOOP1
#>−Conf−−−−−−−−energy−−−−−−offset−−−−−−rmsd−−−−−−−
 31R21 0. 3623594 0.092104
 31RR2 1.519275 3427772 0.083372
 R1121 1.612712 3750108 0.097777
 R1R32 1.639177 1529882 0.087113
 R1RR2 1.880638 3806768 0.079335
 31R32 3.714823 4561270 0.053853
 R3RR2 4.531406 4003324 0.042881

Writing and restoring the tethers

You can write both template and the model and the tethers between them to files (see section write tethers .

Trouble shooting

build model may crash. A possible reason of the crash is that the pdb file is not correctly parsed due to
formatting errors. Many pdb files still have formatting errors, especially those which are generated by other
programs or prepared manually. In this case the read pdb command is trying to interpret the field shifts
and, as with any guess work, frequently gets it wrong. For example, try 2ins and you will see that the

2.20.5. build 133

atom or residue names are shifted. To fix the problem, try to use the exact option of the read pdb
command.

build loop to a model by homology

build loop rs_fragments

rebuild specified loop based in a PDB−database search (see build model).

An example:

 read object s_icmhome+"crn"
 build loop a_/20:26 # rebuild this loop

build [smiles | sln] s_smiles_or_sln [name= s_ObjName]

create an ICM−object from the smiles−string or sln−string,
respectively.

Set l_readMolArom to no if you do not want to assign aromatic
rings from a pattern of single and double bonds (and formal charge
and bond symmetrization for CO2, SO2, NO2or3, PO3) upon
building. To suppress suppress the symmetrization and consequential
charging of CO2, set the l_neutralAcids flag to yes .

Examples:

 build smiles "CCO" # ethanol

 build smiles "Oc(cc1cc2)ccc1cc2N"

 build smiles "Oc(cc1cc2)cc(ccc3)c1c3c2"

 # dicoronene
 build smiles "c1c2ccc3ccc4c5c6c(ccc7c6c(c2c35)c2c1c1c3c5c6c"+\
 "(c1)ccc1c6c6c(cc1)ccc1ccc(c5c61)cc3c2c7)cc4"

 # NAD
 build smiles "[O−]P(=O)(OCC1OC(C(O)C1O)N1C=2N=CN=C(N)C=2N=C1)"+\
 "OP(=O)([O−])OCC1OC(C(O)C1O)N=1C=CC=C(C=1)C(=O)N"

 # Hexabenzo(bc,ef,hi,kl,no,qr)coronene
 build smiles "c1c2c3c4c(ccc3)c3c5c(c6c7c(ccc6)c6c8c(ccc6)c6c9"+\
 "c(ccc6)c(cc1)c2c1c9c8c7c5c41)ccc3"

 # rubrene

134 2.20.5. build

 build smiles "c1c2c(c3ccccc3)c3c(c(c4ccccc4)c4c(cccc4)c3c3ccccc3)"+\
 "c(c2ccc1)c1ccccc1"

Usually the build smiles command is not sufficient. The molecule needs to be optimized in the mmff force
field and several conformations need to be sampled. The quick way of doing it is shown below.

 build smiles "CC=1C(=O)C=CC(C=1)=O"
 strip a_
 build hydrogen
 set type mmff
 set charge mmff
 convert
 read library mmff
 tolGrad = 0.001
 ffMethod = "mmff"
 minimize cartesian

A more rigorous way of doing the conversion is done with this macro:

macro scan2Dto3Dconvert
 oldGrad = tolGrad
 tolGrad = 0.0001
 ffMethod = "mmff"
 vwMethod = "soft"
 unfix V_//a* !V_//avt*
 v = Value(v_//a* !V_//avt*)
 m = Matrix(Nof(v) 2)
 m[?,1] = v
 m[?,2] = Rarray(Nof(v) 170.)
 v = Min (Transpose(m))
 set v_//a* !V_//avt* v
 delete m v
 fix V_//a* !V_//avt*
 delete stack
 store conf 1
 for i=2,5
 load conf 1
 randomize a_// 0.03
 randomize v_//
 store conf i
 endfor
 minimize stack "vw,14,to,hb"
 errorAction = "none" # avoid crashing on cartesian min.
 minimize cartesian stack 3000 "vw,14,to,hb,bb,bs,af"
 if(!Error()) then
 load conf 0
 else
 load conf 1 # try to restore a good conformation
 endif
 vwMethod = "exact"
 minimize cartesian 3000 "vw,14,to,hb,el,bb,bs,af"
 if(Error()) print "ERROR> 2Dto3D failed"
 errorAction = "break"
 delete stack
 tolGrad = oldGrad
 randomize a_//* 0.01
endmacro

2.20.5. build 135

See also the Smiles function and the find molecule s_Smiles1 S_Smiles2 command to find
a substructure

build object from string

build string s_IcmSequence [name= s_ObjName]

create an ICM−object from a s_IcmSequence string (see the build command above). To get a D−amino
acid instead of L−ones simply use D as a prefix: Dala Darg. Specify N− or C−terminal modifiers directly in
the file if needed. The build command will create them in some default conformation.

Examples:

 build string "se nh3+ ala his coo−" name="pep" # one peptide named a_pep.
 build string "ml a \nse nh3+ his coo− \nml b \nse trp" # molecules a and b
 build string IcmSequence("GHFDSFSDRT","nter","cooh") # translate and add termini
#
Using alias BS build string "se $0"
 BS ala his trp
#
Using alias BSS build string IcmSequence($0)
 BSS "SFGDFAGSFG" # quoted one−letter code string
 read sequence "GTPA_HUMAN.seq"
 BSS GTPA_HUMAN # sequence name

build hydrogens according to topology and formal charges.

build hydrogen [as_heavyAtoms] [i_forcedNofHydrogens]

add hydrogens to the specified heavy atoms according to their type and formal charge. All heavy
atoms of the current object are used by default. If your have hydrogens already and their configuration is
wrong, you can delete them with the delete hydrogen command. The number of hydrogens may be
enforced if the optional i_forcedNofHydrogens argument is specified. See also the set bond type
command.

Examples:

 read mol2 s_icmhome+ "ex_mol2" # several small molecules
 display a_4.
 build hydrogen a_4. # added and displayed

2.20.6. call icm script

call s_ScriptFileName [only]

invokes and executes an ICM−script file. End the script with the quit command, unless you want to
continue to work interactively, or use it in other script.

Option only allows you to suppress opening the script file if the call command is inside a block which
is not executed. By default the script file is opened and loaded into the ICM history stack anyway, but the
commands from the file are not executed.

136 2.20.5. build

Calling scripts inside conditional expressions.

Examples:

 call _startup # execute commands from _startup file

 if Version() !~ "* R *" goto skip: # Rebel is not licensed
 call _rebel only # only means do not read _rebel if skipped.
skip:

2.20.7. center

center [{ as_ | grob }] [only] [static] [margin= r_margin]

centers and zooms the screen on selected atoms as_ or graphics objects. Default objects: all existing atoms
and graphics objects. The r_margin argument is given in Angstrom units and can be used to set a relative
size of the selection and the frame. Normally all dimensions of the molecule/grob are taken into account, so
that the molecule can be rotated without changing scale.

Options:

only : do not rescale, translate only, i.e. move the selected atoms to the center of the graphics
window

•

static : scale only according to the visible X−Y dimensions and the margin. Do not take the
Z−dimension into account in the size calculation as if you do not intend to rotate objects. That
implies an assumption that the orientation of molecules/grobs/maps will not be changed.

•

Examples:

 nice "1est"
 center
 center Sphere (a_/15:18)
 center a_/1:2 only # keep the scale

 read grob s_icmhome+"beethoven" # a genius
 display g_beethoven smooth
 center g_beethoven static # 10 A margin

2.20.8. clear

clear terminal screen (no big deal).

2.20.9. color family of commands

The color command allows you to color different shell objects, their parts, or different graphical
representations with by colors specified in various ways.

2.20.7. center 137

color: main command

The main color command:

color [{ as_ | g_grobName }] [wire | hbond | cpk | ball | stick | xstick | surface | skin |
ribbon [base]] [color_specification]

The color can be specified as

color_name | s_ColorName | color[i_index] | i_Color | r_Color | I_Color | R_Color | *rgbr=R_3rgb [
window = R_MinMax]

color selected atoms (as_) or graphics object(s) according to specified color. The
window={minValue,maxValue} option allows to provide a range for color mapping. Example:

 color ribbon a_/ Bfactor(a_/ simple) window=−0.5//2.

This command will clamp Bfactor(a_/ simple) values which are normally around zero, but may range from
large negative values to large values, to the [−0.5,2.] range.

The defaults:

objects: the current object (a_) only (to color all objects, use a_*.)•
graphic representation: wire . To color cpk, xstick, ball, etc., specify them explicitly•
color: the default coloring (atoms − by atom type, which can be changed in the icm.clr file;
ribbon − by secondary structure)

•

Examples of how the defaults work:

 nice "1crn"
 display # also displays wire
 color # only wire frame of the current object
 # is colored by atom type (the default color)
 color ribbon # only ribbon of a_ by secondary structure type
 color ribbon red # only ribbon as specified
 color a_1,2. ribbon red # only ribbon as specified

color_name. Color may be just a word (such as black, white, grey, blue, red, yellow, green, orange,
magenta, ...) or string (as "green"), or integer (convenient for automatic coloring within ICM loops), or
integer array, or real array (to color according to a certain property, as electric charge or Bfactor). Default:
color by atom type; in ribbon representation by secondary structure type.

In DNA and RNA ribbons, bases can be colored separately (e.g. color ribbon base a_1/*
white), the default coloring being A−red, C−cyan, G−blue, T or U−gold. Colors themselves and all the
defaults may be changed in the icm.clr file. Different color specifications with examples:

color red unquoted color name

color "red" quoted color name or a string variable

138 2.20.9. color family of commands

color color[4] use color number 4 from the list of "named" colors (first section of the icm.clr file).
You can show the colors with their numbers by the show color command and their total number is
accessible via the Nof(color) function. This mode is useful if you need to color selected elements with
contrasting colors rather than with a smooth spectrum.

Example:

 display a__crn. # load and display molecule
 show colors
 color a_/1:5/* color[89]
 for i=1,Nof(a_/*)
 color a_/$i color[i] # gay coloring
 endfor

color 3 (integer) color number from the "rainbow" section of the icm.clr file. Currently there are 128
colors (i=0,127) in this section and they form a smooth transition from blue to red via white (not really a
rainbow). You may change the "rainbow" colors in the icm.clr file. Number 128 becomes blue again.
Execute these lines to see how it goes:

 display "Colors"
 for i=1,255
 color background i
 print i
 endfor

color 4.5 (real) similar to the previous type. The color is interpolated. 4.5 will be the average between the
"rainbow color" 4 and "rainbow color" 5.

color selection {1,3,5} or color selection {1.,3.,5.} color each element of the selection by
I_Color or R_Color. The scale is determined by the minimal and the maximal elements of the array,
independently of the array length. First the numbers in the array are scaled so that its minimum corresponds
to the first color in the "rainbow" section and its maximum to the last color. Then the scaled numbers are
applied sequentially to the elements of the selection. If the number of elements in the array is shorter than
the number of elements in the selection, the array is applied periodically. In the opposite situation the
excessive numbers are not used for coloring but (attention!) they will be used for scaling. Therefore, if you
want to influence scaling you may append extremes to the color−property array. See also:
GRAPHICS.rainbowBarStyle which determines if and where the color bar will appear.

Example:

 display a__crn. # load and display molecule
 cc=Charge(a_//*)//{−1.,1.} # add explicit min. and max. charges
 color a_//* cc

color rgb={0.2 0.5 0.1} find the closest color with the following rgb components.

color rgb="ff0000" string representation of rgb color (like in html), each of the three colors
(red,green,blue) is defined by two characters in hexadecimal form.

2.20.9. color family of commands 139

color background

color background [Color | s_Color | i_Color] colors the background to the specified color.

Examples:

 buildpep "ASDWER" # hexapeptide
 color a_/1:4 green # the first four residues in green
 color # return to default colors by atom type

 # load, display crambin from the PDB file 1crn
 display a__1crn. only
 # color atoms according to their B−factor
 color a_1crn.//* Bfactor(a_1crn.//*)
 # crambin's ribbon
 # from blue N−term to red C−term gradually
 display a_/* ribbon only
 color a_/* Rarray(Count(1 Nof(a_/*))) ribbon

 # another crambin's ribbon
 # from blue N−term to red C−term gradually
 color background blue
 # thick worm representation
 assign sstructure a_/* "_"
 GRAPHICS.wormRadius= 0.9
 display a_/* ribbon only
 color a_/* Count(1 Nof(a_/*)) ribbon

color cursor

color cursor [colorName]

colors the residue cursor which can be displayed with the display cursor rs_ [colorName]
command.

Example:

 nice "1crn"
 display cursor a_/21 # use arrows to move the res. cursor
 color cursor blue

See also: display cursor, Res(cursor)

color grob : special ways to color grobs

automatic assignment of different colors to different grobs

color grob unique

In addition to the main color command which colors grobs there is a special command to automatically
assign the displayed grobs to different colors. See example for the split command.

color grob by matrix of RGB values for each vertex.

140 2.20.9. color family of commands

color g_grob M_rgbMatrix

a special command to color grobs by colors defined for every vertex by three RGB numbers. This type of
matrix is returned by the Color(g_grob) command. This command allows for gradual disappearance of a
grob into background.

Example:

 g = Grob("SPHERE",3.,5) # a wire sphere
 display g smooth
 color g Random(Nof(g),3, 0., 1.) # color randomly
 M_colors = Color(g) # extract current colors
make the sphere disappear (modern poetry)
 for i=1,20 # shineStyle = "color" makes it disappear completely
 color g (1.−i/20.)*M_colors
 endfor
 for i=20,1,−1 # bring the sphere back
 color g (1.−i/20.)*M_colors
 endfor

color grob by map: coloring surfaces by 3D scalar field

color grob { map | map_VolumeProperty } I_transferFunction R_bounds

colors the surfaces of grobs by the interpolated nearest values of scalar field defined by the
map_VolumeProperty map.

Transfer function is the same as in color map .

color grob potential : coloring grob by electrostatic potential

color grob potential [fast] ms_sourceAtoms

(REBEL feature) calculates electrostatic potential waterRadius
away from the surface of the g_skin graphics object and color surface
elements according to this potential from red to blue. The potential is
calculated either by the REBEL boundary element solution of the
Poisson equation, or, if option fast is specified, by a simple Coulomb
formula with the dielConstExtern dielectric constant (78.5 by
default).

The local value of potential is clamped to the range [−maxColorPotential,
+maxColorPotential]. It means that a potential larger than maxColorPotential is represented

2.20.9. color family of commands 141

by the same blue color, while values smaller than maxColorPotential are represented by the same red
color. The real range is reported by the command and you can adjust maxColorPotential to cover the
whole range. To suppress the absolute maxColorPotential threshold and use auto−scaling instead set
maxColorPotential to 0. The color bar with values will appear according to the
GRAPHICS.rainbowBarStyle preference. There are two macros to generate potential−colored skins:
rebel and rebelAllAtom

The second one (given below) considers all the atoms (including hydrogens) with their charges.

Examples:

 macro rebelAllAtom ms_
 display ms_
 make grob skin ms_ ms_
 make boundary ms_
 color grob potential ms_ # HERE
 display grob smooth
 endmacro

 read object "crn"
 rebelAllAtom a_1

See also: electroMethod, make boundary, delete boundary, show energy "el",
Potential().

color label

color label [as_] [Color | s_Color | color [integer] | i_Color | r_Color | I_Color | R_Color]

Color labels associated with the selected residues or atoms.

Examples:

 read object "crn"
 display a_//n,ca,c white
 display label residue
 color label a_/* Count(1 Nof(a_/*))
 color label a_/5:10 magenta

See also: display label, resLabelStyle.

color map

color map [s_mapName] [I_colorTransferFunction]

color the current or the specified map according to the color transfer function supplied as
I_colorTransferFunction. All grid points are divided to Nof(I_colorTransferFunction) color classes
according to the normalized function value (sigma units around the mean value) and each class is colored
as specified in the I_colorTransferFunction (0 means transparent).

If the number of I_colorTransferFunction elements is odd (2* n+1) the class boundaries are the following:

142 2.20.9. color family of commands

−infinity•
Mean− n *sigma,•
Mean−(n −1)*sigma,•
Mean−(n −2)*sigma,•
...•
Mean− 1*sigma,•
Mean•
Mean+ 1*sigma,•
...•
Mean+(n −1)*sigma,•
Mean+(n)*sigma.•
+infinity•

For even number of elements (2* n), boundaries are shifted by half a sigma, so that the middle class is
between Mean−0.5*sigma and Mean+0.5*sigma. Color codes are in arbitrary units since the array is
normalized so that the highest value corresponds to the red color. Deep blue is 1. Zero is always the
transparent color (no coloring). The spectrum is defined in the icm.clr file. Examples of coloring:

{0 0 0 0 0,0 0 0 3 10} default map coloring, color only high densities (blue from 3 to 4
Sigma, red >4 Sigma). Comma only shows you where the mean is.

•

{0 1 0} color only Mean+− 0.5*sigma nodes, ignore high and low densities.•
{1 0 2} color low and high densities by different colors, ignore densities around the mean.•
{1 2 3 0 5 6 7} similar the previous one, but with more grades•

Example:

 color map {1 2 0 4 5}

color molecule

color molecule [ms_molecules]

a special command to color the displayed and selected molecules differently. It is a bit tricky (solely for
your convenience): if there are both proteins and small "hetero"−molecules (e.g. waters), the colors will not
be wasted on little guys. If all the molecules are non−protein (i.e. no residues defined as amino−acids, or
a_/A is empty) , than they will be colored differently.

color ribbon

color ribbon

color the displayed ribbon . See also base, GRAPHICS.dnaBallRadius,
GRAPHICS.dnaStickRadius, and other DNA settings in GRAPHICS.

color volume

color volume [Color | s_Color | i_Color]

determines the color of the fog in the depthcueing mode (activated with Ctrl−D). For example, if you
want that distant parts of you structure are darker (black fog), but the background is sky−blue, you will do

2.20.9. color family of commands 143

the following:

Examples:

 color background blue
 color volume black

2.20.10. compare: setting conformation comparison parameters for the
montecarlo command

compare { as_ | vs_ } options

The goal of the two following compare commands is to provide a desired setting before the
montecarlo command . This command defines a filter which is used to decide how many and what
conformations from the stochastic optimization trajectory are kept as low energy representatives of a
certain area in conformational space. This metric is also used for the subsequent stack manipulations, e.g.
compress stack.

The compare command defines the distance measure between molecular conformations which is used to
form a set of different low energy conformers in the course of the stochastic global optimization procedure.
The defined distance is compared with the vicinity parameter and determines whether two
conformations should be considered different or similar (i.e. belonging to the same slot in the
conformational stack). The compare command determines the spectrum of conformations that will be
retained in the stack, accumulated during a montecarlo procedure. The default comparison set is a set of
all free torsion variables (see compare vs_). Other methods compare atom RMSD with and without
superposition, and compare only the atoms in the vicinity of a static object (compare surface).

compare by deviations of cartesian coordinates

compare [static] as_

The command needs to be run when Cartesian root−mean−square deviation for positions of selected atoms
(as_) as a distance measure between stack conformations. Set the vicinity parameter to about 2.0
Angstrom if you want to consider conformations deviating by more than 2 A as different conformational
families.

By default the selected atoms in different conformations will be optimally superimposed before the
coordinate RMSD is calculated. The static option suppresses superposition and measures absolute
deviation of the coordinates between conformations. The static option is relevant for ligand atoms in
docking simulations to a static receptor.

The result of this procedure is that an internal flag is set to perform cartesian RMSD calculations during
montecarlo run, and a set of selected atoms is marked for comparison.

compare by deviations of internal coordinates/torsions.

compare vs_

144 2.20.10. compare: setting conformation comparison parameters for the montecarlo command

use angular root−mean−square deviation for selected internal variables (usually torsion angles) as distance
(set vicinity to at least 30.0 degrees accordingly)

Examples:

 compare v_//phi,psi # compare ONLY the backbone angles
 vicinity=30.0 # consider two conformations
 # with phi−psi RMSD < 30. as similar

 compare a_2//ca static # compare Cartesian deviations
 # of the second molecule's alpha−carbon atoms
 # without prior optimal superposition
 vicinity=3.0 # consider two conformations with second
 # molecule deviation < 3 A as similar

compare surface: dynamically selecting comparison atoms

compare surface as_currentObjSelection | as_staticReferenceObject.

dynamically calculates a subset of as_currentObjSelection near as_staticReferenceObject for comparison
by static RMSD inside montecarlo command.

This is useful for protein−protein docking simulations when you want to measure the sRmsd distance
between the current conformation and the stack conformations ONLY for the interface residues of the
moving molecule. The interface residues are dynamically determined as those which are close to the static
receptor specified in the second part of the selection. This static receptor should reside in a separate object.

The vicinity size is determined by the selectSphereRadius parameter

An example in which we sRmsd−compare only those carbons of barstar which are next to the barnase
surface.

 read pdb "1bgs" # a complex
 read pdb "1a19.a/" # the protein ligand only
 convert
... # make maps and other actions to prepare protein−protein docking
 compare a_//c* | a_1.1 surface # will use only
 selectSphereRadius = 7.
...
 montecarlo

2.20.11. compress

compress stack [i_fromConfNumber i_toConfNumber]

Remove similar and/or high energy conformations from the conformational stack. During a montecarlo
run, some conformations of the generated conformational stack may be substituted by newly calculated
ones with lower energies. New conformations may violate the initially correct distribution of the
conformations in the slots of the stack as defined by the vicinity parameter and by comparison mode
specified by the compare command. The compress command compares all the pairs of the stack
conformations, identifies pairs of conformations in which two conformations are separated by a distance
less than the vicinity threshold, and removes the higher energy stack conformation from each close

2.20.10. compare: setting conformation comparison parameters for themontecarlo command 145

pair. Optional arguments i_fromConfNumber and i_toConfNumber define a subset of the conformations in
the stack which are to be analyzed and compressed (if any). The whole stack (from the first to the last
conformations) is processed by default.

Note that if two close conformations are compressed into the better energy one, the number of visits of the
resulting conformation will be a sum of the two numbers of visits.

See also How to merge and compress several conformational stacks

Example (define a distance and compress) we generate two stacks, merge them and re−compress two sets
with a different comparison criterion:

 buildpep "VTLFVALY"
 mncallsMC = 5000
 montecarlo # generates stack, compar
 write stack "f1"
 delete stack # clean up and
 montecarlo # generates another stack
 read stack append "f1" #
 compare v_/2:5/phi,psi # compare settings are different
 vicinity = 40. # new vicinity
 compress stack

2.20.12. connect

connect [append] [none] [{ ms_molecule | grob }]

connects selected molecules to the
mouse for independent rotation (by
the LeftMouseButton) and
translation (MiddleMouseButton)
with respect to the original
coordinate frame.

Option append will add selected molecule to the previously connected molecules

Note, that rotations/translations in the connect mode actually change the atomic coordinates of the
selected molecules and keep the coordinate system unchanged in your graphics window.

To restore the usual global mode (i.e. all objects/molecules are disconnected and the mouse does not
change their absolute positions, but rather the point of view), hit the Esc key when the cursor is in the

146 2.20.12. connect

graphics window. To restore the global mode temporarily press the Shift button. Connect can also be
activated by a −−Ctrl−Alt−RightMB−Click on any atom of the chosen molecule (see graphics
controls).

Use: connect none to switch back to the global connection

2.20.13. continue

continue

skip commands until the nearest endfor or endwhile. Note, that in contrast to FORTRAN (god bless
it), it is NOT a dummy operator.

Example:

for i=1,10
 if i==3 continue # do not print 3
 print i
endfor

See also: flow control statements.

2.20.14. convert

convert [exact] [charge] [tether] [os_non−ICM−object] [s_newObjectName]

converts an incomplete non−ICM−object (e.g. object of type 'X−Ray' resulting from the read pdb
command) into a true ICM−object for which you may calculate energy, build a molecular surface and
perform all operations.

There are two principally different modes of conversion. In the default mode the program looks at the
residue name and tries to find a full−atom description of this residue in the icm.res file. This search is
suppressed with the exact option.

Hydrogen atoms will be added if the converted residues are known to the program and described in the
icm.res library. If the object selection is omitted, the current object will be converted. If default
s_newObjectName is generated by adding number "1" to the source object name.

The default convert command is best used to convert PDB entries which have explicit residue
descriptions and usually do not have hydrogen coordinates. In this mode each residue name is searched in
the icm.res file and the coordinates of the present heavy atoms are used to calculate the internal geometrical
variables (bond lengths, bond angles, phase and torsion angles) for the full atom model.

The exact option: converting protein with unusual amino−acids

Some pdb−entries may contain non−amino acid residues, or modified amino−acid residues which do not
need to be replaced by standard full atom library entries with the same name . In this case use the exact
option. This option suppresses interpretation by short residue name and converts the existing atoms and
bonds in single−residue molecules (amino acids in peptides and proteins will still be extended by
hydrogens upon conversion, to suppress that conversion write the molecule as mol and read it back, then

2.20.13. continue 147

convert exact). Option exact may be necessary because chemical compounds with a four−letter short
name identical to one of the amino−acid residues, could be mistakenly converted into an amino−acid with a
corresponding name.

The charge option

Normally, upon convertion, the atomic charges are taken from the icm.res library entries. Option
charge tells the program to inherit atomic charges from the os_non−ICM−object. For small molecules,
use set charge, set bond type and, possibly, build hydrogens before conversion of a new
compound. i_out will contain the number of heavy atoms missing from the pdb−template.

Additional cleanup

Actually more precedures need to be performed to prepare a functional object from crystallographic
coordinates, e.g. identifying optimal positions of added polar hydrogens, assigning the most isomeric form
of histidine , etc.

We recommend the convertObject macro instead of the plain convert command to achieve those
goals.

Refining the model

To refine a model use the refineModel macro.

convertObject macro

The convertObject macro is a convenient next layer on the convert command. The macro may convert
only a few molecules out of your pdb file, optimize hydrogens and do some other useful improvements of
the model.

Comparing convert, minimize tether and regularization.

It is important to understand the difference between the convert command, the minimize tether
command and the regularization procedure implemented in the macro regul .

All three create ICM−objects from PDB coordinates, but details of generated conformations and the
amount of energy strain will differ.

We recommend to use convertObject macro for most serious applications involving energy
optimization.

convert

uses all−atom residue templates (including hydrogens) from the icm.res library•
creates temporary ICM−library descriptions for unknown residues•
makes geometry identical to the PDB coordinates: bond length and bond angles may be distorted.•
the converted structure will be energy strained because of common imperfections of the PDB
entries and the hydrogen atoms added by the procedure

•

C−alpha−only structures will not be properly converted because a special prediction algorithm is
required to extrapolate the coordinates of all atoms from C−alpha atom positions.

•

148 2.20.14. convert

these objects are good enough for graphics, skin, secondary structure assignment, rigid body
docking. They are not good for loop modeling and side−chain modeling.

•

needs to be followed by polar hydrogen placement and histidine state prediction (implemented in
the convertObject macro)

•

minimize tether threading a regular polypeptide through an incomplete/gapped set of
coordinates.

you need to create a sequence file first and use the build command;•
you will need to create the missing residues manually, say, with the write library command;•
build will use all−atom residue templates including hydrogens, and will preserves the fixation;•
the linear chain with fixed idealized covalent geometry or, actually, any fixation you define, will
be threaded onto the PDB coordinates in the best possible way;

•

Ca−atom PDB structures will be handled properly if all backbone torsion angles are unfixed;•
the resulting ICM−object will be strained and will need further relaxation.•

full regularization and refinement

uses minimize tether to create the starting conformation;•
employs a multistep energy minimization (annealing) of the structure to relief energy strain;•
these are the best objects that can create in ICM for further simulations.•

(see macro regul for details).

Examples:

 read pdb "1a28.a/" # reading just the first molecule
 convertObject yes yes no no # the best way to prepare for docking
 # convert + optimizes polar H, His and Pro

 read pdb "1crn" # X−ray object, no hydrogens, no energy parameters
 convert # a_1crn_icm ICM−object will be created
 convert a_1. "new" # a_new. ICM−object will be created
 convert a_1. exact # keep modified residues as is

 read mol2 s_icmhome+"ex_mol2"
 set object a_catjuc.
 build hydrogen
 set type mmff
 set charge mmff
 convert

Converting a chemical compound from a mol/sdf or mol2 files.

To convert a chemical from GUI menus, follow these steps:

make sure that bond types and formal charges are correct•
select the MolMechanics.ICM−Convert.Chemical menu item, check the parameters and
press OK. Normally to convert from 2D to 3D you need to optimize the ligand. ICM will perform
a multiple start global optimization using the MMFF94 force field (internally it runs the
convert2Dto3D macro). If you want to preserve the geometry, select the keepGeometry
option.

•

2.20.14. convert 149

Command line conversion To perform the same conversion in a batch run the convert2Dto3D macro,
or, to make a conversion without full optimization from a command line or script, issue the following
commands:

assuming that bond types and formal charges are correct
build hydrogen
set type mmff
set charge mmff
randomize a_//!vt* 0.01 # sometimes it helps to avoid singularities
convert
set v_//T3 180. # making flat peptide bonds
fix v_//T3 # optional

Converting a chemical compound and rerooting the tree at the same time

convert as_rootAtom

if an atom selection is provided instead of the object selection, the tree will be rerooted to the selected
atom.

2.20.15. copy

copies stuff which CANNOT be copied by direct assignment such as: a=b

copy [strip] [tether] os_ [s_newObjectName] [delete]

create a copy of os_ with the specified name. Default source object is the current object. The default name
is "copy" (object a_copy.)

Option delete (must be specified at the end of the line) forces the command to overwrite the object with
the same name if there is a name conflict.

Option strip applies the strip operation to the copied object. The stripped object has a PDB type and
is much smaller in memory.

Option tether applies tethers from the source object to the atoms of the copy−object. For further
refinement see the refineModel macro.

Examples:

 read pdb "1crn"
 copy a_ # creates a_copy.
 copy a_1. "aaa" # create a copy a_aaa.

 read object "rough" # unrefined object
 copy a_ strip delete tether # create a_copy. and tether to it

2.20.16. crypt

crypt key= s_password { s_fileName | string= s_string }

150 2.20.14. convert

encrypts the file s_fileName or string s_string in place (the size of the encrypted file/string is exactly the
same), adds extension .e to the file name. If string is encrypted, its name is not changed. Apply the
operation again to restore the file or string. You may encrypt both text and binary files. Note that this
command has nothing to do with the unix crypt utility. ICM uses different algorithm.

Example:

 crypt key="HeyMan" "_secretScript" # encrypt and create *.e file
 crypt key="HeyMan" "_secretScript.e" # decrypt it

 ss="Secret rumour: Div(Rot(F))=0 !"
 crypt key="fomka" string = ss # encrypt
 show ss
 crypt key="fomka" string = ss # decrypt
 show ss

2.20.17. delete ICM shell objects

delete shell objects or their parts.

delete ICM−shell object

delete [alias] [alignment] [factor] [grob] [iarray] [integer] [logical] [
macro] [map] [matrix] [profile] [rarray] [sarray] [sequence] [string] { name1 |
s_namePattern1 } name2 ...

ICM−shell objects have unique names; to delete some of them just type

delete { icm−shell−objectName1 | s_namePattern1 } icm−shell−objectName2 ...

You may use name patterns with wildcards (see pattern matching) and add explicit specification of
the ICM−shell object type, if you want the search to match only the objects of particular type. If the
ICM−shell object type is not specified, all the shell−variables will be considered.

Examples:

 delete aaa # delete ICM−shell object aaa
 delete a b c # delete ICM−shell objects a, b and c
 delete "*" # delete ALL ICM−shell objects added by user
 delete "mc?a*" # delete ICM−shell objects matching the pattern
 delete rarrays # delete ALL real array
 delete objects # delete ALL molecular objects, same as delete a_*.
 delete rarray "a*" # delete real arrays starting with 'a'

delete alias

delete alias

see alias delete alias_name . Example:

alias ls list
alias delete ls

2.20.17. delete ICM shell objects 151

delete atom or variable selection

delete as_selectionName

or

delete vs_selectionName

delete atom or variable selections. Important: keep in mind that deleting the named selection is not the
same as deleting actual molecules or objects selected by them (see below: delete os_ or delete
ms_). The number of named selections is limited to about 10 in each category, therefore you may need to
delete them from time to time.

Examples:

 buildpep "ASFGD" # build a molecule
 vsel = v_//phi,psi # this is a vselection
 delete vsel

 asel = a_//c*,n* # this an aselection (atom selection)
 delete asel

delete atom

delete as_atoms : *delete *atoms as_namedSelection

delete selected atoms in a non−ICM object. The selection here must be a constant atom selection, rather
than a named selection (e.g. you can say delete a_/1:10/* but NOT aaa = a_/1:10/* ,
delete aaa).

To delete a named variable, use delete atom name Example:

 read pdb "1crn"
 delete a_/1:10/*

 aaa = a_/18:20
 delete atom aaa

delete hydrogen

delete hydrogen as_

delete selected hydrogen atoms in a non−ICM object. See also build hydrogen. To delete hydrogens
in an ICM object, strip it first.

delete object

delete { object | os_ }

delete molecular object. Make sure that you specify an object selection (a_1crn. is correct, a_1crn.*
or a_1crn.//* is INCORRECT.) To delete an object from a selection variable (as_out,as2_out or

152 2.20.17. delete ICM shell objects

as_graph, or any use defined aselection variable), use delete atom as_namedSelection (e.g.
delete atom as_graph) or specify the selection level explicitly.

Examples:

 delete object # delete ALL molecular objects
 delete a_*. # delete ALL molecular objects
 delete a_2,4. # delete objects number 2 and 4
 delete a_2a*. # delete objects with names starting from 2a

 read pdb "1crn" # load crambin
 convert # create the second object named 1crn_icm
 # from the pdb object
 delete a_1. # delete the 1st pdb−object
 delete Object(as_graph) # graphical selection

delete molecule

delete [molecule] ms_

delete separate molecules from molecular objects. The integer reference number(s) of molecule(s) which
can be shown by the show molecule command and used in molecule selections are redefined after
deleting or moving molecules from or in the ICM−tree, respectively.

To delete a molecule from a selection variable (as_out,as2_out or as_graph, or any use defined aselection
variable), use delete atoms as_namedSelection (e.g. delete atom as_graph) for non−ICM
objects, or use the Mol function to specify the selection level explicitly (e.g. Mol(as_graph)).

Examples:

 read pdb "2ins" # load insulin with water molecules
 delete a_2ins.w* # delete water molecules
 delete atoms as_graph # deletes selected non−ICM atoms/molecules
 delete Mol(as_graph) # deletes selected non−ICM atoms/molecules

delete bond

delete bond as_singleAtom1 as_singleAtom2

delete a covalent bond between two selected atoms. This command is used to correct erroneous
connectivity guessed by the read pdb command. It is particularly important when you are going to create
a new ICM−residue using the write library command and the entry to it in the icm.res or your
own residue file (it has the same format). In interactive graphics mode you may type delete bond and
then click two atoms with the CTRL button pressed.

Examples:

 read pdb "newmol" # automatic bond determination is not perfect
 delete bond a_/3/cg1 a_/5/ce2 # disconnect two carbon atoms

See also: make bond and make bond atom_chain .

2.20.17. delete ICM shell objects 153

delete boundary

delete boundary

an auxiliary command to free additional memory allocated by the make boundary command.

delete conf

delete conf i_stackConfNumber [i_stackConfNumberTo]

delete a specified conformation from the stack or a series of conformations starting from
i_stackConfNumber to i_stackConfNumberTo

delete drestraint

delete drestraint [as_1 [as_2]]

delete distance restraints formed between specified atom selections as_1 and as_2. If no selection is
specified all distance restraints are deleted

Examples:

 delete drestraint a_mol1 a_mol2 # intermolecular restraints

delete label

delete label i_StringLabelNumber

delete graphics string label (text in the graphics window). These strings have no unique identification
names, they are just numbered. Numbers are compressed as you delete some labels from the middle of the
list.

Examples:

 delete label 1 # delete the first displayed label

See also:

show label to find out the label number and
display label to create and display a string label.

delete sequence

delete sequence i_NofLastSequences

delete sequence [i_minLength i_maxLength]

no arguments: delete all ICM−sequences•
one integer argument: delete last i_NofLastSequences sequences•

154 2.20.17. delete ICM shell objects

two integer argument: delete sequences shorter than i_minLength or longer i_maxLength•

delete site

delete site [{ s_siteString | i_siteNumber| I_siteNumbers }] ms_

delete the sites of the selected molecules. The sites can be specified by their name, or number. All sites
are deleted by default.

Example:

 nice "1est" # has 13 sites.
 delete site a_1.1 12
 delete site a_1.1 {3,4,5}
 delete site a_1.1 "FT CONFLICT 178 178" # blanks are unimportant
 delete sites # delete all of them

delete sstructure

delete sstructure seq_

delete the assigned secondary structure to prepare the sequence for the secondary structure prediction (see
the Sstructure function).

delete disulfide bond

delete disulfide bond [all] [{ rs_Cys1 rs_Cys2 | as_atomSg1 as_atomSg2 }]

delete specified or all disulfide bridges in ICM objects.

Examples:

 # SS−bond specified by residue, or
 delete disulfide bond a_/15 a_/29
 # by atoms
 delete disulfide bond a_/15/sg a_/29/sg
 # remove all SS−bonds in the current object
 delete disulfide bond all

See also: make disulfide bond and (important!) disulfide bond.

delete peptide bond

delete peptide bond [as_N as_C]

delete specified extra peptide bonds in ICM objects (e.g. imposed to form a cyclic peptide).

Example:

 delete peptide bond a_/15/c a_/29/n

2.20.17. delete ICM shell objects 155

See also: make peptide bond and peptide bond.

delete stack

delete stack

delete stack of conformations.

See also read stack, write stack, and delete conf.

delete table

delete { T_table | table_expression }

delete the specified complete table or just the entries selected by the expression.

Examples:

 group table t {1 2 3} "a" {4. 5. 7.} "b"
 delete t.a == 2 # the second entry
 show t
 delete t # the whole thing

delete term

delete term s_terms

switch off the specified terms of the energy/penalty function.

Examples:

 delete terms "tz,sf" # do not consider tethers and solvation contributions

delete tether

delete tether [as_]

delete tethers of the specified atoms (as_), if no selection is specified all tethers are deleted.

2.20.18. display

display molecules or graphical objects

display model

display [wire |cpk |ball |stick |xstick |surface |skin |ribbon [base]] [as_ [as_2]] [
color] [virtual] [plane] [center [center_options]]

display specified graphics primitives for selected atoms or residues.

156 2.20.17. delete ICM shell objects

Once something is displayed and your cursor is in the graphics window you may rotate, translate, zoom and
move both clipping planes with the mouse and keystrokes.

To refer to the base part of DNA/RNA represented as ribbon , use the additional specifier called base,
which can be separately displayed and colored. E.g.

 makeDnaRna "ACTG" "mydna" yes yes "dna"
 display ribbon base
 color ribbon base a_1 blue

Display surface atoms may be defined by TWO arbitrary selections (it would mean: display surface of
atoms as_1 as they are surrounded by atoms as_2)

Defaults: wire representation, all atoms, coloring according to atom type.

color options

2.20.17. delete ICM shell objects 157

The color can be specified by a number of ways (see the color command for a more detailed description)
: Color (e.g. red), s_Color (e.g. "red"), numerical color:

i_Color | r_Color | I_Color | R_Color [window= R_2minmax]

The window array of min and max values allows to clamp the value you want to map to a color to the
specified range.

Other options:

center : will perform the center command on the displayed object(s).

plane : will display the object the way it was saved, e.g.

Example:

 nice "1crn"
Display something and save the object with the graphical information
 color ribbon green
 display a_/3:5 cpk
 write object auto "tm"
 q
% icm
 read object "tm" # now contains graphics information
 display plane

virtual : additionally displays the coordinate axes, virtual atoms and virtual bonds starting from the
origin. It is a good way to visualize the whole ICM molecular tree as it grows from the origin. This option
is applicable only to the ICM molecular objects.

More examples:

 buildpep "AFSGDH;QWRTEY" # two peptides
 display # display current object and color atoms
 # according to atom type
 display a_1 red # display the first molecule and color it red
 display skin a_/5 a_* yellow # display skin of the 5th residue
 # as surrounded by all the atoms
 display ribbon # display ribbon for all the residues

 read pdb "2drp" # a pdb file
 assign sstructure a_1/123:134,153:165 "H" # No sstructure in 2drp
 assign sstructure a_1/109:114,117:121,141:144,147:151 "E"
 display a_1 ribbon red # two Zn−fingers
 display a_1/113,116,143,146/!n,c,o xstick blue # Cys residues
 display a_1/129,134,159,164/!n,c,o xstick navy # His residues
 display a_2,3 cpk magenta # Zn−atoms
 adna1=a_4//p,c3[*],c4[*],c5[*],o3[*],o5[*] # two DNA chains
 adna2=a_5//p,c3[*],c4[*],c5[*],o3[*],o5[*]
 display adna1 xstick white
 display adna2 xstick aquamarine
 display adna1 adna1 surface white
 display adna2 adna2 surface aquamarine
 center
 display "Zn−finger peptides complexed with DNA" pink

158 2.20.17. delete ICM shell objects

display 4 chains of insulin as 4 thick worms colored from N−to C−terminus
 read pdb "2ins"
 color background blue
 assign sstructure a_/* "_" # thick worm representation
 GRAPHICS.wormRadius= 0.9
 display a_/* ribbon only
 color a_1/* Count(1 Nof(a_1/*)) ribbon
 color a_2/* Count(1 Nof(a_2/*)) ribbon
 color a_3/* Count(1 Nof(a_3/*)) ribbon
 color a_4/* Count(1 Nof(a_4/*)) ribbon

examples of DNA and RNA ribbons
 nice "4tna"
 resLabelStyle = "A"
 display residue label
 color residue label a_/??u gold # ??u also selects modified Us
 color residue label a_/??a red

display new: refresh or unclip view

display new : *display *restore display restore plane

commands to mimic some of the interactive controls. These commands are primarily used in GUI
commands (see icm.gui file) and scripts/macros.

new : rebuilds some graphical representations (e.g. your as_graph has been changed in the shell and you
need to refresh the image, or you changed the orientation and want to redisplay the labels elevated above
the skin surface by resLabelShift).

restore : a softer action than new .

restore plane : moves the clipping planes beyond the displayed objects (keystroke: Ctrl−U, or the
'Unclip' button) .

display off−screen

display off [i_Width i_Height]

Sometimes you want to generate some images in a script without opening an explicit graphics window.
The display off command opens an off−screen rendering buffer of i_Width by i_Height size in pixels,
in which all the usual display/color/undisplay/center commands work as usual. NOTE: one
cannot have both off−screen and on−screen displays in one ICM session.

An example script (can also be performed interactively):

 display off 400 300
 nice "1est"
 rotate view Rot({0. 1. 1.} 50.)
 write image "est1"
 unix xv est1.tif
 set window 700 800 # NB: 'center all' will be applied
 write image "est2"
 unix xv est2.tif

2.20.18. display 159

 display a_/4/o cpk
 center a_/3,4
 write image "est3" rgb
 unix xv est3.rgb
 build string "se ala trp"
 display off 400 300
 display skin
 write image "est3" rgb delete
 unix xv est3.rgb

display origin

display the axis of the coordinate frame. The length of the arrows is defined by the axisLength
parameter. Use undisplay origin to undisplay it. E.g.

 read pdb "1crn"
 display
 display origin
 undisplay origin

display box

display box [R_6boxCorners]

display graphics box specified by x,y,z coordinates of two opposite corners of a parallelepiped. This box
can be resized and translated interactively with the Left and Middle mouse buttons:

Resizing: Grab a corner of the box with the Left−Mouse−Button and drag it to resize the box•
Translating: Grab a corner or a center of the box with the Middle−Mouse−Button and translate•

Example:

 buildpep "ala his trp"
 display box Box(a_/1) # change it interactively

See also the Box () function which returns six parameters describing the box.

Examples:

 build string "se ala his" # a peptide
 display
 display box # the default box position/size
 display box {0. 0. 0. 2. 2. 2.} # or
 display box Box(a_/2 1.2) # surround the a_/2 by a box with 1.2A margin

display cursor

display cursor [alignment] [rs_] [color] [s_Symbol]

display the residue cursor at the specified single residue rs_. Move the cursor with the left and the right
arrows. You may redefine the color (default 'red') and the cursor symbol (default '#').

160 2.20.18. display

If the alignment option is specified, a pairwise alignment of the cursor molecule (the model) and the
template to which residues of this molecule are tethered is shown. To get the alignment you need two
objects:

an ICM−object of your model, it can be just an extended polypeptide after the build command,
or a preliminary model. Set your cursor to this molecule

•

the template (a simpler non−ICM object is possible) to which the residues of the model are
tethered with the set tether command.

•

A set of commands for editing the alignment includes: Arrows,Insert and Delete for aligning and
unaligning the cursor residue with its template counterpart, respectively, Ctrl−arrows for shifting the
tethers; PageUp and PageDown for 'undo' and 'redo' actions, respectively. It is important that the alignment
is a derivative of the tether pattern, and what you really edit is tethers.

Example:

 read pdb s_icmhome+ "x"
 read alignment s_icmhome+"sx"
 cool
 display cursor # or press CURSOR button in GUI
move cursor with arrows , press delete to unalign
 display cursor a_/15 "@" magenta # full command
 display cursor alignment a_/15 # ds alignment on top (try to move the cursor)
 show Align(a_) # the edited alignment

display clash

display clash [as_1 [as_2]] [r_vwReductionRatio]

display all the interatomic distances between two atom selections which are shorter than the sum of van der
Waals radii multiplied by the r_vwReductionRatio parameter (0.8 by default). IMPORTANT: this will
work only for the ICM−objects. Use the show energy "vw" command (and pay attention to the current
fixation) to precalculate interaction lists.

This command shows many irrelevant short contacts. dsEnergyStrain , display gradient , etc.
seem to be more informative.

See also: show clash, undisplay and atom energy gradient (force) analysis with: show a_//G or
display a_//G.

Example:

 read object "crn"
 show energy "vw"
 display clash a_/11 a_/!11 0.75 # distances < (R1+R2)*0.75
this is an alternative method which analyzes the gradient
 selectMinGrad = 100. # analyzes forces greater than 100
 display ribbon grey
 display Res(a_//G)
 display gradient a_//G
 color Res(a_//G) ribbon magenta

2.20.18. display 161

display drestraint

display drestraint as_

displays drestraints, disulfide bonds, and peptide bonds imposed on selected atoms.

See also: read drestraint, set drestraint, make disulfide bond, make peptide
bond, make drestraint.

Example:

 build string "se ala his trp"
 display
 set drestraint a_def.a1/3/hz2 a_def.a1/1/hb3 2
 display drestraint
 minimize "vw,14,to,cn"

display gradient

display gradient as_

display vectors of energy derivative with respect to atom positions or selected atoms as_ .

Important: the gradient must be pre−calculated by using one of the following commands: show
energy or minimize . The values of gradient components (lengths of vectors for each atom) can be
shown by show gradient as_. When a gradient vector is displayed, two transformations are performed:
it is scaled and colored to represent the range of values in the most convenient and natural way while still
being able to deal with a wide range of gradient values from negligible to 10 to the thirtieth power, as may
be the case for a strong van der Waals clash. When all gradient vectors are under 20 kcal/mole*A they will
be colored by the "cold" colors (blue...green...yellow) and will be assigned a length less than 2 Angstroms.
If you see a red and long vector you may have a problem. Check it by zooming in and using show
gradient as_. You can also select only atoms with gradient greater than the threshold value
selectMinGrad by typing a_//G and display only specified strained atoms. It helps to get rid of little
blue arrows for unstrained atoms.

Examples:

 buildpep "ala his trp glu leu"
 randomize v_//phi,psi
 show energy
 selectMinGrad= 200.
 display gradient a_//G

display grob

display grob [solid][smooth][dot][reverse] [transparent]

display g_Name1 g_Name2 ... options

display grob select ... options

162 2.20.18. display

display all, specified, or graphically selected graphics object(s) . They are referred to as grob in the
ICM−shell and as "3D meshes" in the GUI interface. The display grobs command will display all
existing graphics objects. Options:

dot will show only dot−vertices of the object.•
reverse to invert lighting; this option will change directions of the grob surface normals (will
turn the grob inside−out)

•

smooth enforces the Gouraud shading method to smooth the solid surface.•
solid allows solid surface representation of the object and requires that the original object has
information about triangles forming the solid surface.

•

transparent makes solid grob transparent•

One can also color and undisplay graphics objects, as well as connect to them.

Examples:

 read matrix "def.mat" # 2D sin(r^2)/r^2 function of a grid
 make grob solid def # convert matrix into a graphics object g_def
 display g_def smooth # a hat of the 22st century
 display g_def reverse # shine light from inside the head
 display grob transparent # like Lenin in Mausoleum
now you can double−LeftMB−click on it and Alt−X it to your satisfaction

display hbond

display hbond [as_] [r_maxHbondDistance] [only]

Only hydrogen bonds of the current object may be displayed. Before calling this command, you
should use any of the following commands: show hbond, show energy, minimize to calculate the
list of hydrogen bonds. The real argument r_maxHbondDistance defines an upper bound of the distance
between a hydrogen and a potential hydrogen acceptor to place the pair to the hydrogen bond list. (Default
value of r_maxHbondDistance parameter is 2.5 A.) The list is recalculated for each new loaded molecular
object. Hydrogen bonds on display are colored according to their hydrogen−acceptor distances. The option
only allows to display hydrogen bonds without corresponding molecular object. Longer and shorter H−X
distances in the hydrogen bond are color−coded, from red to blue, respectively.

For ICM object the hydrogen bonds are calculated much faster.

See also: undisplay hbonds, show hbonds.

display label

display [{ atom | residue }] label [selection]

display variable label v_selection

a graphics label with atom name, residue name, variable name for all or selected atoms, residues or
variables respectively. The text of this label is not user−defined, although you can control it in two different
ways. First, residue label style can be set using either Ctrl−L in the graphics window or
resLabelStyle preference , and variable label style either by Ctrl−V, or setting varLabelStyle

2.20.18. display 163

preference. Second, the ICM−shell string variable s_labelHeader defines a prefix string for all labels.
For example, if you display CPK atoms you may move the label to the right from the atom center by
s_labelHeader=" " .

The _aliases file has convenient aliases (e.g. ds for display, unds for undisplay, re , for residue, va
for variable) for those of us who like typing commands. In this case you may just type ds va la to
display variable labels, etc.

Examples:

 buildpep "FAHSGDH"
 display residue label #
 undisplay label
 display residue label a_/his
 display variable label v_//phi,psi
 display variable label v_//* as_graph
 display atom label a_/1:3/*
 undisplay label
or with aliases:
 ds re la a_/1,3
 unds la
 .. etc.

display map

display { map | map_name } [I_colorTransferFunction]

displays a real function defined on a three−dimensional grid (i.e., an electron density map). Optional
iarray argument defines a color transfer function according to deviation from the mean. The color
transfer function is explained in the color map section.

See also the color map command.

Example:

 build string "se his arg"
 make map potential "el" Box(a_/1,2/* , 3.)
 display a_
 display map m_el {3 2 0} # high values are invisible
 make grob m_el 2.
 display g_el

See also related commands: read, write, delete, list, show map, set, make (1), make (2) and
file format icm.map .

display movie : simulation trajectory

display movie [sstructure] [image [= s_framePath] [rgb | targa | png | gif]] [
s_MovieName] [i_From [i_To]] [r_Smooth1 [r_Smooth2]] [as_1] [center [as_2]]

lets you play, stop and reverse a Monte Carlo simulation trajectory as well as write a series of images for
future assembly of those images into movies. To obtain the movie info use

164 2.20.18. display

read movie s_MovieName

Integers i_From and i_To specify the frame range. Real values r_Smooth1 and r_Smooth2 determine
minimum and maximum smoothing parameters (i.e. number of additional frames, inserted if conformation
change is too dramatic). Specifying atom selection as_1 defines a certain fragment on to the initial
conformation, of which subsequent conformations are superimposed. Option center with selection as_2
determines a fragment for graphics window centering (all, if center without as_2). When playing a
movie, you can use ICM interrupt (Ctrl−\) to stop, and then toggle stepwise frame playing, reverse, or
quit playing. The default is to play a whole movie without smoothing, superimposition or centering.

Option image allows to automatically save a series of image files in the specified directory s_framePath or
in the default s_tempDir directory. Allowed image formats are: rgb, targa, png, gif . The file
extensions will correspond to the image file format. The image file names consist of the default path and
name, appended with the frame number. Example:

 display movie image="/tmp/f"
 /tmp/f_1.png
 /tmp/f_2.png
 ...
 s_tempDir = "/home/jack/X"
 display movie image rgb
 /home/jack/X_1.rgb
 /home/jack/X_2.rgb
 ...

All the other image preferences may be predefined by the IMAGE table.

Option sstructure will dynamically reassign secondary structure while going through conformations of
each frames. This option is very useful if you perform peptide/protein simulation and want to see if
secondary structure elements are forming transiently.

See also: movie file.

Examples:

 # seq. alpha.se
 build "alpha"
 display ribbon wire a_//!h*
 read movie s_icmhome+"alpha"
 # reduces the size of TIFF files
 IMAGE.compress=yes
 IMAGE.color =yes
 # a separate directory is actually better
 s_tempDir = "/usr/tmp/"
 # create a series of /usr/tmp/X*.tif files
 display movie "alpha" center image="X"
 IMAGE.color =no
 # now a series of black/white /usr/tmp/alpha*.rgb files
 display movie center image rgb i

2.20.18. display 165

display ribbon

display ribbon [base] rs_ color

display ribbon . Option base is used for displaying cartoon
representations of the bases on the DNA/RNA ribbons.

See also base, GRAPHICS.dnaBallRadius, GRAPHICS.dnaStickRadius, and other dna
settings in GRAPHICS.

display site

display site rs_ color

display site information. Switch between different types of the site information with the
SITE.labelStyle preference.

display skin or dotted surface

display { skin | surface } as_1 as_2

display analytical molecular surface, also referred to as skin, or solvent accessible surfacearea . Each
display skin command will delete the previously displayed skin in the current plane. To display
several different skins, use the set plane command to change the current graphics plane before you
issue the display skin command. You can also convert the skin into a grob with the make grob skin
command. You can co−display many grobs on the same plane, as well as make the grob transparent. This
grob can be further split into individual shells with the split command. See also: How to display and
characterize protein cavities.

Example:

 build string "se ala his glu" # test tripeptide
 display # the wire model
 display skin a_/1 a_/1 # skin around the 1st residue or just press <F1>
 set plane 2 # key with your cursor in the graphics window
 display skin a_/3 a_/3 # skin around the 3st residue
 # now you can toggle planes with F2 and F1
 display surface # solvent−accessible surface

display string

display s_StringText [auxiliary] [color font= i_FontSize] [r_XscreenPosition
r_YscreenPosition]

166 2.20.18. display

display a text string in the graphics window. Relative X and Y screen

coordinates (ranging from −1. to 1.) of the string beginning may be
specified to display the string in a given location. Defaults are x = −0.9, y
= 0.9, i.e. upper left corner of the screen.

The string can be dragged later to any location by the middle mouse button. Two fonts are at your disposal:
the default font (usually times) and the auxiliary font (usually symbol). Both fonts can be redefined by the
set font command. You can also switch to the auxiliary font and back inside the string by backslash−A
(\A). (.e.g "Red: \Aa\A−helix"). You can also list and delete your string labels by the list label and
delete label commands.

Examples:

 display "Crambin" # a simple string

 display "Act.site of \Ab\A−lactamase" yellow # Greek beta letter

 display Name(a_1.) red 28, 0. 0.9 # first object name
 # in the middle
 # (font size=28)

display tethers

display tethers [as_] [r_minDeviation]

displays tethers assigned to the selected atoms as_ with deviation larger than r_minDeviation. Tethers can
be imposed between atoms of an ICM−object and atoms belonging to another object, which is static and
may be a non−ICM−object. (0. by default).

display window

display window [i_xLeft i_yDown i_xSize i_ySize]

displays an empty window of the specified size and position. This command is convenient for demo scripts.
See also: set window

2.20.19. elseif

elseif

2.20.18. display 167

is one of the ICM flow control statements, used to realize conditional statements. See also:
if, then, and endif .

2.20.20. endfor

endfor

is one of the ICM flow control statements, used to perform a loop in ICM−shell calculations. See
also for.

2.20.21. endif

endif

is one of the ICM flow control statements, used to realize conditional statements. See also
if, elseif, and then .

2.20.22. endmacro

A command ending a macro .

Examples:

 macro threeEssentialsOfLife # declare new macro
 # define essentials
 l_info=no
 modes={"\n\tOoops!!\n","\n\tOuch!!\n","\n\tWow!!\n"}
 # randomly pick a line
 print modes[Random(1,3)]
 endmacro
 threeEssentialsOfLife # invoke macro

2.20.23. edit

edit icmShellVariable

interactively edit the ICM−shell variable using your favorite editor defined by the s_editor variable.

Examples:

 edit mncalls # actually it is easier to type: mncalls=333
 edit FILTER # edit a system table, do not change names of components
#
 read table "pdb1" # read table with search results
 edit SR # edit table SR

2.20.24. endwhile

endwhile

168 2.20.20. endfor

is one of the ICM flow control statements, used to perform a loop in ICM−shell calculations. See
also while.

2.20.25. exit

exit [s_message]

exit from a script file to interactive mode. Do not confuse this command with the exit option in, say,
highEnergyAction preference.

Similar to return [error s_message] from a macro .

To quit the program, use the quit command.

2.20.26. find

a family of commands for sequence and pattern searches, chemical matching, 3D pharmacophore matching,
and alignment optimization.

find alignment : automated structural alignment

find ali_initial [superimpose] [r_threshold= 3. [r_retainRatio= 0.5]]

find the best structural alignment of two proteins by refining the inaccurate initial alignment ali_initial with
the goal of finding the largest possible subset of residues which have similar local backbone fold in 3D
space.

Option superimpose automatically superimposes molecules according to the found structural alignment
upon completion of the iterations. This command needs a starting alignment of 2 sequences linked to the
molecules with at least one atom per residue. If Ca atoms are not found the atoms carrying the residue label
(see the set label command) are used.

Low gap penalties of 1.8 and 0.1 are recommended for the initial sequence alignment.

Algorithm : At each step aligned pairs of atoms which are further than r_threshold from each other are
disconnected so that at least r_retainRatio pairs are be retained. Then the molecules are superimposed
again and new residue pairs are tested and accepted if it leads to a lower overall rmsd. Warning: the result
strongly depends on the relevance of the starting alignment to the best 3D alignment. Sometimes 3D
irrelevant sequence alignment pairs do not tend to disconnect to allow transformation into a global 3D
alignment: e.g. if only one pair of elongated helixes is aligned in the starting alignment and it is only a
small part of an optimal alignment which would be completely different, it might not be eventually found.

See also other types of structural searches and superpositions:

find segment,fold search finds structural similarity on the basis of secondary structure
elements (no sequence).

•

qsearch and find pdb: search a database of a single structure for a fragment with a given
sequence pattern and partial structural similarity (e.g. loop ends match).

•

2.20.25. exit 169

superimpose: performs structural superposition, the command can do it on the basis of
sequence alignment on the fly.

•

Example:

 read pdb "1nfp"
 read pdb "1brl.b/"
 rm !Mol(a_*./A)
 make sequences a_*.
 aa=Align(1brl_1_b 1nfp_m1)
 ds a_1.//ca,c,n grey
 ds a_2.//ca,c,n green
 superimpose a_1.1 a_2.1 aa
 center
 find aa superimpose
 show aa

 gapExtension=0.05
 ab=Align(1brl_1_b 1nfp_m1)
 find ab 4. 0.7 superimpose
 show ab # better

find database: sequence and pattern searches

find database [unique] [delete] [write] s_databasePath [exact [margin=
i_nOfMutations]][seq_1 ..] [ali_1 ..] [output= s_projectName] [r_probabilityThreshold]

find database [unique] s_databasePath pattern={ s_pattern | S_patterns }[output=
s_projectName] [r_probabilityThreshold] [margin= i_seqMargin]

fast sequence or pattern search through a sequence database. The sequence search program performs a
full gapped optimal sequence alignment, which is a global alignment with zero−end−gap penalties
(ZEGA). These alignments are more rigorous (not heuristic) than popular BLAST of FASTA searches. The
latest statistics of structural significance of sequence alignments derived for a number of residue
substitution matrices will be applied (Abagyan and Batalov, 1997) to assess the probability that a
matching fragment shares the same 3D fold. The pattern search identifies sequence patterns (e.g.
"A?[LIV]?\{3,5\}[!P]") in database sequences.

Arguments:

exact performs a very fast search for identical or almost identical sequences. The margin=
i_nOfMutations parameter specifies the allowed number of mutations.

•

option unique makes the program ignore hits with sequences 100% identical to the query set (if
one sequence is a fragment of another, they are is still considered 100% identical).

•

option delete will overwrite the output files without asking, as if l_confirm=no .•
option write is used to export ALL sequences from the blast−formatted files into to an external
FASTA file defined by output= string (default s_databasePath.seq). This option is the inverse
of the write index sequence command which creates several BLAST files from a FASTA
file.

•

seq_1 .. (list of sequences) or ali_1 .. (list of alignments) determines which sequence will be
searched against the database. The default (no argument) means all the sequences currently
present in the ICM−shell (see list sequence).

•

170 2.20.26. find

s_projectName defines the names of the output files:
s_projectName.tab a sorted table of hits (see below)♦
s_projectName.seq a sorted list of sequence truncated to the matching fragment.♦

•

s_databasePath (default: 'swiss' files in the $BLASTDB directory) defines the path of the three
files with the compressed sequence files. For compatibility these three files (.bsq, .atb, .ahd) are
the same as generated by the setdb (BLAST) command. The available files can be vied with the
list database command, by default the "swiss" file is taken from the $BLASTDB directory.
If the environment variable $BLASTDB is set, the three files will be taken from this directory. To
read database files from any directory, specify its explicit path (e.g. "./myLocalDb" or
"/home/user/myHomeDb1")

•

r_probabilityThreshold (default 0.0001) defines the lowest acceptable probability of hit.
Threshold of 10/DatabaseSize is usually a safe threshold (no guarantees though). Practically 10−5

is a safe threshold for a SWISSPROT search (65,000 sequences). At 10−4 you may find interesting
hits, but a more serious analysis may be required to confirm its significance.

•

option margin= i_seqMargin in the pattern search defines the length of flanking sequences
added to the matching fragment and saved in the s_projectName.seq file for further retrieval.
Specify a very large number to store complete sequences.

•

Other important variables:

alignMinCoverage (default 0.5) a threshold for the ratio of the aligned residues to the shorter
sequence length.

•

alignOldStatWeight (default 1.) a parameter influencing the statistical evaluation of
sequence comparison. To use run−time statistics use alignOldStatWeight=0.

•

Up to mnSolutions hits will be retained in the final table of hits.•
The parallel version of the program will use nProc CPUs (but not more than is available in your
computer). The expected time is inversely proportional to the number of CPUs.

•

maxMemory is a real ICM−shell−variable defining the size of the database buffer memory in Mb
used by the command. If this size is smaller than the database, the sequences will be loaded in
chunks.

•

The output table looks like this and contains the following fields:

#>T SR
#> NA1 NA2 MI MX LMIN LN H ID SC pP DE
1hiv_a POL_HV1H2 57 155 99 0.665 0.099 100.0 103.69 30.00 "POL PROT.."
1hiv_a POL_HV1BR 69 167 99 0.664 0.098 99.0 103.62 30.00 "POL PROT..
<i>... lines skipped ...</i>
1hiv_a POL_MLVAV 9 102 99 0.648 0.078 27.3 23.41 5.31 "PROTEASE.."
1hiv_a VPRT_MPMV 172 272 99 0.799 0.290 29.3 21.95 4.82 "PROTEASE.."
1hiv_a VPRT_SRV1 172 269 99 0.799 0.290 27.3 21.65 4.72 "PROTEASE.."
1hiv_a GPDA_RABIT 33 145 99 0.785 0.264 28.3 20.98 4.50 "GLYCEROL3P"

NA1 − the query sequence (a single command can search several query sequences)•
NA2 − the name of the database sequence•
MI : MX − the matching fragment boundaries in the database sequence•
QMI : QMX − the matching fragment boundaries in the query sequence•
LMIN − the shortest sequence length in a pair (query, database sequence)•
LN − log−correction factor (not used in pP but you may want to use it to resort the table).•
H − the fraction of the database sequence covered by the alignment with the query. If you search
against a database of domains this number should be close to 1 (e.g. the hit is less significant if

•

2.20.26. find 171

your query is only a part of a domain). It can be taken into account by multiplying pP by this
number.
ID − percent sequence identity (number of identical residue pairs in the alignment divided by
LMIN)

•

SC − normalized alignment score which is used to calculated the Probability. The score depends
on the residue substitution matrix and gap penalties. (see the Score function).

•

pP = −log 10 (Probability)•
DE − the database sequence definition•

Examples:

 read sequence "GTPA_HUMAN.seq"
 find database "/blast/swiss" output="gtpa1"
 find database pattern="C?[DN]?\{4\}[FY]?C?C" "/blast/brku" margin = 5

 unknown1=Sequence("TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN")
 find database exact unknown1 "/blast/brku" margin=1

find molecule: chemical substructure search

find molecule s_Smile1 { s_Smile2 | S_Smiles2 }

Identify a complete match of the source molecule represented by a smiles string in another smiles string
or an array of smiles strings representing a database of chemicals. Make sure that you unselect hydrogens
in your smiles string. The following setup is optional:

prepare the target strings with the Smiles(a_//![hdt]*) function (exclude hydrogen,
deuterium and tritium)

•

search the source string made without hydrogens•

Only up to mnSolutions hits will be retained in the final table of hits. Change this shell variable if
necessary. The function will return the results in the following variables:

i_out − contains the number of hits•
I_out − contains the integer array of the hit numbers•

An example:

 squery = "CC=1C(=O)C=CC(C=1)=O"
 read sarray s_icmhome+"chemDbSmiles"
 find molecule squery chemDbSmiles # check I_out and i_out

The smiles string can also be generated with the Smiles function after conversion, e.g.:

 read mol s_icmhome+ "ex_mol"
 convert a_1.
 squery = Smiles(a_1.//!h*,d*,t*)

find molecule [tether] ms_1 [ms_2]

172 2.20.26. find

You can also use the alternative set of arguments and use molecular selections instead of the smiles strings.
The atoms aligned to each sequential atom of the query molecule will be stored in the S_out array.

tether option: After the equivalent sets of atoms in two molecules are identified, tethers can imposed
pulling equivalent atoms of ms_1 to ~ms_2. Also, if option tether is specified, the matched query atoms
will be tethered to the target atoms, so that atoms can be later superimposed

An example:

 build string name="a" "se nter his cooh"
 build string name="b" "se nter ala his trp glu cooh"
 find molecule a_a./his/!h* a_b. tether
 display a_*.
 minimize "tz" a_//?vt*

See also: Smiles function and the build smiles command.

find pdb: fragment search

find pdb rs_fragment os_objectWhereToSearch s_3D_align_mask [s_sequencePattern [
s_SecStructPattern]] [r_RMSD_tolerance]

A PDB database searching engine. Find a fragment (e.g. a loop) with certain geometry, sequence and/or
secondary structure. Arguments:

rs_fragment: the search fragment template•

os_objectWhereToSearch: the other object. In the qsearch macro this argument contains the
current object from the qsearch database (see also s_qsearchDir directory containing
converted pdb−objects).

•

s_3D_align_mask: marks the residues to be used in the 3D superposition and comparison in terms
of r_RMSD_tolerance (see below). The number of 'x's (or 'ON' bits) in the mask must be equal to
the query fragment length (it may be discontinuous), while the total mask length should be equal
to the found fragment length. For example, if you search for an 11−residue loop with the same
geometry of 3−residue ends, but any geometry of the middle part your mask must be
"xxx−−−−−xxx". If you want to match geometry of the middle part you would invert the mask:
"−−−xxxxx−−−", etc.

•

s_sequencePattern: Use "*" for any sequence. Otherwise you may use regular expressions, for
example: "?A[!P]???$".

•

s_SecStructPattern: Use "*" for any secondary structure pattern. Otherwise, specify a regular
expression, for example "?HHH___EE[!_]".

•

r_RMSD_tolerance: RMSD threshold to accept a fragment as a solution. To avoid
time−consuming optimal 3D superposition during the search, distance Rmsd (i.e.
root−mean−square deviation between two Ca−atom distance matrices of the compared fragments)
is used as a measure of spatial similarity on the preliminary stage of each comparison. However,
in the resulting list of hits, collected in SearchSummarystring array the optimal 3D

•

2.20.26. find 173

superposition coordinate Rmsd is presented. Therefore, RMSDs in the output list may exceed the
specified threshold.

Hits will be stored in s_out . The following just illustrate the syntax, it does not make much sense, since
you need to loop through a database of objects to find something interesting.

Example:

 read object "crn"
 read object "complex" # object in which to search
 find pdb a_1./16:18,20:22 a_2. "xxx−−−−xxx" "C?[LIVM]????G??" "*" 2.5

See also: qsearch macro.

find prosite or profile

find prosite [append] seq_ [r_minScore] [i_mnHits]

find matching prosite patterns, store results in the SITES table . Option append indicates that the
results should be appended to the existing SITES table. The default r_minScore is 0.7 . The default
i_mnHits is defined by the mnSolutions parameter.

Examples:

 read sequence "zincFing.seq"
 find prosite 1znf_m
 show SITES

find pattern

find pattern [number] [mute] s_sequencePattern [i_mnHits] [{ os_objectWhereToSearch |
seq_Name | s_seqNamePattern } ...]

find specified sequence pattern (i.e. "[AG]????GK[ST]" for ATP/GTP−binding site motif A) in sequences
or objects. Hits will be stored in s_out . r_out contains the number of found hits divided by the
expected number of hits, as suggested by random distribution of amino−acids with frequencies from the
Swissprot database. This "found/expected ratio" is also reported if l_info=yes. If this number is 1. it
does not mean anything, 10. means that you can publish the finding and two paragraphs of speculations,
10000. means that somebody else has already found this hit. Pattern language:

^ sequence beginning•
$ sequence ending•
? one character•
* any number of any characters•
[ACD] alternatives•
[!ACD] all but the specified residues•
char \{ i_min, i_max \} : repetition. E.g. ?\{5,8\} from 5 to 8 of any character.•

Other arguments and options:

174 2.20.26. find

number − just report the number of hits instead of reporting each match•
mute − suppress terminal output (used in scripts)•
i_mnHits − (default mnSolutions)•
os_objectWhereToSearch − the target molecular object.•
seq_Name − the target sequence. By default, the search is performed among all currently loaded
sequences.

•

seqNamePattern − the target sequence name pattern to search through many sequences loaded to
the shell.

•

Returned values

s_out − text output of all matches•
i_out − the number of hits•
r_out − the ratio to the random expectation (it r_out>1. it means that the number of hits is larger
than the random expectation).

•

See also the searchPatternPdb macro.

Examples:

 read sequence s_pdbDir + "/derived_data/pdb_seqres.txt" # all pdb−sequences
 find pattern "[AG]????GK[ST]" # search for ATP/GTP−binding sites
 searchPatternPdb "^[LIVAFM]?\{115,128\}[!P]A$"
 # ^ : seq.start; ?\{115,128\} from 115 to 128 of any res.; $: seq.end

See also: read prosite, s_prositeDat .

find segment: database search for a similar protein fold

find segment ms_source [os_objectWhereToSearch_2] [r_maxRMSD] [i_minNofAlignedResidues [
i_accuracyParam]]

find similar 3D structural motif with the given minimal length. The topology of the specified molecule
ms_source is searched for either in the second object or, by default, in the whole segment databank (
foldbank.seg) which currently contains 2177 protein folds. Only structures with unique polypeptide
sequences are included in the fold databank. You may create, save or append to the foldbank.seg a
simplified topology description of your own file or a set of files (see write segment, read
segment). The optional r_maxRMSD argument specifies a root−mean−square deviation threshold of the
coordinates of the ends of secondary structure vectors (default 3.0 A). Default i_minNofAlignedResidues is
30 residues. Argument i_accuracyParam (do not use it without special needs) defines the number of
distances for each reference point which are taken into account in the distance RMSD calculation. Default
value equals 3 (distances).

Examples:

 read object s_icmhome+"crn" # crambin
 assign sstructure segment # broken line through seq.str.−elements
 Info> 9 segment elements for a_crn.m : EHHE
 read segment s_icmhome + "/foldbank"
 find segment a_1 # default threshold RMSD less than 3A
 # default minimal overlap is 30 residues

2.20.26. find 175

 find segment a_1 15 2. # threshold RMSD 2A ; more solutions,
 # minimal overlap 15 residues
 nice "2plh.m/" # looks just like crambin!

2.20.27. fix

fix vs_

fix (exclude from the free variable list) specified variables (such as bond lengths, angles and phases or
torsions) in an ICM−object. This operation can be applied to the current object only (use set
object os_object first). See also: unfix .

Examples:

 set v_//omg 180. # set all omega torsions to the ideal value
 fix v_//omg # fix all omega torsions

 fix v_/8:16,32:40/phi,PSI,omg* # fix the backbone in two fragments

Note using PSI torsion reference for correct residue attribution.

2.20.28. for

for

is one of the ICM flow control statements, used to start a loop in the ICM−shell. See also while,
endfor .

2.20.29. fork

a powerful tool for parallelization of ICM−shell scripts.

fork [i_nExtraProcesses]

spawns one or the specified number of extra copies of ICM. This command will only work in a non
interactive mode, i.e. you should run icm like this:

 icm _multiProc # from the unix shell or
 unix icm _multiProc # from the interactive ICM−shell

The iProc shell variable will contain the current process number. The parent process has iProc = 0.

An example script _multiProc with a hypothetical macro bigDatabaseJob which takes two arguments: the
number of database chunks, the current chunk number, and the output file name:

 read libraries
 macro bigDatabaseJob i_nChunks i_Chunk s_outFile # definition
 ...
 endmacro

 read sequence "hot"
 fork 4

176 2.20.27. fix

 # spawn 4 extra processes, total 5
 bigDatabaseJob 5 iProc "out"+iProc
 # work on section iProc,
 # save results to files out1 out2 ..
 wait # also quits all extra processes
 unix cat out1 out2 out3 out4 out5 >! out.tab
 read table "out.tab"

 quit

2.20.30. fprintf

fprintf [append] s_file s_formatString arg1 arg1 arg2 arg3 ...

formatted print to a file. The specifications for s_formatString are described in the printf command
section. In contrast to the print and printf commands, the result of the fprintf command is not shown.
E.g.

 fprintf "a.txt" "%s\n" "Day Temparature"
 fprintf append "a.txt" "%s %.2f\n" "Monday", 22.4
 fprintf append "a.txt" "%s %.2f\n" "Tuesday", 27.334

2.20.31. goto

goto

is one of the ICM flow control statements, used to jump over a block of ICM−shell statements. See
also break , continue .

2.20.32. group

group sequence

group sequence [{ seq1 seq2 ... | s_seqNamePattern | alignment] GroupName [unique {
i_MinNofMutations | r_MinDistance } [delete]]

group sequences into a sequence group to perform a multiple alignment with the align command.

Option unique allows you to select only the different sequences. If no argument follows the word
unique, only identical sequences will be dismissed, otherwise they will be compared and retained if the
number of differences is greater than i_MinNofMutations (integer argument) or the distance between two
sequences is greater than r_MinDistance (real argument). The comparison criterion is complex and has the
following set of preferences which may be useful in extracting a representative subset of sequences from a
PDB−database:

longer sequence is better that shorter•
if the names contain the X−ray resolution 2 digit suffixes (like a19 and 9lyz24, for resolutions 1.9
and 2.4 respectively), higher resolution is better (1.9 is better than 2.4).

•

Note Resolution suffixes are added by the read pdb sequence resolution command

2.20.30. fprintf 177

higher number in a pdb−file name is preferable, i.e. 9lyz is better than 3lyz. (I would not die for
this principle, though).

•

identical chains are chosed alphabetically (e.g. 9lyz_a is better than 9lyz_b).•

Suboption delete tells the program to delete from ICM−shell all the sequences which were found
redundant by the unique option.

Examples:

 read sequences s_icmhome+"seqs.seq" # load sequences
 group sequence aaa # group ALL the sequences into aaa
 group sequence seq3 seq1 seq2 aaa # explicit version of the previous line
 align aaa # multiple alignment

 read sequences s_icmhome+"azurins.msf" # some of sequences are very close
 # but not identical
 group sequence myAzur unique 0.15 # 0.15 is a Dayhoff−corrected minimum
 # intersequence distance threshold
 group sequence myAzur unique 26 # all sequence pairs differ in
 # more than 26 positions
 group sequence myAzur unique delete # duplicates will be removed

group sequence unique=: clustering, redundancy removal and assembly

group sequence unique= "nt,junk,simple,overlap[> nRes]"] [i_wordLen=6 [i_dictDepth=10
[i_nofMutations=0]]] [delete] [nosort] [{ seq1 seq2 ... | s_seqNamePattern | alignment]
GroupName

If you read a very large redundant set of sequences and sequence fragments some of which may (i)
overlap or (ii) be included in another sequence, you may want to remove all the redundant fragments, and
merge the overlapping sequences into a smaller number of longer sequences. In a simple case, if the
number of sequences is not too large (less than a few hundred), this removal of redundancies and fragments
in your sequence set, can be performed with the group sequence unique .. command described in
the previous section.

To work on much larger sequences sets and allows to merge overlapping sequences a more advanced
algorithm is needed. This ultra−fast removal of redundant protein or DNA sequences, may also assemble
the sequences into larger consensus sequences and is invoked by group sequence unique=
"options" command.

The command returns the result as a sequence group GroupName. Will work on tens of thousands of
sequences at once. The important features of the command:

it can cluster/unique millions of sequences very quickly (your computer just needs enough
memory).

•

larger sequences incorporate the matching smaller ones.•
merged or absorbed sequence names are added to the description of their master unless nosort is
specified

•

merging (option "overlap") protein sequences requires sticky C−terminus letter 'X'•
the algorithm is based on a dictionary approach and allows to have mismatches•
matching rules:•

178 2.20.32. group

for proteins: any letter matches 'X', B=(D or N) and Z=(E or Q)♦
for nucleic acids: any letter matches 'N'♦
if possible, 'X','N','B','Z' are replaced by a more specific letter from the matched sequence♦

Options (they can be combined in a comma−separated string, e.g. "nt,simple,junk"):

delete − the non−unique sequences are deleted not only from the group but also from the shell•
nosort − do not merge descriptions of the merged sequences•
unique= "simple" − the fastest mode. It will eliminate only the exact duplicates.•
unique= "nt" means that DNA or RNA sequences are compared (the program assumes protein
sequences by default and a corresponding i_wordLen of six). This implies the alphabet of A,C,G,T
(or U) and the word length should therefore be increased. The default nucleic acid sequence word
length of 13 allows to fit the entire dictionary into the memory of 256 Mbyte. If your computer has
less memory, reduce the i_wordLen to a smaller value.

•

unique="junk" this option tells the program to remove sequences that do not contain any
meaningful sequence. This means that they are mostly composed of 'X's or 'N's and the
intermittent sequence is shorter than i_wordLen. This option is almost always useful.

•

unique="stripX" this option tells the program to strip X (or N for nucleotide) character
stretches from the beginning and from the end of the sequence. Those will be compressed into just
one character. Useful if your sequences were dusted or repeat−masked.

•

unique="noX" this option tells the program to skip the sequence quality enhancements
(replacement of 'X','N','B','Z' by a more specific letter from the other very similar sequence).

•

unique="complement" with this option the complementary nucleic acid sequences will also
be considered and removed if redundant. This option can not be combined with the "overlap"
option.

•

unique="overlap[>numberOfRes]" Merge overlapping fragments in in addition of
deleting the subfragments from the set. The number of overlaping nucleotides or amino acids can
be redefined, e.g. unique ="overlap>25"

Two aminoacid sequences are merged only if there is the overlap is greater than the
threshold (12 aminoacids by default) and the overlapping C−terminal residue is 'X'.

♦

An example of the allowed merge for protein sequences:

s1 VTIKIGGQLKEALLDXGADDTVLEEMSLPGX−−−−−−−
s2 −−−−−−−−−−EALLDTGADDTVLZEMSLPGRWKPKMIG
result VTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIG

If for some reason your ESTs do not terminate with 'X's, they can be added by the
following procedure:

 for i=1,Nof(sequence)
 sequence[i] = sequence[i] //Sequence("X")
 endfor

Two nucleic acid sequences are merged if the overlap is 30 by default. There are NO
special requirements for an 'X' nucleotide flanking the sequences.

♦

•

2.20.32. group 179

i_wordLen (6 by default, 14 if the unique="nt" option is specified). The length of a word in
the dictionary. The memory occupied by the dictionary depends exponentially on his length.

•

i_dictDepth (10 by default) limits the number of sequence fragments referenced referenced from a
single 'word'. This option prevents the dictionary from growing to much in memory (what the
product of i_wordLen * i_dictDepth) .

•

i_nofMutations (zero by default) the maximal number of mutations/mismatches between
sequences which are considered to be redundant.

•

See also:

Trans(seq_ frame) − to translate a DNA sequence•
align new # to align a cluster and generate the consensus•
Find(sequence , s_keyword) # to find a retired sequence with the s_keyword in its title among
the newly formed sequences

•

show [color] ali_•

group table

group table [copy | append] [t_tableName] [array [s_name] array [s_name] ..] header [
shellObj s_name shellObj s_name ..]

create a new table from individual arrays or append new columns or table header elements to an existing
table. This example shows how an ICM table including both header elements and columns may look like:

group table t {1 2} "a" {"one","two"} "b" header "trash" "comment" 2001 "year"
 Info> table t (2 headers, 2 arrays) has been created
 Headers: t.comment t.year
 Arrays : t.a t.b

show t
 #>s t.comment # TWO HEADER ELEMENTS
 trash
 #>i t.year
 2001
 #>T t
 #>−a−−−−−−−−−−−b−−−−−−−−−− # TABLE ITSELF
 1 one
 2 two
show t.comment t.year
 trash
 2001

Options:

copy: make a copy of the original ICM−shell object and move it to the table.•
append: add specified ICM−shell objects to the table (default: overwrite).•

In the header section each ICM−shell object should be followed by a string specifying the variable name.
The empty string will be interpreted as an indication to keep the name of the variable. Unnamed constants
such as {1 2 3} or "adsfasdf" will be automatically assigned unique names. See also: split, Table .

180 2.20.32. group

More examples:

 a=1 # integer a
 b=2. # real b
 group table copy t header a "ii" b "rr"
 # create table t with t.ii and t.rr header objects
 show t
 group table t header a "" b ""
 # t with t.a and t.b header objects
 show t
 group table t {1 2 3} {2. 3. 4.}
 # t with automatically named table
 # arrays t.1 and t.2
 show t
 group table t {1 2 3} "a" {2. 3. 4.} "b"
 # t with table arrays t.a and t.b
 show t
 split t # split the table into individual arrays

2.20.33. gui

gui [simple]

start menu−driven graphical user interface from command line. The GUI runs the icm.gui file containing all
the commands invoked by menus or pop−ups.

Option simple allows you to keep your terminal window separate from the graphics window.

% icmgl

2.20.33. gui 181

 gui simple

You can also invoke gui from the command line, e.g.:

icm −g # or
icm −g mymenus.gui
icm −G mymenus.gui # keep the original terminal window

Terminal window and fonts

icm −g (or gui command) invokes a GUI frame with its own built−in terminal window . To influence the
font size in this terminal window, modify XTermFont record of the icm.cfg configuration file, e.g.

XTermFont *−fixed−medium−*−*−*−24−*

If you prefer to keep the original terminal window use the icm −G option or invoke the gui simple
command from ICM shell (I keep alias guis gui simple in my personal configuration file). In this
case you can change the font of the terminal window with standard means of the window manager.

3D Graphics window

GUI has a GL−graphics window which can be undisplayed with the

 undisplay window

command or from GUI by choosing Clear/No_graphics menu item.

Programming GUI

To program GUI you need to modify a single file, called icm.gui . This file resides in the $ICMHOME
directory. The icm.gui file contains sections for each menu item. It the menu item requires a dialog, a
widget is automatically generated.

The icm.gui section consists of the following fields:

Field Example Description
MENU Display.Advanced.Pocketsthis menu item will be added in the top menu bar
SIDE Display.Advanced.Pocketsalternative to MENU, will be added in the side menu bar
OPTN Apply optional. Allows to specify special kinds of dialogs.
SYNT display g_pocket the ICM−command executed upon pressing 'OK' or 'Apply'.
An example:

MENU Display.Color.White
SYNT color white

To see how to specify arguments in a dialog, see the icm.gui file.

182 2.20.33. gui

2.20.34. help

get help from icm.htm file. Set s_helpEngine variable to "icm" (internal help in the text window),
"netscape" or any other web−browser.

help

help [input= s_fileName] [word1 word2 ...]

get full help in either text or html form, redirect it to the specified file, if the input option is specified. If
you need help on a complex expression like read sequence , merge the words into one, e.g. help
readsequence . Do not use plural forms of the nouns. Examples:

 help Random
 help readsequence

The built−in help engine does not know about keywords. It is recommended to use the on−line version of
the ICM manual which has a well−developed Index (download the newest version of the manual,
man.tar.gz from the Molsoft ftp site).

help commands

help commands [s_Pattern]

generates concise list of syntax lines for all or specified commands.

help functions

help functions [s_Pattern]

generates concise list of syntax lines for all or specified functions.

Examples:

 help # type /stereo, and then letter n or Bar

 help help # how to get help

 help commands # list syntax of all commands

 help commands "rea*" # list syntax of all read commands

 help functions # list syntax of all functions

 help functions Matrix # list syntax of the Matrix family of functions

 help # start the browser to use its own search means
 help montecarlo # just the command name
 help real constant

 help readpdb

 help Split

2.20.34. help 183

 s_helpEngine = "netscape" # view help via netscape
 help input="myHelp.htm" real constant

2.20.35. history

history [unique] [i_NumberOfLines]

display previous commands. Option unique squeezes out the repetitive commands. For example:

 history 20 # show last 20 lines
 history unique

2.20.36. if

if

is one of the ICM flow control statements, used to perform conditional statements. See
also: then, elseif, and endif .

2.20.37. keep

keep ICM−shell−variable−name1 ..

retain specified ICM_shell variables or their classes (e.g. real, rarray etc.). This command is used in macros
to avoid automatic deletion of all the local ICM−shell variables.

Also note that four classes of standard ICM−shell variables, reals, integers, logicals, and
preferences, are automatically restored to their initial values by default. You can use the keep
command to retain their new values.

Examples:

 macro rdseq s_pdbName # extract sequence from a pdb−file
 read pdb sequence s_pdbName
 rz = Resolution(s_pdbName,pdb)
 mncalls = 10 # the existing standard shell variable
 keep rz, sequence # retain all the sequences and rz
 keep mncalls # retain its new value
 endmacro

2.20.38. link internal variables of molecular object

link vs_variablesToBeLinked

impose a chain of equality constraints (v[1] = v[2] = v[3] = ... = v[n]) on the specified variables (or, in
other words, keep the specified variables equal to each other). If one of the variables is changed all the
others will be changed. Energy derivatives are modified accordingly. This command is great for modeling
periodic structures (e.g. (Pro−Glu)n).

Examples:

184 2.20.35. history

 buildpep "ala ala ala ala ala ala ala ala ala ala" # 10 alanines
 link v_//phi # all the phi angles should be equal
 link v_//psi # all the psi angles should be equal
 montecarlo v_/2/phi,PSI v_* # sample just one residue

Be careful with selections of psi variables in peptides since they are assigned in ICM to the first atom of
the next residue. PSI specification goes around that attribution.

2.20.39. link residues to sequences and alignments

link ms_molecules { ali_ | seq1 seq2 ...}

link or associate protein molecules with separate sequences or sequences grouped in an alignment. If
alignment ali_ is given, molecules are also linked to this alignment (note that the same sequence can be
involved in several different alignments). Amino−acid sequences of ms_molecules will be compared with
specified ICM−shell sequences and identical pairs will be linked. Make sure that you specify one molecule
selection, use logical or (|) between the two selections if necessary. Linking molecules with alignments
allows an automatic residue−residue assignment by the following commands and functions:
superimpose, set tether, Rmsd and Srmsd . Alignments can be prepared in advance either
automatically by the align command or Align function, and/or modified by manual editing of the
alignment file.

Use the ribbonColorStyle="reliability" option and color ribbon to display the local
strength of the alignment. The strength parameter will be 3D averaged with the selectSphereRadius
radius.

The following illustrates the first step of homology modeling.

Example:

 build "newseq" # that is what you want to build by homology
 read pdb "template.pdb" # that is the known pdb−template
 read alignment "seq3Dali.ali" # prepared/modified sequence alignment
 # of the two structures
 set object a_1. # this is the first molecule that we
 # are going to model
 link a_*. seq3Dali # establish links between sequences
 # and objects
 set tether a_1,2.1 seq3Dali # impose tethers according to the alignment
 minimize tether # fold it according to the template

See also: l_autoLink

2.20.40. list

list [alignment] [command] [factor] [function] [grob] [iarray] [integer] [
logical] [macro] [map] [matrix] [object] [profile] [rarray] [sarray] [
sequence] [string] [name1 name2 ...]

list ICM−shell objects matching the name pattern (all if name−pattern is omitted). The plural form can be
used for more natural expressions. 'list commands' actually means list all legal words known by ICM (ICM

2.20.39. link residues to sequences and alignments 185

command words).

Examples:

 list # list the "most wanted" object−types
 list functions
 list sequences # if you have aliases, you can
 # type 'ls se' instead
 list "*my*" # all ICM−shell variables containing "my"

2.20.41. list available sequence databases

list database

gives a list of BLAST databases which can be used by the find database command for fast sequence
database searches. Normally, your system administrator should update the BLAST sequence files. ICM just
needs a path to this directory which is defined by the $BLASTDB system variable. The output of the
command is saved in the S_out array. This array can further be processed with the Field function.

Example:

 list database
 dblist = Field(S_out, 2) # sarray contains search databases
 show dblist
 a=Sequence("PDPPLELAVEVKQPEDRKPYLWIKWSP")
 find database a dblist[2]

Trouble−shooting: If you get an error message, check the following:

check if you have a directory with the blast−formatted files.•
make sure that your s_dbDir variable is defined in your _startup file and it contains the path
to this directory (do not forget the last slash, e.g. /data/blast/dbf/). You can always assign
it manually from the command line.

•

2.20.42. load

load things from the program memory (to load from disk files use read command). The opposite action to
load is store .

load conformation from stack

load conf i_confNumber

assign the i_confNumber−th conformation from the conformational stack and to the current object (e.g.
when you browse conformations accumulated after a montecarlo run). If i_confNumber is zero, the best
energy conformation will be loaded. Montecarlo stack conformations are sorted according to energy values,
however you may create your stack manually with an arbitrary order.

Note that the full energy of this conformation which had been stored in the stack can be accessed by the
Energy("func") function.

186 2.20.41. list available sequence databases

Example:

 read stack "f1" # read conformational stack
 load conf 0 # set molecule into the best energy conformation
 display a_//ca,c,n # display the backbone
 for i=1,Nof(conf) # go through all the conformations
 load conf i # load them one by one
 print Energy("func") # extract its energy
 pause # wait for RETURN
 endfor

load movie frame conformation

load frame i_movieFrameNumber [s_movieFileName]

load specified frame from the movie. Note that the full energy of this conformation which had been stored
by the simulation procedure can be accessed by the Energy("func") function.

Examples:

 build "alpha" # build extended chain of the Baldwin peptide
 read movie "alpha"
 display movie "alpha" center # a−ha! conf in frame 541 is interesting
 load frame 541 "f1" # extract conformation from frame 541
 print Energy("func") # print its energy without recalculating

load a structural alignment solution

load solution [i_solutionNumber]

loads the specified solution previously stored by the align rs_residue1 rs_residue2 ..
command. The two output selections as_out and as2_out contain equivalent residues of the specified
solution. The second object will be superimposed according to the Ca atoms of the found equivalent
residues.

Example:

 read pdb "4fxc"
 read pdb "1ubq"
 display a_*.//ca,c,n
 color molecule a_*.
 align a_1.1 a_2.1 12 1.5 .1
 center
 load solution 2 # load the second best solution
 color red as_out
 color blue as2_out
 for i=1,10
 load solution i
 color molecule a_*.
 color red as_out
 color blue as2_out
 pause # rotate and hit 'return'

 endfor

2.20.42. load 187

2.20.43. ICM−shell macros

macro define a new macro command.

Syntax:

macro macroName [mute] prefix1_macroArg1 [(default1)] prefix2_macroArg2 [(default2)] ...

 # commands
 # commands
endmacro

To invoke macro just type its name and provide arguments if necessary. Argument names should have
explicit prefixes (i_ , r_ , s_ , l_ , p_ , I_ , R_ , S_ , M_ , seq_ , prf_ , ali_ , m_ , g_ , sf_ , as_ , rs_ , ms_ ,
os_ , vs_ , see above) to specify their type. If your argument list is incomplete, you will be prompted for
the missing argument. Type q or enter empty string to quit the macro without execution. The following
features make ICM macros extremely convenient to use:

no need to explicitly define types of arguments (implicit definition by name)•
one may specify an arbitrary subset of arguments and in arbitrary order if the arguments have
different types

•

automatic prompting of the missing arguments•
an easy and flexible way to provide defaults in parenthesis after the argument•
automatic restoration of all the changed standard ICM−shell variables upon execution.•
new variables defined in the macro are local and will be automatically deleted upon execution,
unless they are protected with the keep command.

•

Defaults can be provided in parentheses as simple constants (i.e. i_window (8)), or as the whole
expressions (i.e. i_1 (mncalls) r_a (Sin(*2.)) i_2) . Default expressions can also be omitted.

Options

auto automatically use defaults for the arguments missing in the command string. Example: nice
"2ins". Since the second logical argument l_wormStyle is missing its default value no will be
used automatically.

•

mute will suppress automatic prompting. Do not use parenthesized defaults with this option.•

The predefined standard ICM−shell integer, real, and logical variables, as well as preferences
(i.e. i_out, l_warn, wireStyle, PLOT.logo etc.) are be automatically restored upon completion, if changed in
the macro, to retain the new value use the keep command. Note that the string variables should be restored
explicitly. Many macros are supplied with the program.

Examples:

display molecule as a worm colored from N− to C− term.
 macro dsWorm ms_ (a_*) r_wormRadius (0.9)
 GRAPHICS.ribbonWorm = yes
 GRAPHICS.wormRadius= r_wormRadius
 display ms_ ribbon only
 for i=1,Nof(ms_) # color each molecule separately
 color Res(ms_[i]) Count(Nof(Res(ms_[i]))) ribbon

188 2.20.43. ICM−shell macros

 endfor
 endmacro

To invoke the macro, type

 read object "crn"
 dsWorm a_1 0.7

or just

 dsWorm # and press Enter

A set of ICM macros is given in the _macro file.

2.20.44. make

is a family of commands which create new objects of parts of them.

make bond: forming a covalent bond

make bond as_singleAtom1 as_singleAtom2 [type= i_type]

adds a covalent bond between two selected atoms in a non−ICM molecular object (e.g. X−ray or NMR
pdb−entries) or resets the bond type. The command is used to correct erroneous connectivity guessed by the
read pdb command. This correction makes the molecule displayed in the graphics window look better
and is necessary before conversion into an ICM molecular library entry (see icm.res or user library files)
using the write library command. It can also be useful to display a connected Ca−trace. In
interactive graphics mode you may type make bond and then click two atoms with the Control button
pressed.

The type= option allows to set the bond type (i_type={1|2|3|4} , for a single (default), double, triple
and aromatic bond, respectively.

make bonds in an atomic chain

make bond as_chainOfAtoms

connects specified atoms in a linear chain. Useful for PDB entries containing only Ca atoms.

Examples:

 read pdb "4cro" # contains only Ps and Ca's
 display # Milky sausage
 make bond a_4cro.//p # connect P atoms of the DNA backbone
 make bond a_4cro.//ca # connect Ca atoms of the protein backbone

See also: delete bond.

2.20.44. make 189

make boundary: Poisson electrostatics

a command to prepare for the boundary element electrostatic calculation

make boundary [as_]

this is an auxiliary command which is required if you need to calculate the electrostatic free energy with the
boundary element method several times. Optional atom selection as_ from which the electrostatic field is
calculated can be specified. This may be the case if the charge distribution changes but the shape does not.
This command does not generate any output by itself, it just creates the internal table which can later be
used by the show energy command or the Potential() function.

The dielectric boundary is a smooth analytical surface which is built with the contour−buildup algorithm (
toa96{ Totrov,Abagyan, 1996). The surface looks like the skin surface, but uses different radii which
were optimized against experimental LogP data. Both skin and the dielectric boundary uses the same water
radius (the waterRadius parameter). The "electrostatic" radii used by ICM to calculate the boundary
are stored in the icm.vwt file.

See also: REBEL, electroMethod, delete boundary, show energy", term "el",
Potential().

Examples:

 electroMethod="boundary element"
 read object "rinsr"
 delete a_w* # get rid of water molecules
 make boundary a_1 # calculate parameters of the dielectric boundary
 show energy "el" # electrostatic energy by BEM
 e1=Energy("el") # extract the energy
 set charge a_/33/cd*,hd*,ne*,he*,cz,nh*,hh* 0. # uncharge arg33
 show energy "el" # electrostatic energy of the uncharged Arg33
 e2=Energy("el") # extract the energy
 print e1−e2
 delete boundary # memory cleanup

make disulfide bond

make disulfide bond [only] as_atomSg1 as_atomSg2

form breakable disulfide bonds between two sets of specified sulfur Sg atoms, regardless of the distance
between them. Forming the bond means that two Hg hydrogens of Cys residues are dismissed, a covalent
bond between two Sg is declared (but not enforced) and four local distance restraints (see icm.cnt) are
imposed. These restraints are indeed local, since two Sg atoms only start feeling each other when they are
really close, otherwise the energy contribution is close to zero . Option only causes deletion of previously
formed disulfide bonds, otherwise the new one is added to the existing list of disulfide bonds.

Examples:

 build string "se cys ala cys" # sequence containing two cysteins
 display # display an extended ICM model of the sequence
 # set only one SS−bond, disregard all previous
 make disulfide bond a_/1 a_/3 only

190 2.20.44. make

 montecarlo # MC search for plausible conformations

See also: delete disulfide bond and (important!) disulfide bond.

make drestraint: extract distances structure

make drestraint as_select1 as_select2 r_LowerBound r_UpperBound r_LowerCorrection
r_UpperCorrection [s_fileNameRoot]

create two files containing the list of all the atom pairs specified by two selections (i.e. a_* a_* − all the
pairs; a_1//* a_2//* atom pairs between molecules 1 and 2 for which the interatomic distance lies between
r_LowerBound and r_UpperBound.

Note: it is critical that both selections are in the same object. Only tethers can pull to atoms of a
different object.

For each pair of atoms a distance restraint type is created with lower bound less than the actual
interatomic distance by r_LowerCorrection and upper bound greater than the actual interatomic distance by
r_UpperCorrection. This command can be used for example to impose loose distance constraints between
two subunits.

The number of the formed drestraints is returned in the i_out variable.

See also: set drestraint as_1 as_2 i_Type

if you want to impose a specific drestraint.

Examples:

 read object "complex" # load a two molecule complex for refinement
 # extract all Ca−Ca pairs between 2 and 5 A
 # for each pair at distance D create distance
 # restraint type with lower bound D−2.5 and
 # upper bound D+2.5
 make drestraint a_1//ca a_2//ca 2. 5. 2.5 2.5

make factor: FFT calculation of diffraction amplitudes and phases

make factor map_Source { I_3Maximal_hkl | r_resolution } [s_factorTableName [s_ReName [
s_ImName]]]

calculate structure amplitudes and phases from the given electron density map by the Fast Fourier
transformation. The table ' s_factorTableName' with h,k,l and structure factors will be created (further
referred to as T for brevity). It will contain the following members:

three integer arrays of Miller indices: T.h T.k T.l•
two rarray of real and imaginary parts of the calculated structure factors. Default names: T.ac
and T.bc, respectively. Alternative names can be explicitly provided in the command line.

•

If structure factor table s_factorTableName already exists, structure factor real and imaginary components
are created or updated in place. Any other arrays containing experimental, derivative or control information

2.20.44. make 191

may be added to the table and participate in selections and sorting.

Example:

 read map "crn" # load "crn.map"
 set symmetry m_crn 1
 make factor { 5 5 5 } "F" # h_max=k_max=l_max=5
 # F.h, F.k, F.l, F.ac, F.bc are created
 show F
 group table append F Sqrt(F.ac*F.ac + F.bc*F.bc) "Fc" Atan2(F.bc,F.ac) "Ph"
 sort F.Fc
 show F

make grob map command to contour electron density

make grob [solid] m_map [name= s_grobName] [box] [I_indexBox[1:6]] [{ r_sigmaThreshold |
exact r_absThreshold }]

Create graphics object by contouring electron density map at a given threshold.

threshold: By default the contouring level is calculated as the mean map value (returned by Mean (
m_map)) plus mapSigmaLevel times root−mean−square deviation value. If a real value argument is
provided, the mapSigmaLevel shell variable is redefined. Option exact allows to specify absolute
value at the contouring is performed. Example:

 buildpep "his glu"
 make map potential Box(a_ 3.)
 make grob m_atoms 3. # 3 sigmas above the mean
 # make grob m_atoms .2 exact # countour at 0.2 level
 # .2 or .1 exact is useful to detect almost closed pockets
 display g_atoms
 #
 make grob m_atoms exact 0.15 # at value of 0.15
 display g_atoms

Defaults:

create simple chicken wire map (sections in three sets of planes, NOT solid)•
take the current map;•
generate the name of the grob which is the same as the map name except for the g_ prefix;•
contour the whole map•
use threshold value from the ICM−shell real variable mapSigmaLevel .•

Option solid tells the program to create a solid triangulated surface which can later be displayed by
display grob solid command. The threshold is expressed in the units of standard deviations from
the mean map value, i.e. 1.0 stands for one sigma over the mean. I_indexBox [1:6] is optional
6−dimensional iarray containing { i_startSection i_startRow i_startColumn i_NofSections i_NofRows
i_NofColumns }. It overrides the default, contouring the whole map.

Option box adds surrounding box to the grob.

192 2.20.44. make

make grob image command to create a vectorized graphics object.

make grob image [name= s_grobName]

create a vectorized graphics object (grob) from the displayed wire or solid objects. The
information about colors will be inherited. Very useful if you want to export wire, ribbon or CPK into
another graphics program, since graphics objects can be written in portable Wavefront (.obj) format.
Further, graphics objects can exist independently on the molecules which may be sometimes convenient.
Also, underlying lines and vertexes can be revealed. The graphics object created from the displayed solid
representations assigns and retains color information as lit in a given projection. These colors can not be
changed. Use special make grob skin command to generate a more elaborate graphics object from
skin .

Examples:

 ds a__crn.//!h* ribbon # ribbon
 make grob image name="g_rib"
 display g_rib smooth only # try select g_rib and Ctrl−X,Ctrl−E/W etc.
option smooth eliminates the jaggies.
 write g_rib # save to a file

make grob matrix

make grob [solid] [bar [box]] [color] M_matrixName [r_istep r_jstep] [[name=]
s_grobName]

Create a three−dimensional plot from M_matrixName, so that x=i* r_istep,
y=j* r_jstep and F(x,y)= M_matrixName[i,j]. Options:

bar : generate rectangular bars for each i,j matrix value instead of a smooth surface.•
box : add a box around the 3D histogram•
color : color grob by value according to the PLOT.rainbowStyle preference.•

solid : tells the program to triangulate the surface

•

Examples:

2.20.44. make 193

 read matrix s_icmhome+"def"
 make grob g_def solid
 display
OR
 read matrix "ram" # phi−psi energy surface
 make grob ram 1. 1. 0.1 # create the surface
 display g_ram magenta # display it
 make grob solid ram 1. 1. 0.08 name="g" # create the surface
 display g solid gold # display it

make grob potential

make grob potential [solid] [as_1 [as_2]] [r_gridCellSize [r_margin [r_polentialLevel]]] [[
name=] s_grobName]

create graphics object of isopotential contours of electrostatic potential which takes not only the
point charges but also the dielectric surface charges resulting from polarization of the solvent. This
potential need to be calculated in advance by the boundary element algorithm. Contours can be
displayed in the wire and solid representations (see also display grob). The default parameters are:

r_gridCellSize 0.5 A (you may want to increase it up to 2A for speed).•
r_margin 5.0 A (you may want to reduce it for speed).•
r_polentialLevel 0. kcal/mole/electron_charge_units.•

See also: make map potential, electroMethod, make boundary, show energy "el",
term "el", Potential().

Examples:

 build string "se his arg glu"
 electroMethod="boundary element" # REBEL algorithm
 make boundary
 make grob potential solid 2. 4. 0.1 name="g_equipot1"
 display g_equipot1 transparent blue
 make grob potential solid 2. 4., −0.1 name="g_equipot2"
 display g_equipot2 transparent red
 ds xstick residue label

make grob skin [wire] [as_1 [as_2]] [[name=] s_grobName]

create grob containing the specified molecular
surface (referred to as skin). If the wire option is
given the transparent wire grob will be created (solid
grob is the default). It will have the same default
color. The disconnected parts of this grob may later
be split . The grob will be named by the default
name g_objName unless the name is explicitly
specified.

194 2.20.44. make

A grob can later be colored with the color grob potential command.

Examples:

 read object "crn"
 # skin around a substructure, (just as an example)
 make grob skin a_/1:44 a_/1:44
 split g_crn
 display g_crn2 a_//*
 show Area(g_crn2), Abs(Volume(g_crn2))

 make grob skin a_ a_ name="gg1" # display gg1 now
 make grob skin wire name="gg2" # display gg2 now

make key

make key { s_smiles | as_ } [S_arrayOfFragmentSmiles]

generates a binary chemical key, i.e. a bit−string in which each bit corresponds to a chemical substructure,
converts the bit−mask into the hexadecimal string and saves this hex−string in s_out . The bit−string with
chemical substructure information can then be used to calculate the Tanimoto similary distance with
another chemical key.

By default the make key command uses a built−in array of 96 substructures, and generates a
24−character hex−string (each hex−character codes for 4 bits), however any string array of subfragment
smile−strings (S_arrayOfFragmentSmiles) can be provided.

The hex−string can be converted back into an array of bits packed into integers with the Iarray({
s_chemkey | S_chemkey } key) function.

The bit−distance between two arrays of bit−strings represented by two iarrays can be calculated with the
Distance(Iarray(S_1 key) Iarray(S_2 key) i_nBits [key]) or
Distance(Iarray(S_1 key) Iarray(S_2 key) i_nBits simple)
functions, where the number of bits, i_nBits, is usually 96, unless you use a user defined array of
fragments. There is also a weighted form of the chemical key distance (see the Distance function). By

2.20.44. make 195

default, or with the key option, the function returns matrix with the Tanimoto similary distance (0. all bits
are the same, 1. no bits in common), while with the simple option the second chemical key is considered
as a sub−fragment and the distance becomes 0. (identity) if the sub−frament is present in the first
bit−mask.

Examples:

 read mol s_icmhome+"ex_mol.mol"
 build hydrogen
 set type mmff
 convert
 smil = Smiles(a_)
 make key s
 skey = s_out

make map

make map R_6cellParameters I_3NofSteps [R_6box | I_6box] ["zxy"] [as_] [name= s_mapName]

create an electron density distribution for atom selection as_ (all atoms of the current object by default) on
a three−dimensional grid. See also make map potential for a rough electron density map. The
electron density is calculated from the cartesian coordinates of the selected atoms using a 2−gaussian
approximation. If the l_xrUseHydrogen logical is set to no , hydrogen atoms are ignored. The
following parameters are taken into account:

the shape of the gaussian is influenced by the individual atomic b−factors (see set bfactor).•
addBfactor is added to individual atomic B−factors•

R_6cellParameters is a real array containing { a b c alpha beta gamma } parameters. Optional R_6box or
I_6box arrays define the corner of the map box (closest to the origin) and its sizes ({ x1 y1 z1 dx dy dz } or
{ nx ny nz dnx dny dnz }, respectively). The whole cell is taken by default.

Examples:

 read object "crn"
 make map {5. 5. 5. 90. 90. 90.} 0.5 a_//ca,c,n

make map factor : calculate electron density map from structure factors

make mapfactor [T_factor] [m_map]

calculate an electron density distribution on a three−dimensional grid from a structure factor table of the
Miller indices, reflection amplitudes and phases. Requires that the map is created before with the make
map command. If optional arguments are not given the current map and/or current factor will
be used. A new empty map can be created from an empty selection by the

 make map a_!*

parameters # see the make map command.

196 2.20.44. make

make map potential: grid energies

make mappotential [s_terms] [as_] [R_6box] [
r_gridCellSize]

create a property map for the as_ selection. This command is used
for low−resolution surface generation or to make grid potential
maps for fast docking. The optional arguments are the following:

s_terms : a smooth gaussian atom density map is generated
by default, otherwise the grid energy maps specified by the
2−letter terms are calculated, e.g. "gc,gh,gs,ge") .
The names of the generated maps are standard and can not
be changed.

•

as_ selection : All atoms of the current object are taken by
default.

•

r_gridCellSize : by default is 0.5 A for small objects, the
default increases with the size of the object. We do not
recommend to use values over 7 A for very large objects.

•

R_6box : default it is a box around the selected atoms plus
3A margnins. The box defines coordinates of the two
opposite corners of a box (see also the Box function).

•
m_atoms contoured at 0.3 exact
level. The 0.5 level is closer to the
van der Waals surface.

default (no terms specified): atomic density map m_atoms ; if contoured, m_atoms generates a
smooth gaussian envelope around a molecule (see Figures)

•

 buildpep "his arg"
 display cpk
 make map potential Box(a_ 3.)

wire surface
 make grob m_atoms 0.3 exact # contours near vw−raduis.
 display g_atoms

solid surface
 make grob m_atoms solid 0.5 exact
 display g_atoms smooth

term "el", map m_el : Coulomb electrostatic grid, contributions truncated at +−100. kcal/mol.•

 build string "se his arg" "test"
 make map potential "el" Box(a_/1,2/* , 3.)
 display a_
 display map m_el {1 2 3}
 make grob m_el exact # contouring at 0. potential
 display g_el

term "gh" : van der Waals grid for a hydrogen probe, grid potential is truncated from above
according to the GRID.maxVw parameter;

•

2.20.44. make 197

term "gc", map m_gc : van der Waals grid for a carbon probe; grid potential is truncated from
above according to the GRID.maxVw parameter;

•

term "ge", map m_ge : electrostatic grid; grid potential is truncated from above and below
according to the GRID.maxEl and GRID.minEl parameters;

•

term "gb", map m_gb : hydrogen bonding grid;•

term "sf", map m_ga : surface accessibility grid. This map is not an independent term, but allows
to correctly calculate atomic accessible areas if a part of the system is presented by the grid
potentials. If a map named m_ga is present it will be automatically taken into account in energy
calculations of the "sf" term.

•

Fine−tuning the maps Sometimes you want the van der Waals grids, "gh" and "gc", generated from the
whole receptor, while the "ge" or "gb" grids generated only from a small region of the receptor. In this case
you can run the command two times with different source−atom selection.

Example:

 make map potential "gh,gc" a_1 Box()
 make map potential "gb,ge,gs" a_1/15:18,33:47 Box()
 write m_ge m_gc m_ge # write three maps at once

An alternative method is to use the Bracket(m, R_6box) function which sets everything beyond the box
to zero. Example:

 make map potential "gh,gc,gb,ge,gs" a_1 Box()
 m_ge = Bracket(m_ge, Box(a_1/15:18,33:47)) # redefine m_ge

make peptide bond

make peptide bond as_C as_N_or_S

form the peptide bond between two selected C− and N− atoms, or the thioester bond between C− and S−
atoms. The bonds may be formed between the terminal amino− and carboxy− groups (a_/1/n and the last
c), as well as between such amino acid side−chains groups as a_/lys/nz and a_/asp,asn/cd, a_/glu,gln/cg.
See also: delete peptide bond How to modify an ICM−object .

Example:

 build string "se nh3+ gly gly gly gly his coo−"
 display
 make peptide bond a_/nh3*/n a_/his/c # form a cyclic peptide
 display drestraint
 minimize "ss"
 minimize "vw,14,hb,el,to,ss"
#
form thioester bond
#
 build string "se cys ala ala ala glu"
 display
 make peptide bond a_/1/sg a_/5/cd

198 2.20.44. make

 minimize "ss" # term "ss" is responsible for the extra drestraints

make sequence: extract from pdb or icm structure

make sequence ms_ [name= { s_name | S_names }] [resolution]

creates sequences (or, more strictly speaking, ICM−shell objects of 'sequence' type) of residues composing
selected molecules ms_. One−letter equivalents of full residue names are specified in the icm.res library.
Option resolution adds the X−ray resolution value multiplied by 10 to the name (e.g. 2ins_a25 for
resolution of 2.5A) or 'No' for NMR and theoretical structures. The resolution is not appended if option
name= is specified.

The make sequence command also extracts both the secondary structure and the site information.

See also: read pdb sequence

Examples:

 make sequence a_2ins.a,b # two seqs 2ins_a and 2ins_b created
 make sequence a_2ins.a,b resolution # resolution*10 added to the name
 make sequence a_1.1 name="aa" # sequence named: aa
 make sequence a_2ins.a,b name={"aa","bb"} # seqs named: aa and bb

make tree

make tree ali_name [s_epsFile]

reconstruct the evolutionary tree from the specified sequence alignment using the neighbor−joining method
(Saitou and Nei, 1987). Create a PostScript image of this tree which will be saved in the ali_name.eps
file. See also: the align command.

Examples:

 read alignment msf s_icmhome+"azurins" # read alignment
 make tree azurins # draw evolutionary tree

make tree M_squareDistanceMatrix[1:n,1:n] [S_objectNames[1:n]] [s_epsFile]

reconstruct the evolutionary tree for arbitrary objects from the matrix of pairwise distances. The names of
individual objects may be provided in a string array for a nicer PostScript picture. This command is cool.

See also: Disgeo function.

Examples:

 read matrix "dist" # read a distance matrix [n,n]
 make tree dist
 unix gs dist.eps

2.20.44. make 199

make unique: reorder atoms in a unique order.

Example:

read mol s_icmhome+"ex_mol"
make unique
#
build hydrogen
set type mmff
convert
Smiles(a_) # unique smiles string

2.20.45. minimize

minimize [stack] [i_mncalls] [vs_] [s_termString] [as_1 [as_2]]

minimize locally the sum of currently active, or specified, terms of the energy/penalty function with respect
to variables specified by vs_, or all the free variables, if variable selection is skipped.

Optional arguments:

stack : If option stack is specified, the procedure extracts each stack conformation, minimizes it and
replace the stack conformation with the optimized ones. The stack can be generated with the
montecarlo procedure, manually created with the store conf command, or read from a stack file.
This command allows to refine your set of alternative conformations all at once.

i_mncalls : defines the maximal number of iterations. The minimization procedure can terminate earlier if
the gradient becomes lower than the tolGrad parameter. If i_mncalls is not provided, the default
parameter mncalls defines the maximal number of function evaluations during the minimization.

vs_ : variable selection If selection of variables vs_ selection is specified, the object will be refixed but the
initial fixation will be restored after minimization.

s_termString : redefines the set of terms used in the minimization dynamically (e.g. minimize "tz").
You may check the active terms with the show terms command, or change them before the
minimization with the set terms ".." command. By the way, the active terms can be shown as a part
of your command line prompt if you add the %e specification to s_icmPrompt variable (like
s_icmPrompt="icm/%o/%e> ").

atom pair filter: By default all the atoms and all the atom pairs within distance thresholds vwCutoff and
hbCutoff are involved in the calculation. However, two explicit atom selections [as_1 [as_2]] may
impose a mask on atom pairs involved in the calculation of the pairwise energy or penalty terms. The
default for the skipped as_1 is all the atoms. If only the as_1 is specified, the as_2 is assumed to be all
atoms. Using atom selections is dangerous and is not recommended since there are many combinations
which do not make sense and give unpredictable results.

the algorithm: the minimizeMethod preference. The type of algorithm (conjugate gradient, quasi
Newton, or automatic switching between the two) is defined by the minimizeMethod preference. The
progress bar will show you the progress of the procedure. If minimizeMethod="auto", the progress bar of
the minimization procedure will show the 'C' character in a row of dots and colons when the quasi−Newton

200 2.20.44. make

method switches to the conjugate gradient method.

Dots show progression of the minimization procedure, while colons mark recalculations of neighbor lists.
The lists are updated if at least one of the atoms deviates from its previous position by more than 1.5 A.
Both basic methods use the analytical derivatives of the terms with respect to free internal variables.

The procedure is terminated if the gradient falls below the tolGrad parameter or if the maximal number
of function evaluations is reached.

the output l_showMinSteps flag and i_out : The actual number of function evaluations during
minimization is saved in the i_out variable. The l_showMinSteps flag allows to see every iteration of
the minimization procedure. To speed up the procedure you may switch off the l_minRedraw flag to
suppress redrawing of the molecule for each new conformation.

Examples:

 buildpep "HHAS;TW" # create object from "def.se" sequence file
 minimize v_//xi* # do not touch the backbone torsions
 minimize # use all variables
 minimize 500 # run longer until number of calls is 500

minimize cartesian: full conformational optimization

minimize cartesian [stack] [type] [charge] [i_mncalls] [s_termString]

minimize the mmff energy for a fully flexible molecule in the space of atomic cartesian coordinates.
Before running this command please make sure that the atomic types and charges are set and the mmff
libraries are loaded.

The i_mncalls and s_termString have the same meaning as in the previous command. Options:

stack : if option stack is specified, the procedure extracts each stack conformation,
minimizes it and stores back to the stack.

•

type : if option type is specified the set type mmff command is executed and mmff atoms
are assigned.

•

charge : if option charge is specified the set charge mmff command is executed and
mmff partial charges are assigned

•

i_mncalls : redefines the maximal number of minimization iterations (mncalls)•
s_termString : allows to dynamically redefine the default energy terms.•

Example:

 build string "se nter his cooh"
 display
 minimize cartesian type charge

The drop and tolGrad minimization parameters will still apply.

2.20.45. minimize 201

minimize loop after build model

minimize loop i_loopNumber

to use this command you must run the build model command first. The build model command
may not be able to find a perfectly matching loop. Two sorts of problems may appear: the imperfections of
the loop attachments and the clashes of the loop to the body of the model.

The minimize loop command optimizes the covalent geometry at the junctions and the clashes through
an interative procedure which maintains the loop closure.

The energy function used by the command is not as detailed as the full atom energy. It is advisable to
perform a regularization (e.g. regul a_) and full atom refinement.

To save all the graphical frames during this minimization set the autoSavePeriod variable to the
special value of 99 . In this case png image files named f_x_y.png , where x is the loop number and y is
the frame number, will be saved in the current working directory.

minimize tether: threading a model with idealized geometry through a pdb−structure

minimize tether [vs_]

regularization procedure. It creates a conformation (i.e. determines free variables) that minimizes distances
between atoms and their tethering points. If initial model was built from standard amino−acids with
idealized covalent geometry , this procedure will create a model with standard bonds and angles which fits
the best to the target set of atom coordinates. The tethers may be imposed by the set tether
command. An integer variable minTetherWindow defines the maximal number of preceding torsions
which are locally minimized to best−fit the pdb−model. Optional variable selection vs_ allows to perform
fitting only for the selected fragment of the model. This may be convenient if you want to re−fit only a
local fragment. Variable r_out contains the RMS deviation between the template and the model.

2.20.46. menu

a tool for making clickable strings in the graphics window.

menu [i_string1 i_string2 ...]

this command declares the listed string labels as active and returns the chosen string number in i_out. If
no arguments are specified, only the last string will be "clickable". See also _demo_main file.

Examples:

 while(yes)
 display string "Menu"
 display string "Fish" −0.7, 0.6 yellow # 2
 display string "Pork" −0.7, 0.5 yellow # 3
 display string "Pasta" −0.7, 0.4 yellow # 4
 display string "Quit" −0.7, 0.3 yellow # 5
 menu 2 3 4 5
 choice=i_out
 delete label

202 2.20.45. minimize

 if (choice == 2) then
 display "Good choice.\n Our fish is the best.\nClick here"
 menu
 delete label
 elseif(choice == 3) then
 display "Good choice.\n Our pork is the best.\nClick here"
 menu
 delete label
 elseif(choice == 4) then
 display "Good choice.\n Our pasta is the best.\nClick here"
 menu
 delete label
 elseif(choice == 5) then
 quit
 endif
 endwhile

2.20.47. modify

modify chemical structure of a molecule by replacing one part with a specified group or "residue" from
icm.res or user residue library.

modify atom with a library group

modify as_exitAtom s_NewRadical

replace the branch starting from the specified atom by another library radical. Suitable for standard
biochemical modifications, such as glycosylation, phosphorylation, etc. (Note that to myristoylate
N−terminus you need to use "myr" as N−terminal residue, i.e. build string "se myr ala ala
coo−").

Examples:

 read object "crn"
 display a_/8:13
 color red a_/11 # serine
 # O−glycosylation ("acgl", "xyl", "agal", "bgal")
 modify a_crn.m/11/og "acgl" # beta−D−N−acetylglucosaminide
 modify a_crn.m/11/og "xyl" # add Xylose
 # Phosphorylation
 build string "se ser thr tyr asp lys his"
 modify a_/ser/og "pho"
 modify a_/thr/og1 "pho"
 modify a_/tyr/oh "pho"
 modify a_/asp/od2 "pho"
 modify a_/lys/hz2 "pho"
 modify a_/his/hd1 "pho"

modify: single or multiple residue mutations

modify rs_ s_NewResidueName

replace selected residue(s) rs_ by another residue s_NewResidueName. The backbone conformation is not
changed, unless the new residue is "pro" and the phi angle is outside [−90.,−30.] range.

2.20.47. modify 203

You can replace amino acids (the usual list of three letter codes), as well as nucleotides: "rpa" "rpg"
"rpc" "rpu" for RNA and "dpa" "dpg" "dpc" "dpt" for DNA.

Examples:

Peptides and proteins
#
 modify a_/15,18 "his" # substitute residue 15 and 18 with histidines
 modify a_/ala "val" # substitute all alanines with valines
#
DNA or RNA
#
 read pdb "4tna"
 convert
 modify a_4tna1./66 "rpu" # substitute nucleotide 66 by Uracyl

modify by grafting parts of objects

modify as_atom1 as_atom2

replace a fragment of the molecular tree starting from a specified single atom as_atom1 (e.g. a_/15/cg) by a
subtree starting from another single atom as_atom2. This subtree is simply copied and not altered in any
way. It is recommended to perform molecular building operation interactively and with your molecule
displayed in the graphics window. Type modify and Ctrl−click the atom starting the branch to be
replaced and then the atom starting the branch to be grafted. It does not matter where you take the
modification group from. It may be the same molecule, a group in another object, etc. You may want to
load a residue containing the group of interest directly from the icm.res residue library by doing.

Examples:

 show residue types # find out what residues are available
 build string "se ret" # create a new object with retinol molecule.

After the modification you can remove objects (such as "ret" in the above example) used for
construction. Be careful if modifying atoms within ring systems; the results may not always be obvious
unless you know how the ICM−tree is constructed (you'll be kindly warned anyway). However, the whole
ring can be modified or grafted without any difficulty.

Examples:

 buildpep "MIPEAY" # build a molecule
 display # display it to click two atoms and watch

 modify a_/1/ce a_/1/ha # replace methyl group of Met−1 by a hydrogen
 modify a_/2/hd13 a_/2/cg2 # methylate hd13 hydrogen of Ile
 modify a_/3/hg1 a_/6/oh # turn proline into hydroxyproline

2.20.48. montecarlo

204 2.20.47. modify

a generic command to sample conformational space of a molecule with

the ICM global optimization procedure.

montecarlo [OPTIONS] [vs_MC [vs_minimize]] [local rs_loop
]

runs Monte Carlo simulation for specified variables vs_MC, with local
minimization with respect to the vs_minimize variables following after
each random move.

Each iteration of the procedure consists of

a random move of one of 4 types;
change one internal variable by a random value (e.g.,
montecarlo v_//x*)

♦

change a group of angles described as a
vrestraint according to its probability
distribution (e.g. set vrestraint a_/* ; montecarlo
v_//*)

♦

change the six positional variables (e.g. montecarlo
v_2//?vt*) defining position of a molecule in space
(the so called pseudo−Brownian move).

♦

change the loop conformation (e.g.♦

 set vrestraint a_/16:24
 montecarlo v_/16:24 local a_/16:24

1.

local energy minimization;2.
calculation of the complete energy potentially including
surface and advanced electrostatics terms (REBEL or
MIMEL);

3.

acceptance or rejection of this iteration based on the energy
and the temperature.

4.

Three possibilities for variable selections arguments:

no variable selections: both vs_MC and vs_minimize will be set to all free variables. Some vs_MC
variables, such as torsions rotating methyl groups, NH2 groups , will be automatically filtered out,
since it is enough to just locally minimize them.

•

one variable selection: the specified selection will be considered as the vs_MC , vs_minimize will
be the same vs_MC.

•

2.20.47. modify 205

two variable selections: the first one is vs_MC selection, the second one is vs_minimize.
Important: if two selections are explicitly specified, only vs_MCvs_minimize will be set free. It
means that during the montecarlo procedure the object will be fixed differently than before. After
the command, the status of variables will be returned as they were before the montecarlo
procedure. There are two basic possibilities: unfix on the fly or unfix first and then run
montecarlo:

•

 montecarlo vs_MC vs_minimize # unfix on the fly
OR
 unfix only vs_minimize # prepare fixation (vs_MC is a subset of vs_minimize)
 montecarlo vs_MC # now one selection suffices and
 # the object set of free variables is not changed

OPTIONS: append

appends to the existing conformational stack (overwrites by default).

fast :

rapid side−chain optimization. This option allows to accelerate the calculation by minimizing only the
strained variables after each step. Needs the selectMinGrad parameter to be set to 1.5. Example:

 build string "se ala his trp glu"
 selectMinGrad=1.5
 set vrestraint a_/*
 montecarlo fast v_//x*

This mode is useful for side chain optimization in homology modeling.

bfactor :

you can use the bfactor option to sample 'hot' parts of structure with higher probabilities. The relative
frequences are taken from the b−factors of the atoms belonging to the mc−variables. Example:

 buildpep "ala his trp glu" # default b−factor=20
 set bfactor a_/2 1000. # make 2nd his hot
 montecarlo bfactor

To preserve the old bfactors, save them before the simulation and restore after. E.g.

 b_old = Bfactor(a_//*) # save
 ..
 set bfactor a_/10:20 200.
 montecarlo bfactor
 ..
 set bfactor a_//* b_old # restore

local

local [dash] [a_/residueRange1,residueRange2...]

206 2.20.47. modify

(this option is specified after the main [vs_MC [vs_minimize]]) option local makes local deformation
type movement for specified regions (e.g. two loops a_/15:22,41:55). Suboption dash chooses angles for
random deformation symmetrically with respect to the loop center.

movie

records all accepted conformations sequentially in a binary *.mov file. Later one can read movie,
display movie, and operate with individual frames, e.g.

for i=1,Nof(frames)
 load conf i # to extract a frame
 display skin white center
 write image png "f"+i
endfor

mute

suppresses the text output about every random move

r_exitEnergy real argument determines if you want your procedure to exit upon achievement of equal or
lower energy value . For example, if you know energy of the minimum, you may want to stop the search
when this value is achieved. E.g.

 buildpep "AHWEND" # hexapeptide
 set vrestraint a_/* # BPMC−probability zones
 montecarlo 10. # stop after energy of 10. is reached

two atom selections: montecarlo .. as_1 as_2

(option is NOT recommended for beginners) Atom selection arguments [as_select1 [as_select2]] impose
a filter on atom pairs considered in the terms of internal energy like "vw,el,hb,sf". There are three
possibilities:

no selections − the whole object (all atoms) is considered (the default)•
as_select − interactions of the specified atoms with ALL atoms in the object.•
as_select1 as_select2 − interactions between two selections. For example, a_dom1 a_dom1
would consider only the internal energy of the domain dom1.

•

reverse

this option makes a more intellegent random move in singlechain or a multichain molecule. By default if an
angle is randomly changed near the beginning of a molecule, the second part of this chain moves. With the
reverse the random move can occur in such a way that a part of the chain above a randomly chosen
angle will stay the same, while the chain below the angle will move. Actually, the parts will be compared
by molecular mass and the heavier part will be more likely to stay where it is than the lighter part. The
probability that a part stays static is propotional to the number of atoms of this part. It is important that the
virtual variables (v_//?vt* are not fixed).

This option is very useful in docking, since the receptor is static and the moving molecule should try to
preserve the majority of current interactions. Also, the reverse option helps if one simulates the
N−terminus of a multichain protein, or a docking of a peptide to a protein. Example:

2.20.47. modify 207

 read pdb "1aya" # read a complex
 delete a_!1,2 # keep only SH2 domain and a peptide
 convert # make an ICM object with hydrogen
 set vrestraint a_/* # set prob. zones
 montecarlo reverse v_2 v_2 # re−dock the peptide

If you move the 1st molecule, do not forget to unfix the fvt1 variables of all other molecules, e.g.:

 ..
 unfix only v_1 | v_*//fvt1
 montecarlo reverse

If you always want to keep the C−terminus static and move the N−terminus, use the superimpose
option (see below).

superimpose as_3atoms_per_molecule

superimposes new generated conformations after every move. Usually if you change backbone torsion at
the N−terminus, the whole molecule moves. This option allows to generate conformational changes at the
N−terminal part of a peptide while its C−terminus occupies the same position in space. After each random
move the first 3 atoms selected in molecule(s) will be superimposed on their initial position and the 6
positional variables (v_//?vt*) will be updated accordingly. The setup:

unselect the virtual variables from the MC selection (v_//!?vt*)1.
specify three or more atoms beyond the N−term. of interest for superposition2.
add virtual variables to the minimization selection (it is usually the default) to allow positional
adjustments during minimization (the movements of C−terminus are suppressed only in the MC
move, not in the following minimization).

3.

if minimization is used (mncalls > 1), make a copy of the molecule and tether the C−terminus to it.4.

Example:

 mncalls = 1 # move N−term residues a_/1:5 and while keeping
 # the rest in the same position
 montecarlo v_//!?vt* superimpose a_/6/c,ca,o
 # virtual variables should be available for minimization
 montecarlo v_/1:3/!omg,?vt* superimpose a_/6/c,ca,o
Now a more realistic example
 build string "se ala his trp ala ala ala ala"
 display
 display residue label
 mncalls = 200
 copy a_1. "original"
 set tether a_/5:7 a_original./5:7
 set terms "tz"
 set vrestraint a_/*
 mncallsMC=100000
 montecarlo v_/1:4/!omg,?vt* superimpose a_/5:7/ca

The following ICM−shell variables and commands are important for the procedure.

mncallsMC,•
mncalls,•

208 2.20.47. modify

temperature,•
mcBell to make rs−zones narrower or wider than in icm.res file•
mcJump•
mcShake − the average amplitude of the pseudo−Brownian move•
mcStep − an amplitude of the unbiased step•
l_bpmc − if no, makes simple random steps (one angle by a random value)•
l_writeStartObjMC − if yes, write the starting object with its fixation and geometry to a file.•
mnvisits three limits and three actions follow•
visitsAction,•
mnhighEnergy,•
highEnergyAction,•
mnreject,•
rejectAction,•
vicinity,•
compare .•

EXPLANATION OF THE OUTPUT (below are 3 example lines with numbered fields):

1 2 3 4 5 6 7 9 9 10 11 12 13 14
DY Visi 600 16 gln xi3 70 −98 94 −322.04 −324.56 35 4.87 51559
__ __ 600 32 ile BPMC ipt ipt ipt −324.56 −290.80 18 65.72 51577
_Y Visi 600 16 gln BPMC qmm qmt qmm −324.56 −323.93 41 3.78 51618

DY = Down Yes, i.e. energy has decreased after change and new conf. is accepted1.

__ = up no , i.e. energy has increased and new conf. is not accepted

_Y = up Yes, i.e. energy has increased, but new conf. is accepted

stack operation code;2.
current temperature in Kelvin;3.
number of selected residue4.
selected residue name5.
name of randomly selected angle or BPMC to indicate the biased probability move6.
internal coordinate value or name of the multidimensional zone before random change;7.
internal coordinate value or name of the multidimensional zone after the random change but
before minimization;

8.

internal coordinate value or name of the multidimensional zone after the minimization;9.
energy before the random change;10.
energy after the random change and subsequent minimization;11.
number of function calls made during minimization;12.
gradient RMS deviation (normal completion is with low or zero gradient);13.
total number of function calls in the simulation.14.

The logic of stack operations is the following. There are three possible events for each slot of a stack:

new slot creation1.
energy improvement of the current slot conformational family2.
replacement of the looser conformational family by a better energy conformation3.

2.20.47. modify 209

The starting conformation is placed to the first slot, if the stack is empty. At every simulation iteration,
distances (either coordinate RMSD or angular RMSD, as defined by the compare command) are
calculated between the current conformation and all slots. If any of the distances is less than the
vicinity parameter, then the energies are compared and if the current conformation has the better
energy, the stack conformation is replaced by the current one, otherwise the visit counter of the slot is
incremented. If no similar structures are found, the conformation is appended to the stack, i.e. a new slot is
created. If the stack is full, i.e. number of slots reached mnconf parameter, then the worst−energy
structure will be substituted by the current, provided the latter has lower energy. Otherwise, no action is
taken and number_of_high_energy_conformation counter is incremented (see also mnhighEnergy).

2.20.49. move

move ms_molecule: change tree topology

move ms_moleculeToReconnect as_terminalAtom

changes the topology of the basic ICM−tree by reconnecting the first virtual bond of a specified
molecule to a given atom. This allows you to move two molecules together as one rigid body. By default,
all the molecules are connected to the origin [0,0,0] through virtual bonds. The molecule can be connected
only to the terminal atom, usually a hydrogen. The molecule can not be connected to itself (naturally, do
not even try it). This operation is defined only for ICM molecular objects.

Examples:

 build "twomol" # two molecules connected by virtual bonds
 # to the origin
 move a_2 a_1/1/hn2 # graft the second molecule to a hydrogen
 # on another molecule
 # now the second molecule will move together
 # with the a_1/1/hn2 branch
 # if you change v_1//?vt* variables

move os_ : merge two objects

move ms_whatToMove os_whereToMoveTo

move one, several or all selected molecules (ms_whatToMove) to the specified object os_whereToMoveTo.
When all the molecules are moved from the source object, the empty object is deleted. The
ms_whatToMove molecule or object are appended to the end of the os_whereToMoveTo object and their
virtual torsion tvt1 becomes virtual phase fvt1. This command is used to create one object
from several components.

Examples:

 # 1st object
 read object "crn"
 # 2nd object
 build string "se ala his leu"
 move a_2. a_1. # take the 2nd obj and merge
 # it with the 1st one

 read pdb "1sis"

210 2.20.49. move

 read pdb "2eti"
 set object a_1.
 move a_2. a_1. # two PDB structures became one
 # ICM molecular object
 display virtual

2.20.50. pause

pause [i_numberOfSeconds] [s_message]

suspends execution for specified number of seconds. If no argument is specified, the program will wait
until RETURN is pressed.

Examples:

 pause 5 "You have 5 secs" # pause for 5 seconds

 # How to analyze the conformational stack
 display a_//ca,c,n # display backbone
 for i=1,Nof(stack) # for all stack conformation
 load conf i # load and redisplay each of them
 pause "Press Return. N"+i # gives you time to inspect the structure
 endfor # go on to the next conformation

Debugging shell scripts

The pause command also can set the program into a debugger mode in which you will be prompted to
confirm each command by pressing RETURN. In the debugger mode the l_commands flag will be
automatically set to yes and restored upon quitting. This is how to do it:

To start the debugger mode, add to your script: pause "START DEBUGGER"•
To quit the debugger mode, type or add to your script: pause "QUIT DEBUGGER"•

2.20.51. plot

create a PostScript file with a plot.

plot { R_Xdata R_Ydata | M_XmultpleYdata } [S_PointLabels] [S_PlotAxisTitles] [{ R_4Tics |
R_8Tics }] [s_epsFileName] [options]

Simple input: Two compulsory arguments R_Xdata R_Ydata contain the X and Y coordinates.
Both arrays may also be integer arrays.

•

Matrix input: allows you to specify several data sets. The M_XmultpleYdata matrix may contain
either X,Y1,Y2,..Yn columns or just Y1,Y2,..Yn columns if option number is used. Matrix
M[2,n] or M[n,2] is equivalent to the simple input R_Xdata R_Ydata (Note that function
Histogram() returns such a matrix). Additional convenience: by default, different data sets will
be shown in different colors and a panel with series/color correspondence will appear at the
position specified by the PLOT.seriesLabels preference (choose "none" to suppress the
panel). To avoid ambiguity do not use explicit S_PointLabels with the matrix input.

•

2.20.50. pause 211

Axis and Tics: 8−array R_Tics[1:8] contains information about X and Y axis: { Xfrom, Xto,
XmajorTics, XminorTics, Yfrom, Yto, YmajorTics, YminorTics }. If only 4 numbers are provided,
they are interpreted as { Xfrom, Xto, XmajorTics, XminorTics } while the Y axis tic marks are
determined automatically. By default, if this argument is missing, the tic marks for both axes are
calculated automatically. Example:

•

 x={1. 3. 4. 7. 11. 18.}
 y=Sqrt(x)
 plot x y {0.,30.,2.,4.} # only X−axis marks are defined
 plot x y {0.,30.,2.,4.,0.,10.,1.,5.} # both axes are explicitly defined

Title and legends: string array S_PlotAxesTitles[1:3+NofSeries] contains { "Title", "X title", "Y
title" } in the simplest case. If multiple series are plotted using M_XmultpleYdata or number
M_multpleYdata arguments, each series may be named with additional components of the array: {
"Title", "X title", "Y title","Y1 title","Y2 title",..}.

•

Plot controls: Optional S_PointLabels has the same number of elements as R_Xdata or R_Ydata
and may contain either string to be displayed at the corresponding X Y point, or control
information about marker type, color and size. The control string must start with underscore (_).
To display both symbols and string labels, duplicate X and Y arrays (e.g. X//X, Y//Y) and supply
the first S_PointLabel section with the symbol information and the second one with the string
label information.

•

Examples of string labels:

 s={"1crn", "2ins", "1gpu", "3kgb","4fbr","6cia"} # text labels: show as is
 s={"_red SQUARE 0.4", "", "", "_green DIAMOND","",""} # control labels
 s={"_line" "" "" "_red line" "" "" "_blue line" "" ""} # control labels

The empty string tells the program to inherit all the settings for the previous point. Individual
components of the string label are (i) color, (ii) mark type and (iii) mark size. Omitted components
are not changed. Allowed mark types: line, cross, square, triangle, diamond, circle, star, dstar,
bar, dot, SQUARE, TRIANGLE, DIAMOND, CIRCLE, STAR, DSTAR, BAR. Uppercase
words indicate filled marks.

Options.

append − append the plot to an existing plot file.•

display − view the created postscript file with an external viewer defined by the s_psViewer
variable.

•

grid, or grid="x", or grid="y" − draw grid at the major tics for the specified axis.
Default: for both axes ("xy").

•

exact − data points can reside exactly at a margin.•

regression − draw linear regression line.•

frame − draw NO frame around the plot (paradox isn't it? yeaah we are tricky).•

212 2.20.50. pause

origin − make origin at (0,0) point.•

link − enforce 1:1 aspect ratio, equivalent to PLOT.Yratio = 1.0 .•

comment= S_xyXYtext − this option allows to draw one line of text along all the four sides of the
plot box. The string array may contain up to four strings {s_x,s_y,s_X,s_Y}:

s_x: lower horizontal string, i.e. comment={"xxxxxxx"}1.
s_y: left vertical string, i.e. comment={"","yyy"}2.
s_X: upper horizontal string, i.e. comment={"","","XXXXXXX"}3.
s_Y: right vertical string, i.e. comment={"x","y","X","YYY"}4.

This option may be used to draw amino acid sequence around a contact plot box or a dot plot box.

•

number generates the sequential numbering for X−array if this array is missing and sets a natural
X tic style. In case of matrix input (see above) option number allows to omit the X−array.

•

String variable s_epsFileName with extension .eps defines the name of a PostScript file where the
resulting plot is to be written to. The default of s_epsFileName is "def.eps".

Examples:

 x = Rarray(90,0.,360.) # an array of angles with 4 deg. steps
 plot x Sin(x) display
 plot x//x Sin(x)//Cos(x) display # quick and dirty way to have two data sets.
 # Now let us get rid of the defect
 s = Sarray(2*Nof(x)) # S_PointLabels for both arrays
 s[Nof(x)+1] = "_red line" # restart line for the first point
 # of the second set
 plot x//x Sin(x)//Cos(x) s display # much better

 plot Transpose(x)//Transpose(Sin(x))//Transpose(Cos(x)) display

 read object "crn"
 crn_m = Sequence(a_/A) # a_/A ignores termini
 plot comment=String(crn_m)+Sstructure(a_/A) number Turn(crn_m) display # try it
 plot comment=String(crn_m)+Sstructure(a_/A) number Turn(crn_m) {"Turn prediction","Res","P"}
 unix gs def.eps # to see it again

See also: Histogram, plotRama macro in the _macro file, and examples in the _demo_plot file.

2.20.52. plot area: show matrix values with color

plot area M_XYdata options [S_TitleXY] [{ R_4Tics | R_8Tics }] [s_epsFileName]

plot 2D data from the matrix and mark values by color. Other arguments are the same as in the plot
command. Distribution of colors is controlled by the PLOT.rainbowStyle preference. By default the
minimal and maximal values of matrix M_XYdata are used as extremes for coloring. Options:

color= R_2MinMax option allows you to enforce specific boundaries represented by the color
range. For example, if you chose the "blue/red" PLOT.rainbowStyle the matrix value smaller than
or equal to the first element of the R_MinMax array will be colored blue, while the matrix values
larger than or equal to the second element of the array will be colored red, the middle values will
be color with intermediate colors. The real array of boundaries contains two elements.

•

2.20.52. plot area: show matrix values with color 213

 PLOT.rainbowStyle = "blue/white/red"
 color={1. 3.} # <= 1. are blue; above 3. red
 color={3. 1.} # >= 3. are blue; <= 1. are red

link − enforce square shape (1:1 aspect ratio) of each cell, overrides PLOT.Yratio.•

comment= S_xyXYtext•

this option allows to draw one line of text along all the four sides of the plot box. The string array
may contain up to four strings {s_x,s_y,s_X,s_Y}:

s_x: lower horizontal string, i.e. comment={"xxxxxxx"}1.
s_y: left vertical string, i.e. comment={"","yyy"}2.
s_X: upper horizontal string, i.e. comment={"","","XXXXXXX"}3.
s_Y: right vertical string, i.e. comment={"x","y","X","YYY"}4.

This option may be used to draw amino acid sequence around a contact plot box or a dot plot box.

transparent= R_2range option allows you to make a certain range of matrix values invisible.
If R_2range[1] < R_2range[2], the specified range will be excluded from the plot, while the
values beyond the range will be shown. If R_2range[1] > R_2range[2], the specified range will be
shown by color, while the values beyond the range will be excluded.

•

Example:

 transparent={1. 3.} # values WITHIN the range are not shown
 transparent={3. 1.} # values OUTSIDE the range are not shown

Data can also be transformed and clamped with the Trim() function.

Examples:

 read matrix "def.mat"
 PLOT.rainbowStyle = "blue/white/red"
 plot area def display # min/max = {−3.,17.}
 plot area def color = { 0., 20.} display
 plot area def color={−0.,15.} transparent={−10.,5.} display
 plot area def[1:12,1:10] link display comment={"X","Y axis"}
#
#
 N=210
 M=Matrix(N N)
 for i=1,N
 M[i,?]=Sin((Power(i−12.1 2)+Power(Count(N)−12.1 2)))
 endfor
 plot area M link display
 # just a nice test, default boundaries are used

 read pdb "1crn"
 MDIST=Distance(Xyz(a_//ca))
 s=String(Sequence(a_1./A))
 PLOT.rainbowStyle = "blue/rainbow/red"
 # contact map for 1crn, values below 4.8 and
 # above 10. A are not shown
 plot area MDIST area color = {4.5 15.} transparent={10.,4.8} \

214 2.20.52. plot area: show matrix values with color

 display link grid comment=s//s

2.20.53. print

print arg1 arg2 arg3 ...

The arguments may be variables or constants of integer, real, string, logical, iarray,
rarray, sarray, matrix, sequence, or alignment type.

Examples:

 print "no. of atoms=", i_out, "GRAPHICS.wormRadius=", GRAPHICS.wormRadius

2.20.54. printf

a family of three functions for the formatted print:

printf s_formatString args ... # prints to stdout and s_out•
sprintf [append] s_formatString args ... # prints to s_out only•
fprintf [append] s_file s_formatString args ... # write to a file•

printf s_formatString arg1 arg1 arg2 arg3 ...

formatted print, mostly follows the C−language printf syntax. The arguments may be variables or constants
of only integer, real, string type.

s_formatString may contain

plain characters that are directly reproduced•
ambiguous characters: \\ − backslash, \" − double quote, %% − percent•
escape sequences for more tricky characters (\a − bell, \b − backspace, \f − formfeed, \n −
newline, \r − carriage return, \t − horizontal tab, \v − vertical tab) and

•

conversion specifications for each argument of the printf command. Each specification starts
from % and may be followed by − sign for left adjustment, and precision specification (e.g.
%−5.2f).

•

%c − unsigned character•
%s − string•
%d %D − integer•
%[−] i1.i2f − float (real) in decimal notation•
%g %G − real in either f or e style, precision specifies the number of significant digits.•
%e %E − real in [−]d.ddde+dd style•
%o %O − unsigned octal•
%u %U − unsigned decimal•
%x %X − unsigned hexadecimal•

The output is directed to the screen and is also saved in the s_out string which can be later written or
appended to a file.

Examples:

2.20.53. print 215

 printf "Resol. = %4.1f N_ml= %−3d\n", a, n
 write append s_out "log" # append to the log file

See also: sprintf [append] [s_] (prints to the s_out string by default) fprintf [append]
s_file (directly prints to a file).

2.20.55. print image

print image [window= I_xyPixelSizes]

print the current screen image to the printer defined by the s_printCommand ICM string variable. Use
option window= to increase the resolution (however in this case bear in mind that the lines will get thinner
and labels smaller). Be kind to your printer and color the background white (e.g. Ctrl−E). See also:
write image s_printCommand, View (window).

Example:

 nice "4fgf"
 color background white # or press Ctrl−E
 print image
or
 s_printCommand = "lp −c −ddepartmentalColorPrinter"
 print image window=View(window)*2 # increase resolution two−fold

2.20.56. quit

quit

Terminates ICM session.

2.20.57. randomize

randomize internal variables in molecules

randomize vs_ r_angAmplitude

randomly distort current values of specified variables with either specified or default amplitude in degrees
for angles and in Angstroms for bonds. The range is [CurrentValue − r_angAmplitude, CurrentValue +
r_angAmplitude]. Default amplitude is defined by mcJump ICM−shell variable (30.0).

randomize variables in range

randomize vs_ r_angMin, r_angMax

assigns random values within specified range to selected variables.

randomize atom positions

randomize as_ r_amplitude

216 2.20.55. print image

translates the specified atoms as_ randomly and isotropically according to Gaussian distribution with the
specified sigma.

randomize molecule positions

randomize ms_ r_amplitude

translates and rotates the specified molecules ms_ randomly and isotropically according to Gaussian
distribution with the specified sigma. We call it a Pseudo−Brownian random move. The same moves are
used in the montecarlo docking protocol.

Examples:

 randomize v_//!omg 50. # distort all variables with
 # 50 degrees amplitude

 randomize v_/14:21/phi,PSI −70., −50. # range [−70.,−50.]

(Note use of PSI torsion in the last example.)

2.20.58. read

read stuff from a disk file, pipe or string.

ICM offers several ways of reading information in:

read from file

read ... s_fileName

reading from a file. Just say way what and from what file. The file name is a string and must be quoted.
Usually, the extension can be omitted if it is standard. Also, in several cases the program will try to find the
requested file in a special directory (s_pdbDir for a PDB file, s_xpdbDir for an xpdb object, etc.), if
is not found in the current one.

Examples:

 read pdb "1crn"
 # s_pdbDir will also be searched.
 # It will also read "1crn.brk.Z"

 # you may specify file extension explicitly
 read iarray "a.a"

read from string

read ... input= s_bufferString [name= s_newName]

reading from an ICM string. Replacing file by a string is useful in CGI scripts, because the input
information is easily accessible as an ICM string. Option name= s_newName allows to specify a name of
the new ICM−shell object.

2.20.57. randomize 217

Examples:

 s_mat="1 2\n3 5\n0 6"
 read matrix input=s_mat name="m23" # matrix m23 is created
 s_seq = "> a\nAFSGFASG\n> b\nQRWTERQWTE\n"
 read sequence input=s_seq # read sequences a and b
 show a b

read through filters: assign action by file extension.

read ... s_compressed_or_encoded_files

of any type directly. The files will be uncompressed on the fly, if the file extension and the corresponding
filtering command are found in the the FILTER table. ICM understands .gz (gzip), .bz2 (bzip2)
and .Z (compress) compression.

Examples:

 read object "aa.ob.gz"
 read pdb "/data/pdb/pdb1crn.ent.Z"

read all

read all s_allFileName

reading from a mixed file containing several ICM−shell objects (including tables) or data types. Legal
types and separators:

#>i integer_name•
#>r real_name•
#>s string_name•
#>l logical_name•
#>p preference_name•
#>I iarray_name•
#>R rarray_name•
#>S sarray_name•
#>M matrix_name•
#>seq sequence_name•
#>prf profile_name•
#>ali alignment_name•
#>m map_name•
#>g grob_name•
#>T table_name # the column layout•
#>col table_name # the column layout•
#>db table_name # the database layout•
#> brk # a protein−data−bank file content•
#> var # internal variables (torsions, angles, bonds) for the current ICM−object•

Example:

 read all "a.all" # the file is given below

218 2.20.58. read

The a.all file may look like this:

#>r lineWidth
 1.00
#>R box4
 0. 0. 1. 1.
#>s tt.h
this is a header string of table tt. The arrays follow.
#>i tt.n
15
#>T tt
#> name bd nlines
icm 1985 160000
bee 1998 100000
inet 2000 80000

Such a file can be created with the

write append icmShellObject file.all

command

read index table

read { sequence | mol | mol2 } T_selectedEntries

extract database entries selected via index table expression, e.g.

 read index "/data/inx/SWISS.inx"
 read sequence SWISS[2:15]
 read sequence SWISS.ID ~ "IL2_*" | SWISS.ID == "ML2_HUMAN"
 # or
 read index "NCI3D"
 read mol2 NCI3D.DE ~ "^benz*"

See the readMolNames sarray for details on database compound name storage conventions.

Index file contains an integer position of the first character of an entry (ST as in STart), and the entry length
(LE as in LEngth). Accepted types of the database index files are single files with multiple entries:

#>s Swiss.DIR
/data/swissprot/seq
#>s Swiss.EXT
.dat
#>T Swiss
#>−−ID−−−−−−−−−ST−−−−−−−DA−−−−−−LE−
104K_THEPA 0 906 1094
..

read ftp

read .. "ftp−path/file"

2.20.58. read 219

reading directly from ftp port. The ICM can read not only from files directly accessible from your
computer but also files from remote locations via ftp. ICM includes a simple FTP client to simplify access
to the databases on the internet. Files names may be specified as an ftp style URL:

ftp://[user [: password]@] hostname [: port]/ path/ file

If the password portion is omitted, the password will be prompted for. If both the user and password are
omitted, anonymous ftp is used. In all cases passive (PASV) ftp transfers are used. If port is omitted,
standard port (:21) is used.

Example:

 read sarray "ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"+\
 "ab/pdb1ab1.ent.Z"
 read sequence "ftp://embl−heidelberg.de/toby/ph.seq"

URL−header may be used in existing mechanism of access to PDB:

 s_pdbDir ="ftp://ftp.rcsb.org/pub/pdb/data/structures/divided/pdb/"
 pdbDirStyle = "ab/pdb1abc.ent.Z"
 read pdb "1crn"

Remote files are stored in your local s_tempDir directory. Do not forget to delete them from time to
time. The system table FTP can be configured to delete temporary files and deal with firewalls.

read http

read .. "http−path/file"

reading from http port via lynx.

Example:

 read pdb "http://www.pdb.bnl.gov/pdb−bin/send−pdb?id=1crn"

*

read unix

read .. unix unix_command

reading from a unix pipe. (Note that you can read unix shell variables directly with the Getenv(
s_varName)} function).

Examples:

 read unix date
 if(s_out[1:3]=="Sun")print "Go to church"

 read column unix grep "^DY" f1.ou | awk '{print $11, $12}'
 show def

220 2.20.58. read

read unix cat

read .. unix cat

reading from a buffer pasted with the mouse is a special case of reading from a unix pipe. Basically, just
mark anything ICM−readable in any window, paste it to your ICM session and press Ctrl−D. Note that a
file name which is usually used to name the ICM−shell object is missing now, therefore it may be named
'def' (i.e. default), rename it afterwards.

Examples:

 read alignment unix cat
 cd59n LQCYNCPNP−−TADCKTAVNCSSDFDACLITKAG−−−−−−−−LQVYNKCWK
 ly6n LECYQCYGVPFETSCP−SITCPYPDGVCVTQEAAVIVDSQTRKVKNNLCLP
 ^D
 show def
 rename def cd_ly

 read sequence unix cat
> cd59
 LQCYNCPNPTADCKTAVNCSSDFDACLITKAG
 LQVYNKCWKFEHCNFNDVTTRLRENELTYYCCKKDLCNFNEQLEN
 ^D

read unix cat or read string are two equivalent ways to
load text to the s_out string
 read string
 This is the text which will end up
 in you s_out string.
 ^D

read a mixed, read all −type, input and create two ICM−shell variables:
read all unix cat
#>s ss
strrr
#>i aa
234
^D

read alignment

read alignment [pir | msf] [s_aliFileNameRoot] [name= s_aliName]

read alignment file in a natural, pir or msf formats. Upon reading, all the sequences are created as
separate ICM−shell objects. The alignment is created as a separate object for msf−formatted files. In the
case of other formats the alignment object is created if lengths of all the sequences together with dashed
("−−−") insertions are equal to each other.

read color

read color s_clrFile

If you want to have an alternative color file (say, "icmw.clr"), you can reread the colors.

2.20.58. read 221

Example:

 read color "icmw"

read comp_matrix

read comp_matrix [s_cmpFileNameRoot]

reads cmp−formatted file (*.cmp) containing one or several residue comparison matrices.

read conf: conformations from file

read conf [i_stackConf] [s_stackFileNameRoot]

reads and sets one specified conformation from the conformational stack file *.cnf. If i_stackConf is
omitted the best energy conformation is extracted. See also read stack.

read csd

read csd [s_csdFileNameRoot [s_csdJournalFileName]] [i_NofObjectsLimit [i_startingObject]]

reads the output of the Cambridge Structural Database (CSD) search utility, namely, FDAT−formatted file
(*.dat) and the optional session journal−file (*.jnl). Information about atomic coordinates, connectivity,
parameters and symmetry of crystallographic cell is taken from the FDAT file. The journal file contains
information about chemical names of compounds. If not provided, the REFCODE csd−name is assigned to
the compound name of the ICM−object. (See also Name ([os_ ,] real)). Optional i_NofObjectsLimit and
i_startingObject arguments allow you to extract a subset of several objects from a certain position of a
multi−entry file. You can loop through all the objects by reading the chunks of up to about 1000 objects by
doing the following:

 offset = 1
 while(yes) # infinite loop
 read csd "large" 100 offset # read the next 100 objects
 if(Nof(object) == 0) break # exit upon reading all obj.
#
do whatever you want
#
 offset = offset + 100
 delete a_*.
 endwhile

The object created is not of the ICM−type, use convert or write library to create an object or an
ICM−library entry, respectively. Note that you can also read compressed CSD files (see FILTER).

Examples:

 # all objects from ex_csd.dat and ex_csd.jnl
 read csd "ex_csd"
 # only the first obj. ; explicit name for the journal file
 read csd "ex_csd" "ex_csd" 1

To see how to generate all the symmetry−related molecules in the cell, see the transform command.

222 2.20.58. read

read database

read database [field= S_fields] [group [name= s_tableName]] s_databaseFileName

read a text database with strings and numbers and create appropriate arrays. The field names in the database
become names of the arrays upon reading. The list of array names will be stored in s_out . Option group
indicates that a table should be formed (or ICM−shell structure) of the constituent arrays. This table will
be renamed if option name is specified.

You may also group arrays of the database to form a table with a separate command. That will allow
you to sort all the arrays and search all the fields by the Find() function.

Examples:

 read database field ={"NA","RZ"} s_icmhome+"foldbank.db" group name="tt"
 read database field ={"RZ","NA"} s_icmhome+"foldbank.db" group
 show foldbank
#
ANOTHER EXAMPLE
 read database "LIST.db"
 show database $s_out # you may also list the arrays explicitly
 write database $s_out "out.db"

See also: read column, write database, show database.

read drestraint

read drestraint [only][s_cnFileNameRoot]

read distance restraints (often referred to as cn) from an a .cn file. Do not forget to read
drestraint types first. Option only tells the program to delete previous distance restraint settings.

read drestraint type

read drestraint type [only] [s_cntFileNameRoot]

read distance restraint types from a *.cnt file. Option only tells the program to delete all previous
distance restraint types settings.

read factor

read factor [s_factorFileNameRoot]

reads the Xplor−formatted structure factor file. The input is free−field, and each reflection record may be
extended over several lines.

Example:

INDEx 1 2 3 FOBS=9.0 SIGMA=3.3 Phase=50.0 Fom=0.8
INDEx 2 −3 1 FOBS=31.0 SIGMA=2.3 Phase=20.0 Fom=0.3
INDEx 5 6 6 FOBS=44.0 SIGMA=2.0

2.20.58. read 223

To read the ICM−formatted structure factor table, just use the read table command. ICM will
recognize the file type.

read grob

read grob [s_groFileNameRoot]

read graphics object from a file. To avoid conflicts with existing names of ICM−shell variables,
prefix g_ is added to the s_groFileNameRoot. The default file name root is "def". Allowed input formats:
ICM (*.gro) or wavefront (*.obj).

Examples:

 read grob "icos" # load icosahedron from icos.gro file
 display g_icos # usually g_ prefix is added to the file name

read iarray

read iarray s_iarrayFileName [name= s_IName]

read integer array from a file. File format is free.

read index

read index s_indexTableFile [database= s_newDataBaseFileName]

read the index file for quick access to a database. The optional argument allows to access the database file
at a location different from those specified in the course of indexing with the write index command.

Examples:

 group table NCBI_ {"ID","DE","SQ"} "fd" \
 header "/data/nr/" "DIR" {"nr"} "FI" "" "EXT"
we created control table t
 write index fasta NBCI_ "/data/nr/NR.inx"
 # make index and save to a file
 read index "/data/icm/inx/NR.inx"
 # read index
 show NR[2:5]
 # usage of the last optional argument
 # move the data file, keep the index file
 unix mv /data/nr/nr /newdisk/data1/nr/nr
 read index "/data/icm/inx/NR.inx" database="/newdisk/data1/nr/nr"

read library

read library [s_libraryFileNameRoot]

reads the ICM library files:

icm.res and user residue libraries.•
icm.bbt − bond bend angle bending and improper torsion deformation parameters•

224 2.20.58. read

icm.bst − bond stretching parameters•
icm.cod − atom codes and types•
icm.tot − torsion angle energy parameters•
icm.hbt − hydrogen bonding parameters•
icm.hdt − surface−based hydration parameters•
icm.cmp − residue comparison matrix(es)•
icm.cnt − distance restraint types (cn)•
icm.vwt − van der Waals energy parameters•
icm.rst − multidimensional variable restraints zones•

The default library name and path are defined by the s_lib string ICM−shell variable.

read library mmff

read library mmff [s_libraryFileNameRoot]

reads the following additional library files for the mmff94 force field:

mmff.bbt•
mmff.bst•
mmff.tor•
mmff.tot•
mmff.vwt•

To calculate the mmff energy one needs to assign atom types, and charges. The force field is
switched with the ffMethod preference. An example:

Example:

 build string "se nter his cooh"
 read library mmff
 set type mmff
 set charge mmff
 display
 minimize cartesian

read map

read map [reverse] [s_mapFileNameRoot] [name= s_mapName]

read ICM−electron−density map file and create an ICM−shell variable of the map type.

Option *reverse changes the endian for binary maps generated outside ICM under a different operating
system.

Reading many maps at once

read map [reverse] [s_mapFileNames] [name= s_mapNames]

read multiple files specified in comma−separated string (e.g. "./map/gc,./map/ge") and rename the
maps by matching names from a comma−separated string. Examples:

2.20.58. read 225

read map "gc1,ge1,gh1" "m_gc,m_ge,m_gh"

read map "./gc1,./map/ge1,./gh1" "m_gc,m_ge,m_gh"

read matrix

read matrix [s_matrixFileNameRoot] [name= s_MName]

read ICM−matrix file and create an ICM−shell variable of the matrix type.

read mol

read mol [exact] [s_FileNameRoot] [number= { i_number | I_from_to}] [name= s_rootName]

read multi−molecule MDL mol −file (a.k.a. SD−file) and create stripped molecular objects (they need
further conversion). The molecules are named according to the first line of the name section of the
mol/sd format. If this line is empty, the root name is taken from the option name= s_rootName. If none
provided the molecules are named 'm1', 'm2', 'm3',..., sequentially. If possible readMolNames is utilized.

In the default mode a pattern of single and double bonds is interpreted in order to identify aromatic
systems. Then appropriate bond types are changed to aromatic (hit Ctrl−W to see the effect). This
aromatic system assignment, however, is irreversible. If you write mol after that the new bond types
will be saved.

Set l_readMolArom to no if you do not want to assign aromatic rings upon reading. (and formal charge
and bond symmetrization for CO2, SO2, NO2or3, PO3). To suppress suppress the symmetrization and
consequential charging of CO2, set the l_neutralAcids to yes .

S_out contains all properties: All the property fields specified in the mol file, e.g.

<logp>
2.344
<cas>
234

will be stored in the S_out array (one string for each object). The string can be further split into fields to
extract the values, e.g.

 cas = Trim(Field(S_out,"cas_rn",1,"\n")) # sarray of cas numbers
 logp = Rarray(Field(S_out,"logp",1,"\n")) # rarray of logp values

Do not forget that ICM converts all strings to low−case.

Options:

exact: enforces the exact mol/sd format. The default reading mode is more tolerant to common
format violations.

•

auto: automatically assigns compound names, if the name line is missing. The name is
composed of the file name root and the order number of a compound.

•

Examples:

226 2.20.58. read

 read mol "ex_mol.mol" # you may skip the extension
 logP = Rarray(Trim(Field(S_out,"logp",1,"\n"))) # rarray of LogP values
 build hydrogen
 wireStyle="chemistry"
 display a_

See also: l_readMolArom, l_neutralAcids

read mol2

read mol2 [s_FileNameRoot]

read Tripos' Sybyl mol2 −formatted file (extension .ml2) and create stripped molecular objects (they need
further conversion to become ICM−objects).

Set l_readMolArom to no if you do not want to assign aromatic rings upon reading. (and formal charge
and bond symmetrization for CO2, SO2, NO2or3, PO3). To suppress suppress the symmetrization and
consequential charging of the acidic groups like CO2, SO3, PO3 set the l_neutralAcids to yes .
These will work only if the input files contain only single and double bonds (no aromatic types).

Examples:

 read mol2 "ex_mol2" # this example file is provided

read movie

read movie [s_movFileNameRoot]

read ICM−movie file with the Monte Carlo simulation trajectory.

See also: display movie.

read movie write

read movie [s_movie1] write [append] i_fromFrame i_toFrame s_movie2

a movie editing tool. Read ICM−movie file with the MC simulation trajectory, grab a fragment [
i_fromFrame:i_toFrame] and append it to some other file s_movie2.

read object

read object [s_objFileNameRoot] [number= { i_objNumber | I_objNumbers}]

read previously formed and saved ICM−molecular−object file. If ICM object file contains several
objects, all the objects are read. If argument i_objNumber is specified only the specified object is read.

The names of the loaded objects from are stored in the S_out array, and the number of new objects in
i_out.

2.20.58. read 227

See also: build command to create an object from the sequence and copy object command to copy
the existing object.

Example:

 build string "se glu" name="glu"
 build string "se his" name="his"
 write object a_1. "obb"
 write object a_2. "obb" append
 delete object a_*.
 read object "obb" number=2
 S_objNames = S_out
 show a_$S_objNames[1].

read pdb

read pdb [charge] [all] [sstructure] [s_pdbFileNameRoot [.mol/res1:res2/at1,at2,..]]

read pdb−formatted file and create a molecular object. You can read all the information from the file or
only the part you need to save program memory:

the whole object: read pdb "/data/pdb/2ins"•
one or several chains: read pdb "/data/pdb/2ins.a,b/" (if chain is not named, refer to it as 'm')•
chain fragment: read pdb "2ins.a/3:16"•
certain atoms: read pdb "2ins./3:17/ca,c,n" (you may use name patterns with wildcards too)•

Structures determined by NMR are usually represented by several models separated by MODEL and
ENDMDL fields. By default only the first model will be read in.

Option all may be used to load all NMR models. Each model will be placed into a separate object. Object
names will be automatically generated.

Error detection.

ICM detects chain missing residues according to the differences between SEQRES sequence and the
residues with coordinates and returns the total number of missing residues in the i_out system variable.
E.g.

 read pdb "1amo.a/"
 make sequence a_1.1 # sequence 1amo_1_a extracted
 if(i_out>1) then
 read pdb sequence "1amo" # sequence 1amo_a read
 a=Align(1amo_a 1amo_1_a)
 build model 1amo_a a_1.1 a # patch the missing fragments
 endif

See also: convert command to turn it into an ICM−molecular object and the FILTER preference to see
how to read the compressed pdb−files directly.

The fields parsed by ICM.

228 2.20.58. read

ICM parses most of the information from the PDB database entry and allows to manipulate with this
information in the ICM−shell. The following fields are parsed:

ATOM : all atom properties including alternative chains. To show the info: show a_//*.
Function to extract the atom properties:

Bfactor: b−factors♦
Charge: charges♦
Occupancy: charges♦
Name: atom names♦

You can also select by many different properties of atoms, residues, molecules and objects
directly in the selection expression or via the Select function.

•

HETATM : all properties including alternative chains•
EXPDTA : assigned as the ICM−object type. ICM function: Type(os_).•
REMARK 2: resolution is extracted. ICM function Resolution(a_).•
REMARK 4: is shown as info upon reading.•
REMARK 800: description of SITEs is extracted. Can be viewed by show site. You can
select these sites by a_/F" siteID"

•

COMPND : assigned to the object comment field. Editable and reassignable with the set
comment. The comment is returned by the ICM function Namex . You may directly select with
the a_"searchString". expression.

•

SSBOND:•
DBREF: database reference information shown upon reading•
SITE : sites can be shown with the show site, can be selected with the a_/F expression.•
HELIX : returned with the ICM Sstructure function.•
SHEET : returned with the ICM Sstructure function.•
SEQRES: this sequence can differ from the sequences extracted from the ATOM records. It is
read with the read pdb sequence command and becomes an ICM−shell sequence

•

SCALE,TVECT,MTRIX: read but not used, the CRYST1 and ORIGX information is used
instead.

•

CRYST1,ORIGX : the transformation vector is returned by the ICM function
Symgroup and can be applied with the transform command.

•

Treatment of water molecules. Water molecules become molecules named sequentially w1,w2,w3...
Their original numbers which are stored in the residue field become their 'residue' numbers, e.g. to select
water molecule number 225 and 312, do not use the w.. names of water molecues, but use the
a_w*/225,312 selection instead.

Option charge tells the program to load atomic charge from the occupancy field and reset occupancies to
1., and atomic radii from the B−factor field.

Option sstructure tells the program to automatically assign the secondary structure if it is not provided
in the PDB entry.

The file will be first searched in the local directory. Extensions *.pdb and *.brk will be tried unless
explicitly specified. If not found the s_pdbDir directory or directories will be looked up according to the
pdbDirStyle preference. This preference allows file names like pdb1abc.ent recognized by the read
pdb "1abc" command.

Examples:

2.20.58. read 229

 read pdb "1crn" # 1crn.brk should be either in the local
 # directory or in s_pdbDir one

 read pdb "2ins.a/" # load only chain 'a'

 read pdb "2ins.a//ca,c,n" # load only the backbone of chain 'a'

 read pdb "1crn./4:17" # load only 4:17 fragment from 1crn.brk

read pdb sequence

read pdb sequence [resolution] [s_pdbFileNameRoot]

quickly extract only amino−acid sequence from SEQRES records of a pdb−formatted file without
actually loading molecules.

It is important to understand that sometimes sequence from the SEQRES records does not match the
sequence extracted from the ATOM records, because some residues in flexible loops and ends are invisible.
Option resolution appends X−ray resolution to the sequence name (like 9lyz_a19, 19 stands for 1.9
resolution). 'No' is appended for NMR and theoretical structures. It can be used later by the group
sequence unique command to compile the representative list of PDB chains.

PDB is famous for having numerous errors which are never fixed. In SEQRES sometimes the stated
number of amino−acids in SEQRES does not correspond to the actual number of amino−acids (e.g. 1cty,
1ctz, 1ctz, 2tmn, 1ycc, 2ycc) .

The sequences will be called according to the pdb code and the chain name. In case of one chain without a
name, ICM assigns name "m" . e.g. 1est_m , 2ins_a , 2ins_b.

Records are converted to lower case. In rare cases, such as 1fnt, in which there are both upper and
lowercase chain names, the lowercase names become uppercase, e.g. 1fnt_a for the first chain and
1fnt_A for the 33−rd chain.

An example script to detect problems with pdb sequences (you can build the list with the makeIndexPdb
and mkUniqPdbSeqs macros)

 read sarray s_pdbDir + "pdb.li" name="a"
 l_info = no
 errorAction = "none" # otherwise breaks at pdb1aa5.ent
 for i=1,Nof(a)
 read pdb sequence s_pdbDir + a[i]
 delete sequence
 endfor
 Error> no SEQRES records in file /data/pdb/af/pdb0af1.noc.Z
 Error> no SEQRES records in file /data/pdb/ao/pdb1ao2.ent.Z
 Error> no SEQRES records in file /data/pdb/ao/pdb1ao4.ent.Z
 Warning> Sequence of chain "pdb1ati_c" starts with 'UNK' and is unknown
 Warning> Sequence of chain "pdb1ati_d" starts with 'UNK' and is unknown
 ..

230 2.20.58. read

read profile

read profile [s_prfFileNameRoot] [name= s_prfName]

read ICM−sequence profile from a file and create an ICM−shell variable of profile type.

read prosite

read prosite [s_prositeFileName]

read all the patterns from the prosite database (Amos Bairoch, University of Geneva, Switzerland) and
create two string arrays: prositeNames, and prositePatterns, containing names and patterns,
respectively. The search may be performed by the find prosite command. Check also the find
prosite command.

Examples:

 read sequence "zincFing.seq" # load sequences
 find prosite # search all 1374 patterns
 # through the sequence

See also: s_prositeDat .

read rarray

read rarray [s_rarrayFileNameRoot] [name= s_RName]

read real array from a file. File format is free.

read sarray

read sarray [s_sarrayFileName] [name= s_SName]

read any text from a sar−file as a bunch of strings separated by carriage returns. Create an ICM−shell
variable of sarray type.

read segment

read segment [s_fileName]

reads a simplified description of protein topology from a file. You can append your description to the
provided foldbank.seg file.

Examples:

 read segment s_icmhome + "/foldbank"

See also: assign sstructure segment, find segment, write segment.

2.20.58. read 231

read sequence

read sequence [{ fasta | swiss | pir | gcg | msf] } [s_seqFileNameRoot] [field= S_]

read amino−acid or DNA sequence from a variety of sequence file formats and create an
ICM−shell variable of sequence type.

See also: swissFields

read sequence database

read sequence T_indexSubset

read amino−acid or DNA sequence from an indexed sequence database. T_indexSubset contains the
selected entries which can be defined by a table expression (e.g. SWISS.ID=="^IL2_*"). The
names of the sequences extracted from the database to the ICM memory are stored in the S_out system
string array. i_out contains the number of the sequences loaded. These variables are used in
automated scripts for bioinformatics (see searchSeqDb or searchPatternDb) macros.

Examples:

 read index s_inxDir+"/SWISS" # load the Swissprot index
 read sequence SWISS[1:20] # first 20 entries
 show S_out[1], $S_out[1] # show the 1st name and the sequence
#
 read sequence SWISS.ID=="^IL2_*" SWISS.ID!="*_MOUSE"
 S_seqNames = S_out
 for i=1,Nof(S_seqNames)
 seqName = S_seqNames[i]
 show seqName, Nof(String($seqName),"[KR]") # stat. of positive charge
 endfor

read stack

read stack [append] [s_stackFileNameRoot]

read stack of conformations from a cnf−file. This command resets the energy terms as they were
saved in the cnf−file. The terms string is returned in the s_out variable.

read string

read string [s_textFile] [name= s_sName]

read any text from either standard input or a s_textFile. Place the result into the s_out string. Reading
string from standard input can be used to get URL−encoded stream generated by the HTML−form. The
read string command can also read from ftp.

See also: read unix command which allows to read in ICM the output of any unix command.

Examples:

232 2.20.58. read

#Put these lines into _tmp file. See how to precess the HTML−form output.
 read string # e.g.: echo "aaa=bbb| icm _tmp
 a=Table(s_out) # split the input string into two string arrays
 # a.name and a.value and form table 'a'
 show a # equivalent to show column a.name a.value
 quit
#
 read string "ftp://ftp.pdb.bnl.gov/index/compound.idx" name="pdbList"

In the last example the file will be downloaded from the PDB site and dumped into the pdbList string
variable.

read table

read table [database] [name= s_tableName] [s_tableFileName]

ICM needs two lines with the table name and the field names in the following format: (an example):

#>T atm
#> name code weight
hydrogen 1 1.008
....

To read a *.csv or *.tsv formatted files, use the read column group command.

See also: table, icm.tab file.

Examples:

 read table s_icmhome+"atm" name="ATOMS" # atm.tab file by default
 sort ATOMS.weight # sort according to the weight array

read column [separator= s_Separator] [group [name= s_tableName]] s_fileName

read a multicolumn table with strings and numbers and create appropriate arrays. If you add a ruler starting
from #> and looking like this

#>−name1−−−name2−−−−−−name3−−−−−−−−−name4−−−

the arrays will be created with specified names. If ruler is missing, default names (I1, I2 ..., R1, R2,..,S1,
S2, .. for iarrays, rarrays and sarrays, respectively) will be created. You may control field formation by
s_fieldDelimiter variable or by adding separator= s_Separator explicitly. The list of array names
will be stored in s_out so you can always say

 read column "res"
 show column $s_out

Reading comma−separated−value or tab−separated−value formats

To read a table in comma−separated−value (csv) or tab−separated−value (.tsv) format redefine the
s_fieldDelimiter value and use the read column group command.

2.20.58. read 233

read column group name="t" "t.csv"

See also: write column, show column, icm.col.

read variable [s_varFileNameRoot]

read ICM−molecular object variable values (torsion angles, phase angles, bond angles, bond lengths) from
a var−file. vs_out selection will contain a selection of variables which have been modified by the
command. Variables are assigned according to the residue number and the variable name. If residue name
is different (i.e. you want to assign phi,psi of an alanine 15 to glycine 15), the program sends a warning. If
more than one molecule is present in the current object, matching of molecule names is required. See also
set vs_ command.

read view [s_viewRarrayName]

read rarray of 36 display parameters for window size, scale, view matrices, etc. and set them. See also:
set view, View() function

Examples:

 build string "se ala"
 display
 write View() "a"
rotate the image
 read view "a" # restore view

read vrestraint [s_rsFileNameRoot]

read variable restraints (often referred to as rs) from a *.rs file. Do not forget to read
vrestraint types first. Option only tells the program to delete previous variable restraints.

read vrestraint type [s_rstFileNameRoot]

read variable restraint types from a *.rst file. Option only tells the program to delete
previous variable restraint types.

2.20.59. rename

rename oldName { s_newName | u_newName }

rename anything to anything else. More specifically you can rename commands, ICM−shell variables,
objects, molecules, residues and atoms. Renaming commands is possible, but then you must not forget to
change them in all the standard ICM−scripts. Using aliases instead allows you to use both the original
and the translation, however it slows down the ICM−shell interpretation. Be careful with a new name to
avoid name conflict.

2.20.60. rename object

rename { os_ [full] | ms_ | rs_ | as_ } s_newName

234 2.20.59. rename

change selected names. To change the long name of the object (it can contain space in contrast to a regular
object name), use the full option.

Examples:

 rename old mature # for elderly
 rename sequence[1] ins # rename the first sequence
 rename a_mol1/3/ca "ca1" # rename an atom
 rename a_mol1/3 "alam" # rename a residue
 rename a_mol1 "kuku" # rename a molecule
 rename a_1. "dna" # rename an object
 # rename the full name of the object
 rename a_1. full "hydroxanthine phosphoribosyl trnasferase"
 list a_1.

2.20.61. return

return [error] [s_message]

return from a macro before endmacro usually under specific conditions. Similar to exit command
returning from a file to interactive mode. Option error will set the error flag which can later (outside the
macro) be checked with the Error() function. The message s_message will be stored in the s_out string
shell variable.

Examples:

 macro aa
 if(Nof(sequence)==0) return # a silent return

 endmacro

 macro aaa as_1
 if(Nof(as_1)==0) return error " aaa> Nothing to do"
 show as_1 # a pretty silly macro
 endmacro

 macro bbb
 if(Nof(object)==0) return error " Error_in_bbb> No objects in the system"

 endmacro
 bbb # call this macro
 if(Error) print "something went wrong with macro bbb"

2.20.62. rotate

the main rotate command. Subtypes of this command include rotate object, rotate view,
rotate grob.

rotate object

rotate [os_ | ms_ | g_grob] M_rotation

rotate an object (os_), one/several molecules (ms_) or g_grob with the specified rotation matrix.

2.20.61. return 235

Examples:

 rotate a_1. Rot({0. 0. 1.},30.) # rotate by 30 degrees
 # about Z−axis

rotate grob

rotate g_grobName M_rotation

rotate a graphics object.

Examples:

 read grob "oblate"
 display g_oblate magenta
 rotate g_oblate Rot({0. 0. 1.},30.)

rotate view

rotate view M_rotation

rotate view in the graphics window with respect to the screen axis X (horizontal), Y (vertical) and Z
(perpendicular to the screen). This command is great for creating movies or demos when the graphics
should be manipulated from a script.

Example:

 build "alpha"
 read movie "alpha"
 display a_//ca,c,n
 for i=1,100
 load frame i
 rotate view Rot({0. 1. 0.} , −1.) # rotate around Y by −1 deg.
 endfor

See also: the View() function and the set view command.

2.20.63. set family of commands

to change properties of existing icm−objects, e.g.

 set bfactor a_//c* 20.

set area sequence : positional factors for sequence alignment

set area seq_ [{ R_factors | r_factor }]

sets/resets a property array assigned to a sequence. Each amino acid can be assigned a relative solvent
accessibility value for this residue in a three−dimensional model. 0. − fully buried (the highest possible
factor), 1. − fully exposed. These values can also be used to influence the alignment (buried residues with
accessibilities close to zero will have larger contributions). The exact dependence residue−residue score

236 2.20.62. rotate

factor on this value is defined by the accFunction array.

Example:

 set area 1crn_m 0.
 set area 1crn_m Random(0. 1. Length(1crn_m))

See also: accFunction , Align (seq1 seq2 area)

set atom

set as_singleAtom [{ R_3Dvector | as_select }]

set as_manyAtoms M_XYZ

With a single atom selection, ICM sets a given atom to the center of gravity of the corresponding molecule
(no arguments), given point in space (R_3Dvector argument) or center of gravity of selected atoms (
as_select argument).

If multiple atoms are selected, ICM sets the specified atoms to their new XYZ positions. The XYZ matrix
can be returned by the Xyz (as_) function.

Examples:

 build string "se ala his glu"
 set a_/3/ca a_//ca # 3rd Ca to the center of mass of all Ca s
 set a_/3/ca {−3., 12., 14.5}

 set a_//vt1 # set the first virtual atom to the center of mass
 randomze a_//vt1 0.1 # randomize the vt1 position in case of singularity

For ICM molecular objects, in the most popular operation (set a_1//vt1) the first of the two virtual
atoms (vt1) attached to the beginning of the selected molecule is set to the center of gravity of the same
molecule. The purpose of this action is to simplify molecular rotation and translation via the first six free
virtual variables. The tvt2 and tvt3 torsions and avt2 planar angle determine rotation of the whole molecule
around the axes passing through the center of gravity. Useful for docking.

Examples:

 set a_1//vt1 # now it is easy to rotate the 1st mol.
 # by changing tvt1
 set a_2//vt1 # now it is easy to rotate the second molecule
 set a_2//vt1 a_2 # equivalent to the previous command
 set a_2//vt1 {1. 1. 1.} # move it to {1. 1. 1.} point
#
Multiple molecules: let us set vt1 for all water molecules to oxygen
to fix the first 3 variable and keep the oxygen positions unchanged
 read pdb "2ins"
 convert
 set a_w*//vt1 Xyz(a_w*//o)
 fix v_w*//?vt1
 mc v_w*

2.20.63. set family of commands 237

See also:

command description
set a_/*
s_secondaryStructure to change phi,psi angles according to secondary structure,

virtual atoms/variables information about virtual atoms and variables and the

move command which goes further and actually changes the topology of
the ICM−tree.

set bfactor

set bfactor as_ { r_NewFactor | R_NewFactors } : *set *bfactor rs_ R_NewResidueFactors

set B−factors of selected atoms to a specified real value, respectively. To assign individual b−factors,
provide a real array with b−factors for each atom. To assign the individual b−factors at the residue level,
provide matching residue selection and R_NewResidueFactors array.

Examples:

 buildpep "ala his trp" # also includes N− and C− terminal groups
 set bfactor a_//* 20.
 set bfactor a_//ca {20.,10.,30.} # individual atomic factors
 set bfactor a_/2:18/ca,c,n 10.
 set bfactor a_/* {10.,20.,30.,20.,10.} # individual residue factors

set bond type

set bond type as_class1 [as_class2] { i_type }

set the bond chemical type (0 − undefined, 1 single, 2 double, 3 triple, 4 aromatic,9 quadruple,10 amid).

set bond auto ms_

with the auto option the command automatically reassigns patterns of single and double bonds. It
performs the following operations:

identify aromatic rings in object os_ from patterns of single and double bonds. Use preference
wireStyle = "chemistry" (Ctrl−L) to see the bond types. This is done automatically upon
reading of objects, mol and mol2 files if logical l_readMolArom is set to yes.

•

for ICM objects, set ICM bond variable types according to bond chemical type, atom types and
distance between them

•

Example:

 read pdb "1crn"
 display
 wireStyle="chemistry"
 set bond type a_//c a_//o 2 # double # standard bonds in a/acids
 set bond type a_/phe,tyr,trp/[cn][gdez]* | a_/arg/cz*,nh* 4 # aromatic
 set bond type a_/as?/cg*,od,od1 | a_/gl?/cd*,oe,oe1 2

238 2.20.63. set family of commands

 build hydrogen a_/A

set charge

set charge as_select { r_NewCharge | add r_Increment }

sets or increments partial electric charges of selected atoms to or by specified real value, respectively.

set charge as_select { R_NewChargeArray | add R_ArrayOfIncrements }

sets or increments partial electric charges of selected atoms to or by a specified real array. The array
assignment is useful for saving and restoring the charges.

Examples:

 set charge a_//* 0.

 set charge a_/lys/nz | a_/arg/cz 1.0

 set charge a_/asp/od* | a_/glu/oe* −0.5

 oldCrg=Charge(a_//*)
 set charge a_//* 0.0
 set charge a_/asp/od* | a_/glu/oe* −0.5
do something with these simplified charges
 set charge a_//* oldCrg

See also: set charge formal, set charge mmff .

set charge formal

set charge formal as_select r_NewFormalCharge

sets formal partial electric charges of selected atoms to or by a specified real value. The charge will be
rounded to the nearest value proportional to 1/12th. The following values are common: +−N, +−N/2., +−
N/3., +−N/4., +−N/6. Note that the formal charge can not be arbitrarily changed without appropriate
changes in the surrounding bond types. The formal charge will be considered by the Smiles function.

Example:

 set charge formal a_//n −0.333 # a formal charge of −1/3.

See also: set charge, set charge mmff .

set charge mmff

set charge mmff as_select

set atomic charges according to the rules described in a series of publications on the Merck Molecular
Force Field abbreviated as MMFF94 or just MMFF.

2.20.63. set family of commands 239

This command requires the mmff atom types (see the set type mmff command). Do not be surprised
that the methyl groups have zero partial charges. That is how they are defined in the MMFF algorithm.

Example:

 set type mmff # mmff atom types
 show atom type mmff
 set charge mmff # charges
#
 rinx MOL3D # index for small molecule database
 read mol2 MOL3D[23:34]
 for i=2,Nof(object)
 set object a_$i.
 display
 build hydrogen
 convert
 set charge mmff
 display ball
 color a_//* Charge(a_//*)//{−1., 1.} ball
 endfor

See also: set charge, set charge mmff .

set comment

set comment [append] os_Object s_comment

set a text comment string to the specified object. This annotation is preserved in the read object and
write object commands.

Examples:

 read object "crn"
 set comment append a_ "\n The template for modeling\n Energy minimized\n"

set a flag of an alternative atom position

set comment "A" as_alterAtoms

set alternative status to the selected atoms. The alternative flag can be read from a pdb file. This flag marks
alternative geometrical positions of atoms which are described in the previous ATOM records. For
example, the same side−chain or a water molecule can occupy several positions. The symbol of alternative
position (usually 'a','b' or 'c' character, since ICM converts the strings to low case) precedes the residue
name field. The alternative positions can also be selected with the a_//A alterChar selection.

Example:

 read pdb "1cbn" # has alternative positions
 show a_//Ab # show alternative pos. 'b'
 set comment a_//Aa "x" # rename 'a' positions to 'x'

240 2.20.63. set family of commands

set comment to a sequence

set comment [append] seq_ s_comment

set comment to a sequence.

Example:

 a=Sequence("AFSGDHAGSFDSGAHGSDFASGDA")
 set comment a "a random test sequence"

set comp_matrix: redefine residue comparison matrix.

set comp_matrix [add] r_increment [s_ijPattern]

change the numbers in the residue comparison matrix, called comp_matrix by a number typically
between 0. and 0.2. This may be very important for generating a reasonable alignment for sequences with
low sequence similarity. The result is similar to reducing the gapOpen parameter by about 0.1.

Examples:

 set comp_matrix add 0.05 # try to Align() again
 set comp_matrix 10. "CC" # make C−C alignment really important
 set comp_matrix add 1. "[KR][KR]"
 # downweight alignment of Gly against
 # all the residues
 set comp_matrix add −.4 "G?"
 set comp_matrix 0. "[AGS][AGSLI]"

set directory

set directory s_newDirectory

change the current working directory from inside the icm−shell. We recommend using: alias cd set
directory "$1" . In this case you can change directory in the Unix/DOS style.

Example:

 set directory "/usr/tmp"
 cd .. # uses alias from _aliases.
cd .. is equivalent to set directory ".."

set drestraint

set drestraint as_select1 as_select2 i_DrestraintType

sets distance restraints of specified type between selected sets. Drestraint types (integer numbers) can be
either read from a *.cnt type file or set directly by the set drestraint type command and shown
by the show drestraint type command.

Examples:

2.20.63. set family of commands 241

 set drestraint a_/15/ca a_/18/ca 5 # distance restraint of type 5

set drestraint type

set drestraint type i_DrestraintTypeNumber r_WeightingFactor r_LowerBound r_UpperBound [
local r_Sharpness]

creates a distance restraints type. Drestraint types (integer numbers) can also be read from a
*.cnt type file and command and shown by the show drestraint type command.

Examples:

type 11, weight 10., bounds [1.,3.]A, target dist. 1.5
 set drestraint type 11 10. 1. 3. 1.5

local type, sharpness 5.
 set drestraint type 12 10. 1. 3. 1.5 local 5.

set site

set site [only] { [seq_from [ali_]] | s_siteString } { seq_to | ms_to } [append]

transfer (or reassign) sites (listed in feature tables of swissprot entries) from a sequence or string to a
destination sequence seq_to or a selection of molecules ms_to .

If alignment is not provided, the sequences will be automatically aligned to find residue−residue
correspondences and the reliability of the alignment will be reported. If the source of sites is not provided,
the sites will be transferred from the sequences linked to objects. The list of sites and their one−letter
codes is given below. Normally this command appends to the list of existing sites, unless the only option
is given in which case the old sites are dismissed. The effort is made to avoid repetition and retain only the
unique set of sites.

Alternatively, if the string is specified, create a new site according to the provided legal site string
s_siteString (e.g. "FT ACT_SITE 15 15 Catalytic residue"). The format of the site string is the same as in
the swissprot sequence entries. The list of legal site types is given in the Glossary.

The site residues in objects can be delete with the delete site command and selected with the a_/F
SiteCodes selection, (e.g. a_/FAB selects residues involved in binging and active site).

Example:

 read sequence "a.seq"
 set site "FT ACT_SITE 15 15 active site residue" a

set site to a residue selection

set site [only] rs_ s_sideString

assign sites to a molecular 3D object (simpler than the previous Swissprot−like definition).

Example:

242 2.20.63. set family of commands

 read object s_icmhom+ "crn.ob"
 set site a_/10:13 "candidates for mutagenesis"

set field

set field selection { r_FieldValue | R_arrayOfValues } [number= i_fieldNumber]

set field clear selection [number= i_fieldNumber]

set user−defined values to atoms, residues, molecules or objects selected. Atoms have one user−field,
residues have three, molecules and objects have sixteen. To specify which field you need to set, use the
number= option.

To extract the property use Field (selection, i_fieldNumber) function.

Level Max.Nof_fields example
Atom 1 set field a_//c* Mass(a_//c*)
Residue 3 set field a_/trp 1. number=2
Molecule16 set field a_W Random(1.,10.,Nof(a_W)) number=12
Object 16 set field a_*. Rarray(Count(Nof(a_*.)))
User defined fields can further be 2D or 3D averaged with the Smooth function and selected by with the
Select function.

set font

set font [auxiliary] [bold] [italic] [underline] [{ atom | residue | variable |
string }] i_Size s_FontName

set current font for atom−, residue−, variable−, or string− labels in the graphics window. Strings can be
displayed in either their main font or the auxiliary one (option auxiliary). The following fonts: times,
helvetica, courier and symbol, should be available. Default fonts are defined in the icm.clr file.

Examples:

 set font 28 times # 'Times' font, size 28
#
 build string "se his"
 atomLabelStyle="[C]"
 display wire atom label
 set font atom 14 bold # for atom labels
#
 set font auxiliary bold italic helvetica 28

set grob coordinates and string label

set g_grobName M_Xyz : *set g_grobName *label [*append] s_Label

Set new coordinates to the vertexes of the specified graphics object. The matrix dimensions should
correspond to the number of vertices. The initial coordinate matrix can be extracted with the Xyz (grob)
function.

2.20.63. set family of commands 243

 read grob s_icmhome+"beethoven" # try stravinsky if you want
 display
 display "DESTRUCTION OF CLASSICAL MUSIC"
 xyz= Xyz(beethoven)
 fuzz = Random(−0.2,0.2,Nof(xyz),Length(xyz))
 xyz = xyz + fuzz
 set beethoven xyz
 color beethoven Random(Nof(beethoven),3, 0., 1.)

Invert grob normals

set grob reverse

change direction of vertex plane normals in all grobs to change direction of lighting and sign of the
Volume function.

set g_grobName1 g_grobName2 .. reverse

change direction of normals in specified grobs. In some simple grobs the order of vertices defines the
normal implicitly. In this case the order is changed.

An example in which we contour a density map, split the grob into outer shell and cavities and measure
their volumes:

 read pdb "1est.m/"
 make map potential 1. Box(a_)
 make grob m_atoms 0.2 exact solid
 split g_atoms
 set grob reverse # invert normals of all grobs
 set g_atoms2 g_atoms3 reverse # invert normals of some grobs
 Volume(g_atoms1) # outer shell is now illuminated from inside
 Volume(g_atoms2) # cavities have now positive volume.
 64.865657

set key

set key s_keyName s_Command

binds key to a command. Allowed keys: F1, .. F12,Ctrl−F1, .. Ctrl−F12, Ctrl−A, ... Ctrl−Z,
Alt−A, ... Alt−Z. Add "\n" at the end if you want your command to be automatically executed.

Examples:

 set key "F1" "set plane 1"
 set key "Ctrl−B" "l_easyRotate=!l_easyRotate"
 set key "F6" "varLabelStyle=\"nextItem\"\n"

set label

set label as_atomForResidueLabels

assign residue labels to the selected atoms as_atomForResidueLabels .

244 2.20.63. set family of commands

Examples:

 build
 set label a_/tyr/cb # move label from Ca's to Cb's for all tyrosines

set label distance

set [residue] label distance rs_ [{ R_3displVector | M_displMatrix }]

reset the relative displacements of the selected residue labels rs_ to their default of the specified positions.
If vector is specified, all the relative displacements are set to this vector, if a relative displacement matrix
Nx3 is given, each selected label is moved to the specified relative position. The default position is the
relative displacement of {0. 0. 0.} from the residue label carrying atom (usually the Ca atom for peptides,
also see the set label as_ command). See also: GRAPHICS.resLabelDrag

Examples:

 build string "se tyr tyr glu als his"
 set label a_/tyr/cb # move label from Ca's to Cb's for all tyrosines
 display a_* residue label
 GRAPHICS.resLabelDrag=yes # now drag labels with the MiddleMB
 set label distance a_/2:4 # reset labels for residues 2:5
 set label distance a_/2:4 {1. 0. 3.}

set the current map

set map m_theMapYouWantToWorkWith

assigns the current map status to the specified map.

set object [os_newObjName]

assigns the current object status to the specified object. Switches to the next one by default.

Examples:

 set object a_crn. # set it to object crn
 set object a_1. # set it to the first object
 set object # switch to the next or alternative

set occupancy

set occupancy as_select r_NewOccupancy

sets occupancy of selected atoms to or by a specified real value between 0.0 and 1.0

Examples:

 set occupancy a_/2:5/!ca,c,n,o 0.5

 set occupancy a_/2:18/ca,c,n 1.

2.20.63. set family of commands 245

set plane

set plane [i_plane] [{ off | on }] [name= s_planeName]

toggles the specified graphics plane on and off. Up to seven planes can be set. Optional name is assigned to
a plane. It is a convenient way to operate with complex composite images. Every image is assigned to a
certain graphical "plane" when displayed. Different parts of the image can be assigned to different planes.
For example, plane 1 may contain wire representation of molecule1, plane 2 its molecular surface
("surface") and plane 3 molecule2 in "xstick" representation. It can be achieved by pressing "F2" and "F3"
(which are aliased to set plane 2 and set plane 3, respectively) before displaying surface and xstick
respectively. Now by pressing "F1" , "F2" and "F3" one can toggle these three screens (or planes) to
display any combination of them. It is much better than undisplaying and displaying them directly,
especially for representations requiring serious computations like surface and skin . The main modes
of the set plane command:

set plane 2 : if plane2 is 'off', make current and switch it 'on'; if it is 'on', switch it off.•
set plane 3 on : switch the plane on, but do not change the current plane•
set plane 4 name="homologue" : just assign name to the plane, no switching•

Examples:

 build string "se ala ala" # create a peptide
 set plane 2 # F2 with the cursor in the graphics window
 display surface
 set plane 3 # F3 with the cursor in the graphics window
 display xstick
 set plane 2 # switch off the surface
 set plane 2 # switch the surface back on
 set plane 3 # switch off the xstick
 set plane 3 # switch the xstick back on

set property

set plane [i_plane] [{ off | on }] [name= s_planeName]

set sstructure backbone

set rs_ s_SecStructPattern

assign the specified local secondary structure to the selected residues of an ICM−type object. Note that this
command changes the conformation of the selected residues, in contrast to the command assign
sstructure.

The phi,psi angle values are changed according to the following code:

ss_codephi,psi angles description
_ −179.9,179.9 extended conformation
E −139.0,135.0 antiparallel beta strand
e −119.0,113.0 parallel beta strand
H − 62.0,−41.0 alpha−helix

246 2.20.63. set family of commands

G − 49.0,−26.0 G−helix (3/10)
I − 57.0,−70.0 I−helix
P − 78.0,149.0 poly−proline 2 helix
L + 57.0,+47.0 Left−Alpha
Examples:

 build "all"
 display ribbon residue labels
 set a_/2:8 "HHHHHHH"
 center
 set a_/1:12 "HHHHHH__EEEE"
 center
 set a_/A String("H", Nof(a_/A))
 center
 set a_/A String("_", Nof(a_/A))
 center # ONLY UNFIXED PHI,PSI VARIABLES ARE SET, SO pro IS BENT!
 set a_/A String("G", Nof(a_/A))
 center
 set a_/A String("E", Nof(a_/A))
 center

set sstructure to sequence

set sstructure seq_ s_SSstring

set secondary structure s_SSstring to the specified sequence. If s_SSstring is an empty string, the secondary
structure definition is removed.

Examples:

 a=Sequence("LLELGQAPGALHRVPLSRRESLRKKLRAQGQLTELWKSQNL") # 1st seq.
 b=Sequence("PLLEATQIKVPLKKIKSIREVLREKGLLGDFLKNHKPQ") # homologue
 set sstructure a "HHHHHHHHHHH______EEEEEEEE_____HHHHHHHHH__"
 l_showSstructure = yes
 show Align(a b)

set stack energy

set stack energy R_NewEnergies

resets energy values for conformations stored in the stack . It may be useful for the subsequent sort
stack command.

set symmetry to a torsion

set symmetry { 1 | 2 | 3 | 6 | exact | heavy | pseudo } vs_

assigns rotational symmetry to selected variables. This symmetry will be used to automatically transform
the value of a torsion angle into [−180.0/symmetry , 180.0/symmetry] range.

Options are the following:

2.20.63. set family of commands 247

exact − impose exact symmetry (methyl groups=3, xi2_phe=2)•
heavy − impose exact symmetry as if there are no hydrogens•
pseudo− impose pseudo symmetry (no_hydrogens + xi2(his,asn,gln))•

set crystallographic symmetry group

set symmetry os_object R_6cell s_symgroup i_NofMolecules

assigns symmetry and cell parameters to selected object(s).

Information is supposed to be compatible with that provided in CRYST1 PDB card:

R_cell should be a 6−component real array, containing values of A, B, C, alpha, beta and gamma.•

s_symgroup is a string description of the space group. To check validity of the s_symgroup, use
the Symgroup(s_symgroup)} function, which will return a number from 1 to 230 for a valid
space group name. Fast Fourier transformations are currently supported for s_symgroups "P 1" and
"P 21 21 21", but all the other commands (make maptransform etc.) will work on any space
group defined in the International Tables for Crystallography.

•

i_NofMolecules is the Z−value, the number of polymeric chains in a unit cell.•

Examples:

 build string "se ala ala ala" "z"
 # suppose this is my modified crambin
 set symmetry a_z. { 40.96 18.65 22.52 90.0 90.77 90.0 } "P 21" 2

set table

set table t_theTableYouWantToWorkWith

assigns the current table status to the specified table (similar to set object os_ to set the
current molecular object).

set energy or penalty terms

set terms [only] [s_termsString]

set energy and/or penalty terms for further energy calculations. Each term has a two−character
abbreviation. The terms are appended to the string unless option only is specified. The final energy−term
string is returned in the s_out string

Examples:

 # vacuum terms, solvation and entropy
 set terms only "vw,14,hb,to,el,sf,en"
 set terms "tz" # add tethers to the list

248 2.20.63. set family of commands

set tether

set tether [align | ali_] [exact] [only] as_atomsToBePulled [as_atomTargets]

this command sets tethers restraining atoms of ICM−object (selection as_atomsToBePulled) to
corresponding atoms of another object (as_atomTargets). The as_atomTargets selection may also contain
only one atom, in which case all as_atomsToBePulled will be tethered to a single atom. If the second
argument is not specified, all the as_atomsToBePulled atoms are tethered to the origin (the {0. 0. 0.} point).
Option only signals that all previously imposed tethers must be deleted.

In a residue pair the only the backbone atoms such as ca,c,n,o,ha,hn are tethered with the exception of

identical residues: all atoms are tethered•
F with Y (all but the hydroxyl)•
D with N•
E with Q•

The number of imposed tethers is saved in i_out.

See also: superimpose, alignment options, minimize tether.

Example (try it as one continuous session):

 build string "se glu ala" # a simple object
 set tether a_/2 # tether to the origin
 display tether wire virtual
 minimize v_//?vt* "tz"

 delete tether
 build string "se gln val" name="gv" # another object
 set tether a_2.//ca,c,n a_1.//ca,c,n exact # tether set to set
 display tether wire a_*. only
 minimize v_//?vt* "tz"

 delete tether
 set tether a_2.//ca,c,n a_1./1/ca # tether to a single atom
 display tether wire
 minimize v_//?vt* "tz"

set atom type

set type [mmff] [as_ { i_type | I_type }]

assigns the specified atom type (see icm.cod or show atom type [mmff]) to the selected atoms.
Both the ICM− and the mmff− atom types may be manually adjusted to correct the automated set type
mmff command.

set type sequence

set type [seq_] { protein | nucleotide }

assigns the specified type to the sequence. The type can be returned by the Type(seq_) function.

2.20.63. set family of commands 249

Example:

 aaa = Sequence("AAAAATAAAA")
 set type protein aaa

set type mmff

set [atom] type mmff [os_]

automatic assignment of the MMFF atom types for the selected or the current object of any type. This
object can be both ICM−object or a non−ICM object, provided three conditions are satisfied:

the bond types are set correctly1.
the formal charges are set correctly2.
the object is complete and has hydrogens (see the build hydrogen command)3.

This command is a prerequisite for the set charge mmff command.

set van der Waals radii

set type "vw radii" I_vwTypes R_vwRadii

reset radii defined in the icm.vwt for I_vwTypes to the R_vwRadii values. The van der Waals radii are
used for the surface calculation in the show surface area

command

set electrostatic radii

set type "vwel radii" I_vwTypes R_vwRadii

reset electrostatic radii marked as vwel defined in the icm.vwt. The electrostatic radii are used in the
boundary element electrostatic calculation.

set 3D view rotation, tranlation and size

set view R_36parameters

sets all the parameters of the graphics window (position, size, zoom, rotation, etc.) according to a rarray
of 36 numbers. This array is returned by the View() function and can be created, read and written as an
ordinary real array. Aren't you disappointed that you still do not know the meaning of these parameters? It
is dull, believe me, use the command and take it easy. See also: View, rotate view.

Example:

 display a__crn. ribbon # now move the molecule, resize window ..
 write View() "a.view" # write 36 numbers in a file
 # again: rotate, move/resize the window etc., or quit the session
 read rarray "a.view" # read 36 parameters
 set view a # restore the view

250 2.20.63. set family of commands

set vrestraint

set vrestraint [energy] rs_ [s_rsTypeName1 s_rsTypeName2 ...]

sets variable restraints of specified types to the selected residues rs_ . Variable restraint type names
(strings) can be read from a *.rst type file and shown by the show vrestraint type command.
Option energy enforces the "energy" type of vrestraint.

Number of imposed variable restraints is saved in i_out .

Examples:

 set vrestraint a_/* # assign all zones to relevant residues
 set vrestraint a_/ala "aa" "ab" # assign alpha and beta zones to all Ala residues

set vrestraint

set vrestraint [only] [{ energy | fix }] vs_ r_1 r_2 [r_3] [R_values] [name= s_rsName]

impose a set of vrestraints to the specified variables vs_. The zone will be a multidimensional
elliptical well around current values (default), or the specified R_values values, of the selected variables.
The shape of the well in each dimension is a soft square well . Three types of vrestraints can be imposed,
depending on the option:

probability vrestraints (the default). They are marked as "rs" in the icm.rst file. Probability
vrestraints are used in the BPMC procedure to define the distribution of random steps. The well
parameters are as follows:

r_1 : r_relProbability , the relative probability of this vrestraint♦
r_2 : r_wellRadius, the well radius♦

•

The relative probability is in arbitrary units, it is only important as a relative number in a group of
the vrestraints.

energy: "Energy" vrestraints (marked as "rse" in the icm.rst file. They allow to form
multidimensional wells around groups of variables and are used to softly restrict the variables to
certain zones (see the "rs" energy term). The well parameters are as follows:

r_1 : r_energyDepth (it must be negative for attractive wells)♦
r_2 : r_fractionFlat♦
r_3 : r_wellRadius♦

•

Parameter r_fractionFlat (between 0. and 1., default 0.) defines flat fraction of the energy well for
the energy vrestraints.

Note: one can create both wells and bumps using negative and positive values of r_energyDepth,
respectively Example:

 build string "se nter ala ala cooh"
 set vrestraint energy v_/3/psi −20., 200., 0.2 # WELL OF DEPTH 20.
 set vrestraint energy v_/3/psi 20., 200., 0.2 # BUMP OF HEIGHT 20.

2.20.63. set family of commands 251

An example from the _dock2mol.icm script: imposing an individual restraint for the
virtual bond:

 # no penalty for deviations up to 15A
 set vrestraint energy v_2//bvt1 only −50.0 0.5, 30.0

R_values contains target values for each angle in the selection vs_ , e.g. {−120.,60.}, By default
the target values are taken from the current values of the selected variables.

•

fix: Vrestraints on "fixed" variables (marked as "rsr" in the icm.rst file). These are used to
define switches between different fixed conformations, e.g. alternative conformations of sugar
rings, proline rings, switches between L and D amino−acids etc. These switches will be tried in the
montecarlo procedure if these variables are included in the set of vs_MC variables but not
included in the set of the minimization vs_min variables. The parameters are defined as follows:

r_1 r_relEnergy, relative energy of a conformer♦
r_2 r_relProbability .♦

•

The r_relProbability is in arbitrary units as for the probability vrestraints.

Example with L−D transition, through changing the sign of the two phase angles:

 build string "se ala his trp"
 set vrestraint fix V_/3/fha,fcb Value(V_/3/fha,fcb) 0. 1. name="l"
 set vrestraint fix V_/3/fha,fcb −Value(V_/3/fha,fcb) 0. 1. name="d"
 montecarlo V_/3 v_//*

The radius of the vrestraint well (in degrees for angles) is given by the r_wellRadius. Option only deletes
all the previous vrestraints. The name is optional. The names of the "probability" and "fix" vrestraints are
be shown in the output of the montecarlo procedure. The names need not be unique.

Example: creating a file with equal probability vrestraints around stack conformation angles with 30 deg.
radius:

 read stack "f1" # read conformational stack
 for i=1,Nof(conf) # go through all the conformations
 load conf i # load them one by one
 set vrestraint v_/2:5/phi,PSI,xi1 1. 30.
 endfor

 build string "se ala his trp"
 set vrestraint v_/2/phi,xi1,xi2 ,{−60.,−60.,120.} 0.5, 45. name="bb"
 set vrestraint v_/2/phi,xi1,xi2 ,{ 60.,−60.,120.} 0.5, 45. name="cc"
 montecarlo v_/2/phi,xi1,xi2

Note that in the command a special PSI torsion specification is used for traditional residue attribution.

set values of internal coordinates

set vs_ [add] { r_value | R_arrayOfValues }

sets specified variables to a given value(s) (for angles the value must be in degrees). If rarray
R_arrayOfValues is specified, its values are assigned sequentially to the variables. It the array is shorter

252 2.20.63. set family of commands

than the selection, the values are applied periodically. Option add means increment by the specified value
rather than set to this value.

Examples:

 set v_//phi −60. # all phi to −60 degrees
 set v_//phi,PSI { −60., −40. } # make sure that the first
 # variable in selection is phi

 set v_/1:8/phi Random(−180.,180.,8) # all different random phis
 set v_/1:8/phi add 2.0 # increase 8 phi angles by 2 degrees

Note that in the second command a special PSI torsion specification is used for traditional residue
attribution.

set positional variables to place a molecule to polyhedral vertices

set vs_ grid i_vertex i_NofVertices

(order of arguments is important!) sets specified 2 variables (normally a virtual planar angle and
torsion angle) to the values such as to put a molecule in the vertices of tetrahedron (i_NofVertices=4),
octahedron (6), cube (8), icosahedron (12) or dodecahedron (20). Used to sample uniformly the surface of
globular molecules. Values of i_NofVertices other than above are not allowed. The polyhedron is built
around the origin. The size of the polyhedron is determined by v_//bvt1 variable which is a virtual
bond length from the origin to the first virtual atom (vt1) of the two attached to each molecule. To check
how polyhedrons are generated look at this example:

 read object "complex"
 display virtual a_//ca,c,n | a_//vt* only
 color molecule
 set a_1//vt1 # set vt1 of a_1 to its center of mass
 set a_2//vt1 # set vt1 of a_2 to its center of mass
 set v_1//bvt1 0.1 # move a_1 to the origin (0.1 to avoid a singularity)
 set v_2//bvt1 30. # offset a_2
 # this is for a_2 to hop around a_1
 for i=1,20
 set v_2//avt1,fvt1 grid i 20
 endfor
 # this is for a_2 to rotate need the same location on a_1
 for i=1,12
 for j=1,3
 set v_//avt2,tvt3 grid i 12
 set v_//tvt2 j*120.
 endfor
 endfor

set size and position of ICM graphics window

set window [i_xLeft i_yDown] i_xSize i_ySize [margin= r_ ...]

sets the position and/or size (only size if 2 arguments are given) of the graphics window. Four arguments
are in pixels. If you need to display in a fixed size window from a script we recommend to use the set
window command first and then the display command.

2.20.63. set family of commands 253

In the off−screen mode (see the display off command) set window is accompanied by re−
centering of the molecular image with margin= r_ ... and other center options.

Example:

 # square 700x700 window in the upper left corner
 set window 570 30 700 700
 display window
 set window 300 300
 write image window=3*View(window) # hi−res. image

2.20.64. show

show information about specified ICM−shell objects in your shell−window. Show is similar to the list
command, but it gives you more information, covers a broader range of subjects and allows the user to
show constants, subsets and expressions. However, in contrast to the list command, show does not
understand wildcards.

Option full will show arrays and shell variables which are grouped into tables (the components of tables
are hidden by default). The same option full temporarily sets l_showSpecialChar to yes when
sarrays are shown.

show site

show site [ms_] [seq_1 seq_2..]

show sites assigned to the selected molecules ms_ or sequences. By default all the sites of the current object
are shown.

show shell variable

show arg1 arg2 ...

show ICM−shell variable, constant, subsets, or expressions. One needs to separate arguments by
comma only if two consequtive arguments are numbers, and the second on is a negative number constant.

Examples:

 show azurins[3:20] # show a fragment of the alignment
 show a b a*b # two arrays and their product
 show Sin({1. 3. 5.}) # another array
 show 2., −3. # without the comma, it will show −1.
 show m_crn # map (m_crn) header information and
 # the map sections

show key

show key

show commands bound to key−strokes. Allowed keys: F1, .. F12, Ctrl−F1, .. Ctrl−F12,
Ctrl−A, ... Ctrl−Z, Alt−A, ... Alt−Z. See also the set key command.

254 2.20.64. show

show map

show { map | mapName }

show the current or the specified map in text format. Example:

 buildpep "AKSD"
 make map potential Box(a_) "ge"
 display m_ge {1 2 3 0 4 5 6}
 show m_ge
 m_ge> written in ZYX mode (z−sections). Symmetry group #0
 Box {sect0,row0,col0, sect,row,col} = {−30,−8,−21, 32,16,28}
 Cell {A,B,C, angles(deg)} = {14.000,8.000,16.000, 90.00,90.00,90.00}
 Nof intervals (at x,y,z) = {28,16,32}
 Min/max/mean/rms density = −20.000000, 20.000000, −0.182712, 12.082560
 ...
 ::::::::::::::::**##########
 ::::::::::::::::**##########
 :::::::::::..:::**##########
 ::::*****::..::::**#########
 :::***###*:..::::***########
 ::***####**...:::****#######
 :***#####**...::::****######
 :***#####*:...::::******###*
 :***##**::....:::::*********
 :*****:::....::::::*********
 :****::::.....::::::********
 ::***::::.....::::::********
 ::***........::::::::*******
 ::***:.......::::::::*******
−−− 13 / 32 −−− # shows pages

show objects, molecules, residues, atoms and variables

show { os_ | ms_ | rs_ | as_ | vs_ }

show selected atom(s) as_ , residue(s) rs_ , molecule(s) ms_ , object(s) os_ , or variable(s) vs_ ,
respectively.

Examples:

 show a_*. # all objects
 show a_*.* # all molecules of all objects
 show a_2.* # all molecules of the second object
 show a_* # all molecules of the current object
 show a_/ala # all alanines of the current object
 show a_1//c* # carbons of the 1st molecule of the current object
 show v_2.a//phi,psi

Data fields for objects :

show object
 # a_objectName. type n_Mol n_Res n_waters resolution object_name
 1 a_def. Type: ICM Mol: 1 Res: 4 def <*** the current object
 2 a_1dna. Type: X−Ray Mol: 3 Res: 532 Wat: 216 Resol: 2.20 thymidylate synt..

2.20.64. show 255

These fields can be accessed with the following functions:

object name: Name(os_)•
object type: Type(os_ , 2) # returns "X−Ray","NMR","ICM",etc.•
number of molecules: Nof(ms_), e.g. Nof(a_2.*)•
number of residues: Nof(rs_), e.g. Nof(a_2.*/*)•
resolution: Resolution(os_), e.g. Resolution(a_2.)•
number of waters: Nof(water_selection), e.g. Nof(a_2.w*)•
full name: Namex(os_), e.g. Namex(a_2.)•

Data fields for molecules :

 read pdb "1a36"
 show a_*
 Name n_residues first_res_name object_name
 −− i Molecule −−− N_Res Object −−−
 1 a 544 ile 1a36
 2 b 22 dpa 1a36
 3 c 22 dpa 1a36
 4 w1 1 hoh 1a36
 5 w2 1 hoh 1a36
 ...

These and other molecule attributes can be accessed with the following functions:

mol. name: Name(ms_)•
mol. type: Type(ms_ , 2) # field not shown Returns. "Nucl","Amino","Hetatm" etc.•
number of residues: Nof(rs_), e.g. Nof(a_2.*/*)•

show alias

show aliases

show all currently defined aliases. To show a specific alias, use the

alias aliasName

command (e.g. alias cd).

show alignment

show alignments [color]

show currently loaded alignments. Option color colors residues in the alignment by type.

show area

show area { surface | skin } [mute] [as_1 [as_12]]

256 2.20.64. show

Calculates the area of the
solvent−accessible surface or molecular
surface (so called skin), respectively.
You can specify for which atoms you want
to calculate the surface (selection as_1).

You can also additionally specify the
environment for these selected atoms, i.e.
the neighbors which you want to take into
account in the surface calculation.

The two most popular modes are the
following:

measuring the surface area of
some atoms being a part of the
whole system (e,g, a_1 a_* or
just a_1 , the top picture)

•

measuring the surface area of a
group of atoms as if they are the
only atoms that exist in space (e.g.
a_1 a_1 the bottom picture).

•

In essence, two optional selections [as_1 [
as_12]] impose a mask on atom pairs, so
that only pairs in two selections are
considered. If only the first selection is
specified, the second one is assumed to be
all atoms . The two reasonable choices for
the second selection are all atoms (the
default), and the repetition of the first
selection (acts as if not other atoms are
present in the system). In all cases, the
second selection must include the atoms of
the first one, e.g.

 show area skin a_1 a_1,2

.
The area will be stored in r_out and the number of triangles used in the "skin" construction in i_out .

show atoms

show as_

shows properties of the selected atoms. Example:

build string "se ala"
show surface area
show a_//c*

2.20.64. show 257

 Atom Res Mol Obj X Y Z Occ B MMFF Code Xi Chrg formal Grad Area Grp as_
 ca 1 ala a1 def −2.748 0.000 −2.245 1.00 20.0 1 113 C 1 0.06 0 0.0 0.5 _ a_def.a1/1/ca
 cb 1 ala a1 def −2.329 −1.202 −3.093 1.00 20.0 1 113 C 0 −0.09 0 0.0 7.3 _ a_def.a1/1/cb
 c 1 ala a1 def −4.247 −0.000 −1.935 1.00 20.0 3 121 C 0 0.45 0 0.0 34.2 c a_def.a1/1/c

The fields:

Field Description
Atom atom name
Res residue number+[symbol] and name
Mol molecule name
Obj object name
X,Y,X coordinates
Occ occupancy (from 0. to 1.)
B B−factor (positive)
MMFF MMFF atom code
Code ICM atom code
Xi chirality number (0,1,2,3)
Chrg partial charge
formal formal charge
Area solvent accessible surface area
Grp electrostatic group (atoms can not be separated)
as_ selection expression

show atom type

show atom type : *show *atom *type *mmff [{ s_pattern | i_type }]

shows atom types stored in the icm.cod file. The mmff option allows to check the Merck Force Field
atom type.

Examples:

 show atom type
 # show all ICM types
 −−−−−−−−−−−−− atom codes −−−−−−−−−−−−−
 #
 # icd vw hb hd wt sf na
 #
 atcd 0 0 0 0 0.000 0.00 ?
 atcd 1 1 1 0 1.008 0.00 h
 atcd 2 3 1 0 1.008 0.00 h
 ...
 show atom type mmff "*cation*"
 # cations
 show atom type mmff "*iron*ion*"
 # do we have iron ions?
 show atom type mmff "?C=*"
 # what types are connected to doubly−bonded carbon ?

258 2.20.64. show

 show atom type mmff "[!C]*ring*"
 # non−carbon types in rings
 show atom type mmff 32
 # some oxygens
 −−−−−−−−−−− MMFF atom codes −−−−−−−−−−
 Symb.Typ.[V] Description {formal charge}

 O2CM 32 [1] oxygen in carboxylate anion
 OXN 32 [1] N−oxide oxygen
 O2N 32 [1] nitro oxygen
 O2NO 32 [1] nitro−group oxygen in nitrate
 ...

show clash

show clash [as_1 [as_2]] [r_vwReductionRatio]

shows all the interatomic distances between two atom selections which are shorter than the sum of van der
Waals radii multiplied by the r_vwReductionRatio parameter (0.8 by default). IMPORTANT: this will
work only for the ICM−objects. Use the show energy "vw" command (and pay attention to the current
fixation) to precalculate interaction lists. The output will show the actual distance and the ratio of this
distance and the sum of radii. Mark the two atoms of interest, separated by a logical OR, and paste it into
another command if necessary.

See also: display clash, undisplay clash. Visualize the strained atoms with show a_//G or
display a_//G .

Example:

 build string "se ala his trp glu"
 randomize v_//*
 display
 show clash a_//c* a_//c* # clashes between carbons
 show clash a_//c* a_//c* 0.7 # more tolerant test
 display clash

show color list

show color [mute]

shows list of colors defined in the file icm.clr and stores the output list in the S_out string array.
Option mute suppresses output to the screen but still saves to the S_out array (useful for scripts)

See also: color command.

An example:

 show color
 −−−−−−−−−−−−− colors −−−−−−−−−−−−−
 1 black #000000
 2 white #ffffff
 3 grey #878787
 4 blue #0065ff
 5 red #ff0000

2.20.64. show 259

 ...

Example of show color mute use in a script:

 if (Exist(view)) then # check if graphics is active
 show color mute # saves a list of colors in S_out
 for i = 1, Nof(S_out)
 color background $S_out[i]
 pause
 endfor
 endif

show arrays as parallel vertical columns

show column array1 array2 [s_fileName] [separator= s_Separators] [comment= s_Comment
]

shows several arrays in a multi− column format.

See also: write column, show database, write database.

Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., −1., 1.}
 show column resnam reschg
 show column separator=":" comment="Example table" resnam reschg

show comp_matrix

show comp_matrix

shows residue comparison matrix used by the alignment algorithms.

See also: set comp_matrix, read comp_matrix.

show table in database format

show database { table | array1 array2 }

shows several arrays or a table in a database format.

See also: read database show column, write database.

Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., −1., 1.}
 show database resnam reschg

260 2.20.64. show

show drestraint

show drestraint [as_select [as_select]] [center] [mute] [r_violation]

shows distance restraints. Arguments:

optional as_select atom selection arguments specify atom pairs to be considered. Attention, the
as_out selection can not be used as an argument since it is redefined by the command.

•

r_violation : if the r_violation distance is specified, only the restraints deviating from the upper or
lower bounds by r_violation are shown.

•

center : If center option is specified the violation is measured with respect to the target value
of the distance restraint and optionally only the distances greater than r_violation are reported.

•

mute option: allows one to fill out the as_out selection and calculate the number of selected
drestraints (i_out) without actually reporting them. It is useful for scripts.

•

Output:

as_out atomic selection of all atoms for which the specified criteria have been satisfied•
i_out reports the number of selected drestraints•

See also: drestraint and drestraint type.

show drestraint type

show drestraint types

shows available drestraint types as defined in the icm.rst file. The numbered global or local types can be
used to impose distance restraints. The other types are fixed and are used to impose disulfide bonds or
peptide bonds.

show energy

show energy [mute] [s_termString] [vs_] [as_select1 [as_select2]]

calculates and shows values of currently set or explicitly defined in s_termString energy terms (e.g.
"vw,el"). If vs_ selection is specified, only the selected variables will be unfixed. The initial fixation
will be restored after completion. Two additional atom selections may specify a subset of atom pairs that
should be considered by the minimization procedure. Note that the contribution from the "14" energy term
is not displayed separately. It is included in the "vw" contribution. If you want to display it separately, use
the more straightforward Energy("14") function.

Important: the boundary element electrostatics is the most computationally heavy term. It is activated if
electrostatic term el is switched on and preference electroMethod is set to "boundary element" .
The most demanding part is the calculation of the boundary and its characteristics. Therefore, for multiple
calculations with the same boundary we recommend to use make boundary and delete boundary
commands.

2.20.64. show 261

show energy gradient

show gradient

show gradient calculated by the minimize or show energy commands.

show hbond

show hbond [r_maxHbondDistance]

calculates and outputs the list of hydrogen bonds. The real argument r_maxHbondDistance defines the
upper bound of the distance between a hydrogen and a potential hydrogen acceptor to place the pair to the
hydrogen bond list. Default value of r_maxHbondDistance parameter is 2.5 A. Number of identified
hydrogen bonds is saved in i_out . To display/undisplay hydrogen bonds, use display hbond and
undisplay hbond commands. Hydrogen bonds can also be calculated by the minimize and show
energy commands provided that the hydrogen bond term is switched on.)

show bond exact

show hbond exact

calculate the hydrogen bonding energy according to the distributed electron density geometry. Used in
virtual screening to evaluate a score.

show table in html format

show html T_ [link T_.S_1 s_linktype1 T_.S_2 s_linktype2 ...]

show the T_ table with HTML tags. Interpret web links according to the web link types described in the
WEBLINK.DB array.

See also:

write html s_file T_ [link ...] − write the html document to a file•
web T_ [link ...] − directly show the table in the web browser.•

Option none suppresses the table title and the copyright notice.

Example:

 show html SR link SR.NA2 "PDB"

show iarray

show iarrays

show integer arrays defined in the shell. It shows names, dimensions and the first elements of arrays. The
I_out array contains the output of some functions and commands and is always in the shell.

 ii={1 2 3 4 5 6 76}

262 2.20.64. show

 iii=Count(10)
 show iarray
 −−−−−−−−−−−−−−− iarrays −−−−−−−−−−−−−−−
 I_out[1:1] { 0, ... }
 ii[1:7] { 1, ... }
 iii[1:7] { 1, ... }

show integers

show integers

show all integer shell variables. Example:

 show integer
 −−−−−−−−−−−−−−− integers −−−−−−−−−−−−−−
 a 111
 autoSavePeriod 10
 defSymGroup 1
 i_out 0
 minTetherWindow 20
 mnRemarks 3
 mnSolutions 50
 ...

show label

show labels

show graphics string labels to find out their number. Then the labels can be addressed as label 1,
label 2 etc.

See also: display string_label

show library

show libraries

show loaded ICM−libraries. It's a lot of stuff, enter 'q' to exit.

show link

show link

show links between sequences, alignments and corresponding molecules of 3D objects.

show logical

show logicals

shows all logical shell variables in ICM−shell. Example:

 aa=yes

2.20.64. show 263

 show logical
 −−−−−−−−−−−−−−− logicals −−−−−−−−−−−−−−
 aa yes
 l_alignProfiles yes
 l_antiAlias yes
 l_antiAliasGLfix no
 l_autoLink yes
 l_bpmc yes
 ...

show mol

show mol as_select

shows selected atoms in the mol file format. See also: read mol and write mol.

show mol2

show mol2 as_select

shows selected atoms in the mol2 −file format (file extension .ml2). See also: read mol2 "file" and
write mol2 "file" .

show molecule

show molecules

shows all molecules of all objects currently in icm−shell. This command is identical to show a_*.*

show object

show objects

shows all molecular objects currently in icm−shell. This command is identical to show a_*.

The same result is achieved with the list a_*. command.

show pdb

show pdb as_select

show selected atoms in the PDB file format.

See also: read pdb "file", and write pdb "file".

show preferences

show preference

shows all icm preference variables in icm−shell (e.g. .

264 2.20.64. show

 show preferences
 ..
 atomSingleStyle = "tetrahedron"
 1 = "tetrahedron" # current choice
 2 = "cross"
 3 = "dot"
 ..

show profile,rarray,real,sarray,string

show profile | rarray | real | sarray | string

shows all objects of specified type(s) in icm−shell. E.g. E.g.

 show sarray rarray

show residue

show residues

shows all residues in all molecules of all molecular objects. This command is equivalent to

 show a_*.*/*

show residue type

show residue types

show names and characteristics of compounds described in the icm.res and user ICM residue libraries.

show segment

show segment [ms_]

show segment representation of 3D structure of a protein for the selected molecules ms_ (all molecules of
the current object by default).

See also assign sstructure segment, ribbonStyle, display ribbon.

show sequence

show sequences [number] [{ fasta | swiss | pir | gcg | msf }]

show all sequences or the specified sequence seq_ in one of specified formats. The default format is the
fasta format. Option number defines if the residue numbers are added.

Three logicals: l_showSstructure, l_showSites, and l_showAccessibility control the
display of a corresponding additional information aligned with the sequence.

Example:

2.20.64. show 265

 read sequence "GTPA_HUMAN"
 show sequence swiss GTPA_HUMAN

 read pdb "1lbd"
 show surface area
 make sequence
 Info> sequence 1lbd_m extracted
 show 1lbd_m # you see relative accessibilities in 0−9 scale
 l_showAccessibility = no
 show 1lbd_m

show stack

show stack [[i_FromConf] i_ToConf]

show the following parameters of the conformations currently residing in the conformational stack.

iconf − a slot number•
ener − total energy as calculated before the conformation was stored•
rmsd − the distance (either Cartesian or angular RMSD) between the current conformation of the
object and the stack conformation calculated according to the compare command.

•

naft − the number of visits AFTER the last improvement of energy•
nvis − the total number of visits to this slot; since new conformation are only compared with the
last stack conformation the conformations may drift and cover a large area than described by the
vicinity parameter

•

show table

show T_table [database]

shows the specified table . See also: show html T_ . Database index tables are exceptions, show
T_index will show all the entries of the related database. To see members of an index table type the index
table name and press TAB.

show terms

show terms [all]

shows the active energy/penalty terms. With option all it shows all the terms available. The result is
saved in the s_out string. See also: set terms, delete terms.

show tethers

show tethers [mute] [as_select] [r_minDeviation]

Shows tethered atoms with deviation larger than r_minDeviation (0. by default) and returns these atoms in
as_out . Option mute is used when you just want to get a selection (as_out) of strongly deviated atoms.

See also: display tethers.

266 2.20.64. show

show version

show version

show characteristics of the current ICM executable. Part of this string containing the version number is
returned by the Version() function.

show vrestraints

show vrestraint [vs_]

shows vrestraints imposed on the internal variables of ICM molecular object.

show vrestraint type

show vrestraint types

shows types of vrestraints. These types are loaded from the icm.rst file.

show volume

show volume { surface | skin } [mute] [as_1 [as_2]]

Calculates the volume confined by the solvent−accessible surface or molecular surface (so called "skin"),
respectively . Two optional selections [as_1 [as_2]] impose a mask on atom pairs, only those to be
considered. If only the first selection is specified, the second one is assumed to be all atoms. The volume
will be stored in r_out and the number of triangles used in the skin construction in i_out .

Examples:

 read obj "small"
 show volume surface # inside accessible surface
 print "volume inside accessible surface = ", r_out
 show volume skin # inside molecular surface
 print "volume inside molecular surface = ", r_out

calculate volume of blobs of map density.

show volume [map] [I_indexBox[1:6]] [r_Threshold]

Contour electron density map at a given r_Threshold and calculate the volume of the high−density blobs.
Defaults:

take the current map;•
contour the whole map;•
use threshold value from the ICM−shell real variable mapSigmaLevel .•

Threshold is expressed in the units of standard deviations from the mean map value, i.e. 1. stands one
sigma over the mean. The volume will be stored in r_out . See also: make grob m_ .

2.20.64. show 267

Examples:

 read map "crn" # load m_crn map
 show volume m_crn 3. # calculate volume inside the

2.20.65. sort

a family of sort commands (sort objects, molecules in ojbect, array/arrays or sort tables by their columns
).

sort array(s)

sort [reverse] [number] sort_key_array [array2 array3 ...]

sort one or several integer, real or string arrays. The first array is the sort key. By default ordering is
lexicographic for string arrays and by increasing arithmetic value for integer and real arrays.

Options:

reverse: reverse the sense of comparisons.•
number: enforce sorting according to arithmetic value for string arrays.•

Examples:

 a={3 2 1 5 7 4 6}
 b=Sin(a*50.)
 c={"three" "two" "one" "Five" "Seven" "four" "Six" }
 show column a b c
 sort a b c
 show column a b c
 sort reverse b a c
 show column a b c
 sort c b a
 show column a b c

sort molecular objects by mass or a user field

sort object [field = i_Field]

resorts all molecular objects by the specified user field (see the set field command, and the Field
function). If the field is not specified, the objects are sorted by their mass.

sort molecules in an object by mass or a user field

sort os_ObjectSelection [field = i_Field]

resorts the molecules in each of the selected non−ICM objects by the specified user field (see the set
field command, and the Field function). If the field is not specified, the molecules are sorted by
molecular mass. An ICM object can be stripped, resorted and then converted again.

268 2.20.65. sort

sort table

sort [reverse] [number] table.keyArray1 [reverse] table.keyarray1 [reverse] ...

this command sorts all the arrays of the table so that all the listed table.keyArrays are applied
sequentially with descending priority. Each array can be followed by the reverse option to change the
sorting order.

Examples:

 read table s_icmhome+"res.tab" # residue properties
 group table RES $s_out # create an ICM table RES
 sort RES.aa # resort entries by residue name
 show RES
 sort reverse RES.flexInd RES.aa
 show RES
 sort RES.hPhobInd RES.flexInd
 show RES

sort stack

sort conformations in a stack according to their energies. New energies can be assigned to the same
conformations with the set stack energy command.

2.20.66. split

can split grobs or tables into individual components.

split grob

split g_complexGrob [s_rootGrobsName] [i_maxNofGrobs] [r_minGrobSize]

divide disconnected parts of a graphics object into a bunch of separate graphics object sorted according to
their size (measured as the number of vertices). The maximal number of new grobs is defined either by
i_maxNofGrobs explicitly or by the MnGrobs parameter. The latter can be redefined in the icm.cfg
configuration file. The i_maxNofGrobs option allows to retain only larger pieces. Grobs will be sorted
according to their number of points and named by adding their sequential number to the input grob name or
s_rootGrobsName, if specified. Splitting allows you to treat, display, and measure disconnected parts
separately. The split command is invaluable for protein cavity analysis.

You can also limit the size of the objects generated by the command by providing the real argument with
the minimal number of vertices you want in a grob.

See also: Volume(g_),Area(g_), Xyz(g_).

Example:

 read object "crn"
 make grob skin a_//cb a_//cb
 split g_crn
 display grob smooth # display as one smooth surface

2.20.65. sort 269

 undisplay g_crn
 color grob unique
 show Volume(g_crn3) Area(g_crn3) # you can also Ctrl−RightClick the grob
 quit
another session
 read map "crn"
 make grob
 split g_crn "blob" 30 # create up to 30 largest grobs and
 # call them "blob1" "blob2"...
a variant: split g_crn "blob" 40 100.0 # discard grobs smaller than 100. vertices
 delete g_crn
 display grob
 color grob unique

split [t_tableName]

split table into individual arrays.

Example:

 group table t {1 2 3} "a" {2 3 4} "b" # t.a t.b arrays
 split t # a and b arrays

Splitting an object into separate molecules

split object

There is no such command, but if you want to split a molecular object into separate molecules, you can
simply copy the object and delete unwanted molecules in each copy. Example:

 copy a_ "b"
 delete a_b.!1 # delete all but the first molecule
 write a_b. "b" # contains only the first molecule
#
 copy a_ "c"
 delete a_c.!2 # delete all but the second molecule
 write a_c. "c" # contains only the second molecule
#etc..

2.20.67. sprintf

sprintf [append] s_formatString arg1 arg1 arg2 arg3 ... [name= s_outputStringName]

Print to the s_out string, or the s_outputStringName specified after the name= option. The same syntax
as printf command, but the result is not displayed.

Example in which string outStr is the destination:

 sprintf "mncalls = %d\n",mncalls name="outStr"

270 2.20.66. split

2.20.68. store

store conf [i_slotNumber] [r_energy] [number= i_nOfVisits]

store current conformation into specified slot of the conformational stack. By default it puts the
conformation into the first free slot, or appends it to the end. The energy, by default, is automatically
extracted from the previous energy evaluation, or taken from r_energy if explicitly provided. The total
number of visits (nvi) is set to 1 by default, or Example:

 buildpep "WSD"
 montecarlo # generates a stack
 show stack
 set v_//omg 180. # change a conformation
 store conf −9. # add conformation with energy −9.
 store conf 3, −9. # override slot 3 with energy −99.
 store conf number=33 # conf with number of visits=33

store torsion type [vs_]

store temporary torsion types for new ICMFF potential for a given molecule (not used in the commercial
distribution).

2.20.69. ssearch

is a systematic search through torsion space combined with local minimization.

you may globally optimize any set of energy/penalty terms including electrostatics, solvation,
entropy, density correlation etc.

•

you may search an arbitrary subset of variables•
you may allow full local minimization after each systematic change•
you may search only through centers of the preferred local multidimensional zones (for
example rotamers) which is more efficient than an even grid sampling

•

you may perform both the global search (the full [−180.,180.] range) and the local search (grid
search around the current conformation).

•

ssearch [local] [vs_Ssearch [vs_minimize]] [as_select1 [as_select2]]

systematically changes vs_Ssearch variables and carries out energy minimization with respect to the
vs_minimize variables after each systematic conformational change. The lowest energy conformation is
loaded from the conformational stack at the end of the procedure. By default every variable from
vs_Ssearch selection goes through nSsearchStep evenly distributed values. The step therefore is 360
deg. over nSsearchStep. Option local imposes the grid locally around the current values of vs_Ssearch
variables. In this case the program uses ssearchStep parameter.

If you want to prevent the procedure from automatically writing the stack of best conformations to a file set
the autoSavePeriod variable to zero.

See also montecarlo .

Example:

2.20.68. store 271

 read object "crn" # good old crambin
 ssearch v_/14/x* # place optimally Asn14 side−chain

2.20.70. strip

strip os_object

strip an ICM−molecular object from its ICM attributes and reduce it into a pdb−object. The latter are still
good for graphics, superposition, basic geometric manipulations etc. Also, some chemical operations, e.g.
attaching chemical groups are best performed on simpler pdb−objects. Stripping may save you a lot of
memory as well.

String is also used to perform operations which are not allowed for ICM object, but are allowed for simpler
PDB objects (for example dragging individual atoms with a mouse)

These commands include:

deleting hydrogens•
make bond auto•

2.20.71. superimpose

superimpose [[align | ali_] [exact]] as_selectStatic as_selectMovable

superimpose the second object onto the first one using selected atoms or residues as equivalent points.
Selections may by of any level: atom selection as_ residue selection rs_ molecular selection ms_ or
object selection os_ . The option defines how the two sets are aligned (the residue alignment may be
explicitly provided as the ali_ argument, and the objects are linked with the alignment):

alignment options:

Default (no options): Residue alignment: by residue number. Atom alignment: by atom name for
pairs of identical residues or pairs of close residues (F with Y; B with D,N; D with N; E with Qor
Z, Q with Z), for other residue pairs only the backbone atoms ca,c,n,o,hn,ha are aligned.

•

align option: Residue correspondence is established by sequence alignment using the ICM
ZEGA alignment Abagyan, Batalov, 1997 Atom alignment: by atom name (see the default option).

•

exact option: Residue matching is ignored. Two atom selections are directly sequentially
aligned. Numbers of atoms in two selections must coincide.

•

align exact option: Residue alignment: Needleman and Wunsch. Inside residue atoms are aligned
sequentially and regardless of the name.

•

Number of equivalent atom pairs is saved in i_out; resulting RMSD is saved in r_out; a selection of
atoms in the "static" object used for superposition is saved in as_out, that of "movable" object in
as2_out .

Note that if the movable object is of ICM−type it is preferable to have all six virtual variables unfixed (
e.g. unfix V_movableObj.//?vt*). Otherwise, if some or all of them (V_//?vt*) are fixed, you
will get a warning, and only the partial minimization of the RMS distance possible with the given degrees
of freedom will be performed.

272 2.20.70. strip

See also: Rmsd(), Srmsd().

2.20.72. then

is one of the ICM flow control statements, used to perform conditional statements.

See also if, elseif, and endif .

2.20.73. transform

transform molecular objects to symmetry related positions.

transform {ms_|g_grob} R_12transformationVector

transform molecules (ms_) or graphics objects according to the transformation vector.

See also these two examples: (example 1 and example 2).

You can also manually move molecules with respect to each other on the graphics screen by using the
connect ms_ command to choose the molecules which can be moved separately.

transform [copy] ms_ [i_number] [s_symgroup] {box |as_selection r_radius}

transform molecules ms_ according to the specified transformation. i_number is a symmetry operation
number in an array of all operators of a space group. The symmetry transformations are defined in a 12*n
real array where each chunk of 12 real values defines 3x3 rotation matrix and translation vector
{a4,a8,a12}. The complete 4x4 transformation matrix looks like this:

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 −−−−−−−−−−−−+−−−−
 0. 0. 0. | 1.

If i_number exceeds the number of space group symmetry transformations the symmetrical images in up to
26 surrounding cells are created. This operation is only possible, if symmetry information (sym.group name
and cell dimensions) is defined for the object. Usually PDB and CSD files contain the above information, it
is preserved upon conversion. Use the Cell() or the Symgroup() functions to find out if the space
group is defined. If not, you may assign it to the object with the set symmetry object command. In
a special case of i_number=0, the object is placed in the "primary" subunit of the cell (e.g. in sym.group "P
21 21 21" that is 0<x<a, 0<y<b, 0<z<c/4; currently, the i_number=0 option is supported only for groups 1
and 19).

Example:

 read mol2 "ex_mol2" # several small molecules
 display a_4.
 build hydrogen a_4. # added and displayed

2.20.72. then 273

2.20.74. translate

translate { os_ | ms_ | g_grob } [add] [symmetry] R_3translationVector

translate the center of mass of the specified object(s) (os_) or molecule(s) (ms_) to a specified position,
or by a R_3translationVector vector if option add is specified. You can also move molecules/objects
interactively with the mouse after the connect command.

symmetry option With the symmetry option the R_3translationVector should be in fractional
coordinates. Option add translates by the specified vector from the current position. Without add the
program tries to identify a compensating shift to a position in which the center of gravity of the selected
molecule(s) has minimal positive fractional coordinates.

Examples:

 translate a_2 {2. 0. 1.} # shift second molecule by the vector

2.20.75. undisplay

Opposite to display . To get rid of the whole graphics window for fast calculations use

 undisplay window

Examples of the undisplay command:

 undisplay ribbon # ribbon display not needed any more
 undisplay g_icos # a graphics object not needed any more
 undisplay a_/w*,hoh* # who cares about water molecules ...
 undisplay residue labels # just "labels" will do the same
 undisplay string # see also "delete label" command
 undisplay a_//h* # who cares about hydrogens ...

 undisplay hbond a_1./1:29 # ... and, hence, about H−bonds
 undisplay tether a_/12:20
 undisplay box
 undisplay cursor
 undisplay origin # undisplay the coordinate frame
 undisplay window # delete GL graphics window

2.20.76. unfix

unfix [only] Vs_select

unfix (set free) specified variables (such as bond lengths, angles and phases or torsions) in an ICM−object.
Opposite to fix command. This operation can be applied to the current object only (use set
object os_newObj first).

Important: since it only makes sense to unfix variables which are currently fixed, use Vs_select which
selects among ALL (both free and fixed) variables, as opposed to vs_ which selects only from FREE
variables.

274 2.20.74. translate

Examples:

 # only this loop has free torsions now
 unfix only V_/8:18/phi,PSI,H,M,P

Note that PSI torsion references is used for traditional residue attribution

2.20.77. unix

unix unix_shell_command

issues a UNIX shell command from ICM. The ICM process waits until the UNIX shell process has
completed. "unix" must be the first word in the command. Important: Construction

 if (<condition>) unix unix_command

is illegal. Use

 if (<condition>) then
 unix unix_command
 endif

instead.

To pass the ICM−shell variables to the unix_shell_command use integer, real or string ICM−shell
variables, protected with dollar sign ($) prefix. Important: passing ICM−shell variables to the UNIX
command is impossible if you use an alias name (e.g. ux) instead of the original unix command.

Examples:

 unix grep −i myoglobin /data/pdb/brookdir.doc
 unix echo $mncalls $s_pdbDir $dielConst

 file="/data/pdb/"+Name(a_1.) # tricky file name
 unix grep ATOM $file | wc −l # $file will be substituted by
 # the value of this ICM−shell
 # string variable

2.20.78. wait

wait for the child ICM processes to finish, quit the child processes

wait

allows to synchronize multiple ICM processes spawned by the fork command.

for the parent process: wait until all the child processes spawned with the fork command are
finished.

•

for the child processes: quit the spawned ICM process•

See also: iProc , nProc .

2.20.77. unix 275

2.20.79. web

web Args ...

a family of web commands.

web [delete] u_EntrezRequest

invoke a web browser call to the WWW page of the Entrez server at NCBI and display your database
entries with links. The format of the requests is described at
http://www3.ncbi.nlm.nih.gov/Entrez/linking.html. The s_webEntrezLink string
defines the location of the link and the webEntrezOption preference defines the type of the Entrez
report. The delete option will temporarily set l_confirm=no for this command.

Examples:

 web sp||GTPA_HUMAN # Swissprot by ID
 web sp|P07497| # Swissprot by accession
 web emb|U01234| # EMBL by accession
 web pdb|1crn| # PDB by ID (a single chain entry)
 web pdb|2ins|a # PDB by ID and chain character
 web 1111111 # NCBI nonredundant database

2.20.80. web table: shows an icm table with a web browser

web [delete] [s_file] T_ [link T_.S_1 s_linktype1 T_.S_2 s_linktype2 ...]

ICM invokes a web browser call. If you do not have a browser (defined by the s_webViewer string)
currently running under your login, the call will fail. The command presents the T_ table in your web
browser window. Optional web links are interpreted according to the web link types described in the
WEBLINK.DB array.

See also:

•
 `writehtml{write html [s_file] T_ [link ...]}

− write the html document to a file
•

 `showhtml{show html T_ [link ...] }

− show the table in the icm text window.

Example:

 show html SR link SR.NA2 "PDB"
#
 read sequence "GTPA_HUMAN.seq"
 find profile
 show SITES
 web SITES
 web SITES link SITES.AC "AUTO"

276 2.20.79. web

2.20.81. while

while

is one of the ICM flow control statements, used to perform a loop in the ICM−shell calculations.

See also: for, endwhile .

2.20.82. write

write stuff to a disk file. Logical variable l_confirm defines if you'll be prompted whether to overwrite
an existing file with the same name. Use option delete to delete (or overwrite) the existing file
unconditionally.

For the list of ICM−objects you can write, and formats you can choose, see read and show commands.
Generic syntax:

write [append | delete] { variable | constant | expression } s_fileNameRoot[.ext]

See also corresponding read commands.

write alignment

write [alignment] [msf] ali_Name [s_fileName]

write alignment ali_Name to a file. Default extension is .ali . Note: if alignment is only a group of
unaligned sequences, generated by the group command, the result will be just a multiple sequence
file, rather than an alignment file (there will be no dashes at the end).

The default ICM format for an alignment looks like this:

#>ali sh3
Consensus ...#.^.YD%..+~..−#~# K~−.#~##.~~..~WW.#. ~~.~
Fyn −−−−VTLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGET
Spec DETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVE−−VNDRQ
Eps8 KTQPKKYAKSKYDFVARNSSELSM−KDDVLELILDDRRQWWKVR−−−NSGD
#Fyn __EEEE__________________EEEEEEE____EEEEEE_____E

Consensus G%#P...#..#.
Fyn GYIPSNYVAPVDSIQ
Spec GFVPAAYVKKLD−−−
Eps8 GFVPNNILDIMRTPE
#Fyn EEEGGGGEEE_____

nID 7 Lmin 61 ID 11.5 %

The lines starting from hash (#) are comments and are not required

The length of each alignment block is controlled by the sequenceLine parameter (default value is 60).
If you want to save a long alignment as one unwrapped block, increase this value (e.g.
sequenceLine=1000)

2.20.81. while 277

Writing sequences in the alignment order

The sequences can be written in the alignment order with the following commands (they can be store in a
little macro)

 macro wrSeqAli ali_ s_file ("seq.fasta")
 l_showSstructure = no
 seqname = Name(ali_) # Name returns sarray of sequence names
 for i=1,Nof(seqname)
 write sequence fasta append $seqname[i] s_file
 endfor
 endmacro

Resorting alignment in the order of sequence input.

Upon alignment the source sequences get reordered according to similarity. If you want to keep the original
order you may use the reorderAlignmentSeq macro described in the Align(ali_ I_newOrder)
section and then write an alignment:

 read sequence s_icmhome+"zincFing"
 group sequence aaa
 align aaa
 reorderAlignmentSeq aaa
 write ali_new # reordered alignment

See also: String(ali_) function.

write iarray

write [iarray] I_name [s_fileName]

write rarray

write [rarray] R_name [s_fileName]

write sarray

write [sarray] S_name [s_fileName]

write matrix

write [matrix] M_name [s_fileName]

write an array or a matrix to a disk file. Default file extensions are .iar,.rar, .sar, or .mat,
respectively.

See also: read iarray, read rarray, read sarray, read matrix.

278 2.20.82. write

write several arrays

write [{ column | database] } array1 array2 [s_fileName]

write arrays in the column or database format to a disk file. Default file extension is .db

See also: read database.

writing tethers

If you imposed tethers between you current object and another object and you want to quit the session and
then restore you setup, you can use the following trick:

first let us create an object a_ly6. tethered to template a_x. read alignment s_icmhome+"sx" read pdb
s_icmhome+"x" build model ly6 a_x.m # a new object a_ly6. created and tethered # write string String(
a_//T) "tTz.str" # tethered model atoms write string String(a_//Z) "xTz.str" # x−template atoms write
object a_x,ly6. "tx.ob" # quit # % icm read object "tx.ob" read string "tTz.str" name="tTz" read string
"xTz.str" name="xTz" set tether $xTz $tTz exact # tethers restored

write table

write T_table1 [T_table2 ..] [field= s_delimiter] [s_fileName]

write the T_tabletable to a disk file *.tab. It will have two header lines with table name and field
name information, followed by the values.

The default extension .tab is appended automatically. The ICM text table format has a header which
allows to read this table back to icm with the read table command

Example:

 group table t {1 2 3} "a" {"one","two","three"} "b"
 t1=t[2:3]
 write t t1 "tt" # write both tables in one file
 delete table # read both tables

write T_table1 [header] [separator= s_delimiter] [s_fileName]

if the separator or the s_fieldDelimiter variable contain just a simple symbol (e.g. comma or tab),
ICM will write a comma−separated or tab−separated table with the first line containing the field names,
e.g.

 group table t {1 2 3} "a" {"one","two","three"} "b"
 write t header separator="," "t.csv"
 unix cat t.csv
 "a","b"
 "1","one"
 "2","two"
 "3","three"

 write t separator="," "t.csv" # without header
 unix cat t.csv

2.20.82. write 279

 "1","one"
 "2","two"
 "3","three"

To read a table in comma−separated format (without headers), use the following commands:

s_fieldDelimiter="," # or "\t"
read column group name="t" "t.csv"

See also write database T and write column.

write column

write column array1 array2 [s_fileName] [separator= s_Separators]

write arrays in a multi− column format to a disk file.

Examples:

 read column s_icmhome + "res.tab" # amino acid properties
 write column aa flexInd "tm.tab" # two columns

If you want to write all the entries of an ICM−table you may do the following.

Examples:

 read column s_icmhome + "res.tab" # a set of isolated arrays
 group table RES $s_out # create an ICM−table RES (s_out : array names)
 write RES # write in the 'table' layout
 write database RES # write table RES in the 'database' layout

Default file extension is .col.

See also: read column, show column. read table, show table.

write database

write database [html] { array1 array2 | table } [s_fileNameRoot]

write several arrays or a table in a database format to a file (usually tables are written in a multi column
format). This command can also be used to save a subset of arrays of a table in a specific order. Option
html writes the table with appropriate HTML tags. See also read databasewrite table, show
database.

Example:

 resnam = {"ala" "glu" "arg"}
 reschg = { 0., −1., 1.}
 write database resnam reschg "a" # default extension ".db" will be added
#
 group table t resnam reschg
 write database t.reschg t.resnam "a" # reverse the order</tt>

280 2.20.82. write

write drestraint

write drestraint [as_] [s_fileNameRoot]

write distance restraints of the current object to a file.

See also: drestraints and drestraint types.

write drestraint type

write drestraint types

write drestraint types to a file. You may define your own types with the set drestraint
type command or by editing a *.cnt file.

write factor

write [factor] factor_Name [s_factorFileNameRoot]

writes crystallographic structure factors to a file.

write grob

write [grob] [g_name] [s_fileName] [append]

write/append a graphics object (grob) to a disk file. If g_name is not specified, all grobs are written.
Default file extension is .obj

See also: write image, write postscript.

write html

write html s_htmlFileName T_ [link T_.S_1 s_linktype1 T_.S_2 s_linktype2 ...]

writes the T_ table with HTML tags to a file. Interpret web links according to the web link types described
in the WEBLINK.DB array.

See also:

show html T_ [link ...] − show the html formatted table in the text window•
web T_ [link ...] − directly show the table in the web browser.•

Example:

 write html SR "results.htm" link SR.NA2 "SP" # link to Swissprot

write image

write image [{ png | targa | gif | rgb }] [display] [print] [postscript [{ print |
preview }]] [compress] [stereo] [{ color | bw }] [window= I_xyPixelSizes] [s_fileName]

2.20.82. write 281

write the current screen image to a file. The default image file format is tif . The png−format is the most
compact and is recommended for web−publishing. The default settings are stored in the IMAGE table.
Some of them can be overridden by the following options:

display − allows to view the saved image or postscript image file. The viewer is defined by the
s_imageViewer variable for targa, gif, rgb and tif images and by the s_psViewer variable
for the postscript images.

•

postscript − write Adobe postscript−bitmap file rather than TIFF−file. See also write
postscript command which generates vectorized scalable high quality postscript files.

•

preview − add low−resolution preview to postscript file for some EPS−compliant image
viewers (i.e. Irix showcase®). Resolution, and therefore the size, of the added preview is defined
by the IMAGE.previewResolution (default 10).

•

print − print the postscript file. It will not work for non−postscript images, in which case you
may use the display option and print from your image viewing program instead.

•

compress − use packbits lossless compression standard for .tif files. Compression of this kind is
currently a standard feature of all baseline TIFF−reading programs. Compression is a standard
feature of the .gif and .png formats.

•

stereo − generate stereo image even from the mono display. Tiff−files preserve the image
screen dimensions for each image in a stereo−pair. Stereo−base for postscript files is controlled by
the IMAGE.stereoBase parameter and equals 2.35" (60mm) by default.

•

color or bw − color or black−and−white options surpass IMAGE.color logical variable.•

window= I_xyPixelSizes − generate image of any arbitrarily large resolution (e.g.
window=3*View(window) to triple the resolution). Suppose that you want to make a poster of
4613 by 2888 pixels. This resolution is not achievable on a 1200x1024 screen. The image area
will be divided into many squares and the program will merge them into one image of large
resolution. This option will not work with string labels.

•

Example:

 nice "1crn" # resize the image
 delete label
 IMAGE.compress = no #just a plain uncompressed image
 write image window={4000,2700} # for slides

 write image window=2*View(window) # double the res.

IMAGE.generateAlpha logical variable controls if the alpha channel information is added to the SGI
rgb and tif image files. This additional channel describes opacity of the image pixels and makes the
background transparent. Images generated with alpha channel can be nicely superimposed in the IRIX
showcase since their backgrounds are transparent.

Examples:

 display a__1crn. ribbon

282 2.20.82. write

 write image "a" # a.tif image − about 1400 kB
 write image "p" compress # p.tif image − about 88 kB
 write image postscript stereo display "aaa.eps"
 write image 2*View(window) # hi−res, may screw up labels
 unix lp −c a.eps # print if you like the result

See also: write grob, write image , write postscript.

write index

write index [swiss | mol | mol2 | fasta] T_dbDescription s_outFile

calculate and write index for a database described by the control table T_dbDescription. This table contains
information about the database file (files) and fields to be indexed. It may have the following components
in the header:

DIR − string directory name•
FI − sarray of database files•
EXT − extension of the database files•

After the header there is a string array containing the list of fields. To create this table either define it in a
file or use the group table command. All text fields (except data) are hashed for fast searching. The
fasta option allows to index the NCBI nonredundant databases. See also: makeIndexChemDb macro
to do indexing in one step, mol, mol2 .

Example:

 group table t {"ID","DE","KW","SQ"} "fd" header "/data/swissprot/" \
 "DIR" {"sprot"} "FI" ".dat" "EXT"
 # we created control table t
 write index swiss t "/data/icm/inx/SWISS.inx" # make index and save to a file
 read index "/data/icm/inx/SWISS.inx" # read index
 show SWISS[2:5]
 show SWISS.ID=={"12AH_CLOS4","1431_LYCES","B3AT_CHICK"}
 read sequence SWISS.DE=="DNA−BINDING"

write index blast

write index sequence s_blastRootFileName

create a set of blast−formatted binary files for searches with the find database command. The
command will use all the sequences currently loaded into the ICM−shell and will create the following
compact binary files (the first three files are the same as those generated by the setdb blast command):

name.bsq binary sequences•
name.atb pointers•
name.ahd sequence headers•
name.bsa relative solvent accessibilities for each residue. This information•

If you want to do the opposite (i.e. given the three or four blast files, generate one fasta sequence file), use
the

2.20.82. write 283

find database write s_DBpath output= s_fastaFile

command.

Simple example (indexing can also be done with the blast setdb routine):

 read sequence "aaa.seq" # fasta formatted
 write index sequence "./aaa"
 delete sequences
 a=Sequence("SFDGHASGDFSHGASFDHAGS")
 find database a "./dom" 0.001

An example in which the sequences+accessibilities are generated from objects:

 read sarray "domain.list" name="dom" # e.g. {"1crn","1abc.a/12:115/",..}
 for i=1,Nof(dom)
 read object s_icmhome+"data/xpdb/"+dom[i]
 show area surface mute # calculate the absolute acc. areas
 make sequence a_1 # the relative areas are calculated and assigned to seq.
 delete a_*.
 endfor
 write index sequence "./dom" # files .bsq .atb .ahd .bsa created
 delete sequences

write library

write library [append] [auto] as_entryAtom [exit= as_exitAtom] s_libFileRoot

save a selected molecule, residue or a fragment as an ICM−library entry. Use set charge, set
bond type and, possibly, build hydrogens before writing an entry. We recommend you to do this
operation in an interactive session: display your molecule and Ctrl−Click the first and last atoms if
needed. There are two different situations:

the molecule/residue/fragment does not belong to an ICM−type object. For example, you have a
pdb−file with a new molecule you would like to create an ICM−library entry from. In this case do
NOT use option auto and note that the resulting entry will only be a draft, since energy
parameters of atoms (atom codes plus related types of van der Waals, hydrogen bondings
solvation), as well as parameters of torsions, bond angles, phase angles, and bond lengths will
have to be further manually adjusted. Enter the command and you will be prompted for the first
and the last atoms of the entry. The purpose of this procedure is to create a regular ICM−tree,
create extra bonds if there are cycles and give atoms unique names. Some additional editing of the
entry may be required to correct fixed and free torsions suggested by the program. To declare a
certain variable free, enter '+' in the appropriate field.

1.

the molecule/residue/fragment belongs to an ICM−type object. In this case you may use option
auto since all the information is there already. The program only needs to extract the molecular
subtree according to the specified selection.

2.

Example:

 BS glu # build glutamic acid residue
 strip # convert it to a non−ICM object
 write library a_def.a1/1/hg2 "./tm" name ="new" auto # reroot it

284 2.20.82. write

Now the entry atom is a_//hg2
 build string "se new" library ="./tm" # read the rerooted residue
 display

write map

write m_map [s_fileName]

write specified map to a binary file with specfied file.

write { map | m_map1 m_map2 ... }

write all maps or specified maps to corresponding files (the names for the files are generated from map
names, the m_ prefix is removed from the file names).

write xplor m_map ... [s_fileName]

write the specified map to a Xplot−formatted file.

Example:

 make map "ge,gc" potential Box(a_)
 m_gc... done
 Info> Map m_gc created. GridStep=0.50 Dimensions: 16 11 17, Size=2992
 m_ge... done
 Info> Map m_ge created. GridStep=0.50 Dimensions: 16 11 17, Size=2992
 write m_ge m_gc
 Info> 1 map written to file ge.map
 Info> 1 map written to file gc.map

write model: update or create the loop database file

write model [append] s_lpsFile

writes a compressed representation of the protein structure to the specified loop file ("def.lps" by
default). To create a large database, read the object list and write a loop over all objects, e.g.

prepare pdbUniq list and ..
 read sarray "pdbUniq.li"
 for i=1,Nof(pdbUniq)
 read object s_xpdbDir+pdbUniq[i]
add further filters
 write model append "icm.lps"
 delete object
 endfor

To make the program use this file , redefine the LIBRARY.lps file name to, say "./icm.lps"

write mol

write mol [exact] as_select [s_fileName]

2.20.82. write 285

write selected atoms in the mol −file format. By default the formal charges (see the set charge
command) are saved. Options

exact: preserve the ICM−atom names (like c1, c2).•
charge: write the MCHG section containing the atomic real charges.•

See also read mol "file", show mol "file".

write mol2

write mol2 [exact] [formal] as_select [s_fileName]

write selected atoms in the mol2−file format (extension .ml2). Options:

exact preserves the ICM−atom names (like c1, c2).•
formal writes formal atomic charges instead of the real ones. Adds USER_CHARGES
(XXXXXX) tag to the header

•

See also read mol2 "file", show mol2 "file".

write object

write object [options] [as_selection] [s_fileName [rename]]

write an ICM molecular object (or many selected ICM−objects) in binary ICM format to a file. A single
object can be renamed in the file according to the s_fileName, if option rename is specified. Important:
only whole ICM object may be written by this command, and file extension will always be .ob.

Options (defaults shown in bold):

append : append to a multiple−object file•
rename : rename the single object to s_fileName (leave out path and extension) .•
strip : write a stripped object (i.e. drop information about variables and rigid bodies present
in an object of the ICM type).

•

auto={yes| no} : if yes the program automatically identifies which atom requisites to save.
For example, if molecule is displayed, the view will be saved with the object. Properties such as
occupancy and charge are considered essential if the values are not identical for all the atoms.

•

If auto=no, the OBJECT table controls the output.

occupancy={yes|no} : occupancy field•
charge ={ yes|no} : partial atomic charges•
bfactor ={ yes|no} : b−factors•
display ={yes| no} : the current view of your molecular object(s), including graphics
planes The written display attributes are automatically restored upon reading of the object.

•

library={yes|no} : currently not used.•

See also: read object, write pdb, OBJECT, strip.

Example:

286 2.20.82. write

 read object "crn"
 build string "se ala his" name="AH" # second object named "AH"
 write object a_2. "alahis" rename # rename obj. to "alahis"
 display a_1./1:40 ribbon # display and save with graphics attributes
 display a_1./12 cpk
 display a_2. xstick
 write object a_*. "twoobj" display=yes # both objects in one file
 write object a_1. append "twoobj" # yet another object

write object simple

write object simple [as_selection] [s_fileName]

write a compressed object. The information preserved in the compressed description of the object is limited
to 3 coordinates and certain atom names (non−protein atom names will not be preserved and reduced to just
one character) plus all residue and molecule requisites. For a PDB−type file, a simple object is the most
compact for store and fastest to read. They are used in the compact fold library.

write pdb

write pdb [exact] [charge] [nosort][as_selection] [s_fileName]

write a molecular (sub)object in PDB format. Normally atoms of each amino acid are sorted in the
following order:

ATOM 19 N GLN O 3 −4.565 0.000 −4.592 1.00 20.00
ATOM 20 CA GLN O 3 −4.712 0.000 −6.037 1.00 20.00
ATOM 21 C GLN O 3 −6.194 0.000 −6.420 1.00 20.00
ATOM 22 O GLN O 3 −7.063 0.000 −5.549 1.00 20.00
<i>the rest</i>

Also the n−terminal nitrogen and its hydrogens are assigned to the first amino acid. Options are the
following:

charge saves atomic charges instead of occupancies and atomic radii instead of B−factors;•
exact keeps the names of hydrogen atoms the same as in ICM objects (i.e. the first character is
'h'). Without this option names of hydrogen atoms are transformed like this:

•

 h11 ==> 1H1
 h12 ==> 2H1

nosort retain the original ICM order of atoms•

Default file extension is .pdb.

See also: write object, read pdb.

write postscript

write postscript [display] [stereo] [preview] [{ color | bw | dash]} [i_quality] [
r_gammaCorrection] [s_filename]

2.20.82. write 287

create vectorized postscript model of the screen image. Instead of the bitmap snapshot this command
generates lines, solid triangles and text strings corresponding to the displayed objects. Since the postscript
language is directly interpreted by high−end printers, the printed image may be even higher quality than the
displayed image. The final resolution is limited only by the printer since the original image is not pixelized.
Warning: there may be inevitable side−effects for some types of solid images at the intersection lines of
solid surfaces (i.e. large scale cpk−representation, hint: use display skin instead).

The default settings are stored in the IMAGE table. Some of them can be overridden by the following
options and arguments:

reverse − makes white background in the saved postscript file.•
display − allows to view the saved postscript file. The viewer is defined by the s_psViewer
variable.

•

stereo − generate stereo image even from the mono display. Stereo−base is controlled by the
IMAGE.stereoBase parameter and is 2.35" (6cm) by default.

•

preview − generates postscript preview according to the IMAGE.previewer command string
and the IMAGE.previewResolution parameter.

•

color or bw − color or black−and−white options surpass IMAGE.color logical variable.•
dash − is a great variant of the black−and−white option to generate lines of different width and
style. The line colors of your screen image are interpreted according to the following table:

•

gold − double solid black line•
pink − triple solid black line•
magenta − dash1•
orange − dash2•
brown − dotted line•
the rest − solid black line•

Examples:

 display a__crn. # display wire model of crambin
 color a_//ca,c,n pink # triple width backbone
 color a_/arg/!ca,c,n magenta # dashed lys side chains
zoom your picture to fill the whole graphics window
 write postscript dash stereo display

* i_quality (default=3, possible range: 1:100) − defines a parameter in a smoothing procedure. Each side of
an elementary triangle is divided into i_quality sections and color of all the i_quality2 smaller triangles is
calculated to yield smooth transitions. Optimal value of the parameter depends on an image. Only large
scale images may require i_quality values above 10. Only in an extreme case of a single triangle on a page
with red, blue and green vertexes, one may need i_quality of 100.

* r_gammaCorrection allows to lighten or darken the image by changing the gamma parameter. A gamma
value that is greater than 1.0 will lighten printed picture, while a gamma value that is less that 1.0 will
darken it. You may adjust your gamma correction parameter for your printer with respect to your display
and add this setting to the _startup file.

Examples:

 display a__crn. brown skin # molecular surface
 # Hugh wants to have a look
 write postscript 1 1. "divine_brown" display

288 2.20.82. write

 # change parameters for the printer
 write postscript 5 2. "divine_brown"
 # and print it
 unix lp −c divine_brown.eps

See also: write image, write grob.

write pov

write pov [image] [r_aspectRatio] [s_fileName]

writes a pov−ray object file which can be processed with the pov−ray ray−tracing program.

Example:

 buildpdp "ala his trp"
 display cpk
 make grob image
 write pov "x"
% pov−ray x.pov

write segment

write segment [append] [s_fileName]

writes a simplified description of protein topology generated by the assign sstructure segment
command to a file. You can append your description to the provided foldbank.seg file.

Examples:

 read object "crn"
 assign sstructure segment a_*
 write append segment "myseg"

See also: find segment, read segment.

write sequence

write { sequence | seq_ } [{ fasta | swiss | pir | gcg | msf }] [s_fileName]

write all sequences or the specified sequence seq_ to a file in one of specified formats. The default format
is the fasta format.

write session

write [s_fileName]

write commands from an ICM session to a file. Default file name is "_session.icm". This is a simple text
file with icm commands. Feel free to edit the file

Example:

2.20.82. write 289

 ..
 a=1
 history 10
 write session
 Info> 4 history lines written to file _session.icm

See also: history command.

write stack

write stack [s_fileName]

write the current state of the conformational stack to a disk file. Default file extension is .cnf.

See also: show stack, delete stack, read stack, read conf.

write vs_var

write [vs_variables][s_fileName]

write a variable selection vs_ to a disk file.

Default file extension is .var .

See also: read variable.

2.21. Functions
ICM−shell functions are an important part of the ICM−shell environment. They have the following general
format: FunctionName (arg1, arg2, ...) and return an ICM−shell object of one of the following types:
integer, real, string, logical, iarray, rarray, sarray, matrix, sequence, profile.
alignments, maps, graphics objects (grob) and selections.

The order of the function arguments is fixed in contrast to that of commands. The same function may
perform different operations and return ICM−shell constants of different type depending on the arguments
types and order. ICM−shell objects returned by functions have no names, they may be parts of algebraic
expressions and should be formally considered as 'constants'. Individual 'constants' or expressions can be
assigned to a named variable. Function names always start with a capital letter. Example:

 show Mean(Random(1.,3.,10))

2.21.1. Abs

absolute value function.

Abs (real) − returns real absolute value.

Abs (integer) − returns integer absolute value.

Abs (rarray) − returns rarray of absolute values.

290 2.20.82. write

Abs (iarray) − returns iarray of absolute values.

Examples:

 a=Abs(−5.) # a=5.
 print Abs({−2.,0.1,−3.}) # prints rarray {2., 0.1, 3.}
 if (Abs({−3, 1}=={3 1}) print "ok"

2.21.2. Acc

accessibility selection function. It returns residues or atoms with relative solvent accessible area greater
than certain threshold. Important: The surface area must be calculated before this function call. The Acc
function just uses surface values, it does not reevaluate them. Therefore, make sure that the show area
command (or show energy, minimize , etc. with the "sf" surface term turned on), has been
executed before you use the Acc function. If you specify the threshold explicitly, it must range from 0.0 to
1.0, otherwise it is set to 0.25 for residue selections and 0.1 for atom selections.

Acc (rs_ , [r_Threshold])

− returns residue selection, containing a subset of specified residuesrs_ for which the ratio of their current
accessible surface to the standard exposed surface is greater than the specified or default threshold (0.25 by
default). ICM stores the table of standard residue accessibilities in an unfolded state calculated in the
extended Gly−X−Gly dipeptide for all amino acid residue types. It can be displayed by the show
residue type command, or by calling function Area(s_residueName), and the numbers may be
modified in the icm.res file.

The actual solvent accessible surface, calculated by a fast dot−surface algorithm, is divided by the standard
one and the residue gets selected if it is greater than the specified or default threshold. (r_Threshold
parameter is 0.25 by default).

Acc (as_select, [r_Threshold])

− returns atom selection, containing atoms with accessible surface divided by the total surface of the atomic
sphere in a standard covalent environment greater than the specified or default threshold (0.1).
Accessibility at this level does not make as much sense as at the residue level. The standard surface of the
atom was determined for standard amino−acid residues. Note that hydrogens were NOT considered in this
calculation. Therefore, to assign surface areas to the atoms use

show surface area a_//!h* a_//!h*

command or the

show energy "sf"

command.

You may later propagate the accessible atomic layer by applying Sphere(as_ , 1.1), where 1.1 is larger
than a typical X−H distance but smaller than the distance between two heavy atoms. (the optimal
r_Threshold at the atomic level used as the default is 0.1, note that it is different from the previous).

2.21.2. Acc 291

Examples:

 # let us select interface residues
 read object s_icmhome+"complex"
 # display all surface residues
 show surface area
 display Acc(a_/*)
 # now let us show the interface residues
 display a_1,2
 color a_1 yellow
 color a_2 blue
 show surface area a_1 a_1 # calculate surface of
 # the first molecule only

 # select interface residues
 # of the first molecule
 color red Sphere(a_2/* a_1/* 4.) Acc(a_1/*)

 read object "crn"
 show energy "sf"
 display
 display cpk Acc(a_//* 0.1) # display accessible atoms

 show surface area # prior to invoking Acc function
 # surface area should be calculated
 color Acc(a_/*) red # color residues with relative
 # accessibility > 25% red

2.21.3. Acos

arccosine trigonometric function Returns angles in degrees.

Acos (real | integer) − returns the real arccosine of its real or integer argument.

Acos (rarray) − returns the rarray of arccosines of rarray elements.

Examples:

 print Acos(1.) # equal to 0.
 print Acos(1) # the same

 print Acos({−1., 0., 1.}) # returns {180. 90. 0.}

2.21.4. Acosh

inverse hyperbolic cosine function.

Acosh (real | integer) − returns the real inverse hyperbolic cosine of its real or integer argument.

Acosh (rarray) − returns the rarray of inverse hyperbolic cosines of rarray elements.

Examples:

 print Acosh(1.) # returns 0

292 2.21.3. Acos

 print Acosh(1) # the same

 print Acosh({1., 10., 100.}) # returns {0., 2.993223, 5.298292}

2.21.5. Align

aligns two sequences with the Needleman and Wunsch algorithm with zero gap end penalties (ZEGA). The
ZEGA−statistics of structural significance (Abagyan, Batalov, 1997) is given and can be additionally
evaluated with the Probability function. The reported pP value is −Log(Probability,10).

Align ([sequence1, sequence2 [{ area | distance | superimpose } [i_window] [r_seq_weight]]]
) − returns ZEGA− alignment . If no arguments are given, the function aligns the first two sequences in
the sequence list.

Returned variables:

i_out − the number of identical residues in the alingment•
r_out − contains Log(Probability_of_structural_dissimilarity) only for pairwise alignments•
r_2out − percent identity of the alignment.•

Simple pairwise sequence alignment

Align ()

Align (seq1 seq2) − returns an alignment. The alignMethod preference allows you to perform two
types of pairwise sequence alignments: "ZEGA" and "H−align". If you skip the arguments, the first
two sequence are aligned.

Example:

 read sequences s_icmhome+"sh3.seq" # read 3 sequences
 print Align(Fyn,Spec) # align two of them
 Align() # the first two
 a=Align(sequence[1] sequence[3]) # 1st and 3rd
 if(r_out > 5.) print "Sequences are struct. related"

Aligning with custom residue weights or weights according to surface accessible area

Align (seq1 seq2 area)

Option area will use relative residue accessibilities to weight the residue−residue substitution values in
the course of the alignment (see also accFunction).

The weights must be positive and less than 2.37 . Try to be around or less than 1. since relative
accessibilities are always in [0.,1.] range. Values larger than 2.37 do not work well anyway with the
existing alignment matrices and gap parameters. Use the Trim function to adjust the values, e.g. Trim(
myweights , 0.1,2.3)).

E.g.

 read pdb "1lbd"

2.21.5. Align 293

 show surface area
 make sequence
 Info> sequence 1lbd_m extracted
 1lbd_m # see the relative areas
 read pdb sequence "1fm6.a/" # does not have areas
 Info> 1 sequence 1fm6_a read from /data/pdb/fm/pdb1fm6.ent.Z
 ali3d = Align(1lbd_m 1fm6_a area)

This can also be used to assign custom weights with the following commands

 set area seq1 R_weights # must be > 0. and less than 2.37
 Align(seq1 seq2 area)

Introducing positional terms into the alignment score.

Align (seq1 seq2 M_positionalScores)

If sequence similarity is in the "twilight zone" and the alignment is not obvious, the regular
comp_matrix{residue substitution matrix} is not sufficient to produce a correct alignment and additional
help is needed. This help may come in a form of the positional information, e.g. histidine 55 in the first
sequence must align with histidine 36 in the second sequence, or the predicted alpha−helix in the first
sequence preferably aligns with alpha−helix in the second one.

In this case you can prepare a matrix of extra scores for each pair of positions in two sequences, e.g.

 seq1 = Sequence("WEARSLTTGETGYIPSA")
 seq2 = Sequence("WKVEVNDRQGFVPAAY")
 Align()
 # Consensus W.#. .~~.~G%#P^
 seq1 WEARSLTTGETGYIPS−−
 seq2 WKVE−−VNDRQGFVPAAY
 m = Matrix(17,16,0.)
 m[10,4] = 3. # reward alignment of E in seq1[10] and E in seq2[4]
 Align(seq1 seq2 m)
 # Consensus W.# E ~G%#P^
 seq1 WEARSLTTGE−−−−TGYIPS−−
 seq2 WKV−−−−−−EVNDRQGFVPAAY

The alignSS macro shows a more elaborate example in which extra scores are prepared to encourage
alignments of the same secondary structure elements.

Warning. The alignment procedure is very subtle. Avoid values comparable with gap opening penalty.

Local structural alignment

Two types of structural alignments or mixed sequence/structural alignments can be performed with the
Align function.

Align (seq_1 seq_2 distance [i_window] [r_seq_weight]) − performs local structural alignment,
using distance RMSD as structural fitness criterion. The RMSD is calculated in a window i_window and
the dynamic programming algorithm combines structural scores with sequence alignment scores if
r_seq_weight>0.,

294 2.21.5. Align

Align (seq_1 seq_2 superimpose [i_window] [r_seq_weight]) − performs local structural
alignment, using superposition followed by coordinate RMSD calculation as structural fitness criterion.
The RMSD is calculated in a window i_window and the dynamic programming algorithm combines
structural scores with sequence alignment scores if r_seq_weight>0.,

In both cases the function uses the dynamic algorithm to find the alignment of the locally structurally
similar backbone conformations.

The alignment based on optimal structural superposition of two 3D structures may be different from purely
sequence alignment

Preconditions:

sequences must be linked to 3D molecules to access the coordinate information;•
two 3D structures must have a superimposable subsets•

The residue−label−carrying atoms (see the set label a_ command) will be used for structural
superpositions. r_seq_weight is used to add sequence aminoacid substitution values to the 3D similarity
signal.

Extracting pairwise alignment sequences from a multiple alignment

Align (ali_, seq_1, seq_2) − returns a pairwise sub− alignment of the input alignment ali_, reorders
of sequences in the alignment according to the order of arguments.

Extracting a multiple alignment of a subset of sequences from a multiple alignment

Align (ali_, I_seqNumbers) − returns a reordered and/or partial alignment . Sequences are taken in
the order specified in I_seqNumbers.

Examples:

 # 14 sequences
 read alignment msf s_icmhome + "azurins"
 # extract a pairwise alignment by names
 aa = Align(azurins,Azu2_Metj,Azur_Alcde)
 # reordered sub−alignment extracted by numbers
 bb = Align(azurins,{2 5 3 4 10 11 12})

Resorting alignment in the order of sequence input with the Align (ali_, I_seqNumbers) function.

Load the following macro and apply it to your alignment. Example:

 macro reorderAlignmentSeq(ali_)
 nn=Name(ali_) # names in the alignment order
 ii=Iarray(Nof(nn))
 j=0
 for i=1,Nof(sequence) # the original order
 ipos = Index(nn, Name(sequence[i]))
 if ipos >0 then
 j=j+1
 ii[j] = ipos

2.21.5. Align 295

 endif
 endfor
 ali_new = Align(ali_ ii)
 keep ali_new
 endmacro

Deriving an alignment from tethers between two 3D objects

Align (ms_) − returns alignment between sequences of the specified molecule and the template
molecule to which it is tethered. The alignment is deduced from the tethers imposed.

This function may be used to save the alignment after interactive editing.

Example:

 build string "se ala his leu gly trp ala" "a" # obj. a
 build string "se his val gly trp gly ala" "b" # obj. b
 set tether a_2./1:3 a_1./2:4 align # impose tethers
 show Align(a_2.1) # derive alignment from tethers
 write Align(a_2.1) "aa" # save it to a file

2.21.6. Angle

calculates planar angle in degrees. Returns real value.

Angle (as_atom) − returns the planar angle defined by the specified atom and two previous atoms in the
ICM−tree. For example, Angle(a_/5/c) is defined by C−Ca−N atoms of the 5−th residue. You may type:

 print Angle(# and then click the atom of interest.

Angle (as_atom1 , as_atom2 , as_atom3) − returns the planar angle defined by three atoms.

Angle (R_3point1 , R_3point2 , R_3point3) − returns the planar angle defined by the three points.

Angle (R_vector1 , R_vector2) − returns the planar angle between the two vectors.

Examples:

 d=Angle(a_/4/c) # d equals N−Ca−C angle
 print Angle(a_/4/ca a_/5/ca a_/6/ca) # virtual Ca−Ca−Ca planar angle

2.21.7. Area

calculates surface area.

Area (grob) − returns real surface area of a solid graphics object.

See also: the Volume(grob) function, the split command and How to display and characterize protein
cavities section.

Area (as_) − returns rarray of pre−calculated solvent accessible areas for selected atomsas_ .

296 2.21.6. Angle

Area (rs_) − returns rarray of pre−calculated solvent accessible areas for selected residuesrs_ .
These accessibilities depend on conformation.

Area (rs_ type) − returns rarray of maximal standard solvent accessible areas for selected residues
rs_ . These accessibilities are calculated for each residue in standard extended conformation surrounded
by Gly residues. Those accessibilities depend only on the sequence of the selected residues and do NOT
depend on its conformation. To calculate normalized accessibilities, divide Area(rs_) by Area(rs_
type)

Example:

read object "1crn"
show surface area
a=Area(a_/*) # absolute conformation dependent residue accessilities
b=Area(a_/* type) # maximal residue accessilities in the extended conformation
c = a/b # relative (normalized) accessibilities

2.21.8. Area contact matrix

Area (rs_1 rs_2) − returns rarray of areas of contact between selected residues. You can do it for
intramolecular residue contacts, in which case both selections should be the same, i.e. Area(a_1/* a_1/*) ;
or, alternatively, you can analyze intermolecular residue contacts, for example, Area(a_1/A a_2/A). See
also the Cad function, and example in plot area in which a contact matrix is calculated via interatomic
Ca−Ca distances. The table of the pairwise contact area differences is written to the s_out string which
can later be read into a proper table via: read column group name="aa" input=s_out and
sorted by the area (see below).

Example:

 read object "crn" # good old crambin
 s=String(Sequence(a_/A))
 PLOT.rainbowStyle="blue/rainbow/red"
 plot area Area(a_/A, a_/A) comment=s//s color={−50.,50.} \
 link transparent={0., 2.} ds

 read object "complex"
 plot area Area(a_1/A, a_2/A) grid color={−50.,50.} \
 link transparent={0., 2.} ds

Area (string) − returns the real value of solvent accessible area for the specified residue type in the
standard "exposed" conformation.

Important : "pre−calculated" above means that before invoking this function, you should calculate the
surface by show area surface , show area skin or show energy "sf" commands.

Examples:

 build # build a molecule according to the sequence
 # from file def.se (default)
 show area surface # calculate surface area
 a = Area(a_//o*) # individual accessibilities of oxygens

 stdarea = Area("lys") # standard accessibility of lysine

2.21.8. Area contact matrix 297

More curious example
 read object "crn"
 show energy "sf" # calculate the surface energy contribution
 # (hence, the accessibilities are
 # also calculated)

 assign sstructure a_/* "_"
 # remove current secondary structure assignment
 # for tube representation
 display ribbon
 # calculate smoothed relative accessibilities
 # and color tube representation accordingly
 color ribbon a_/* Smooth(Area(a_/*)/Area(a_/* type) 5)
 # plot residue accessibility profile
 plot Count(1 Nof(a_/*)) Smooth(Area(a_/*)/Area(a_/* type) 5) display

See also: Acc() function.

2.21.9. Asin

arcsine trigonometric function Returned values are in degrees.

Asin (real | integer)

− returns the real arcsine of its real or integer argument.

Asin (rarray)

− returns the rarray of arcsines of rarray elements.

Examples:

 print Asin(1.) # equal to 90 degrees
 print Asin(1) # the same

 print Asin({−1., 0., 1.}) # returns {−90., 0., 90.}

2.21.10. Asinh

inverse hyperbolic sine function.

Asinh (real)

− returns the real inverse hyperbolic sine of its real argument.

Asinh (rarray)

− returns the rarray of inverse hyperbolic sines of rarray elements.

Examples:

 print Asinh(1.) # returns 0.881374

298 2.21.9. Asin

 print Asinh(1) # the same

 print Asinh({−1., 0., 1.}) # returns {−0.881374, 0., 0.881374}

2.21.11. Ask

interactive input function. Convenient in macros.

Ask (s_prompt, i_default)

− returns entered integer or default.

Ask (s_prompt, r_default)

− returns entered real or default.

Ask (s_prompt, l_default)

− returns entered logical or default.

Ask (s_prompt, s_default [simple])

− returns entered string or default. Option simple suppressed interpretation of the input and makes
quotation marks unnecessary.

Examples:

 windowSize=Ask("Enter window size",windowSize)
 s_mask=Ask("Enter alignment mask","xxx−−−−xxx")

 grobName=Ask("Enter grob name","xxx")
 display $grobName

 show Ask("Enter string, it will be interpreted by ICM:", "")
 #e.g. Consensus(myAlignm)

 show Ask("Enter string:", "As Is",simple)
 #your input taken directly as a string

2.21.12. Atan

arctangent trigonometric function Returned values are in degrees.

Atan (real | integer)

− returns the real arctangent of its real or integer argument.

Atan (rarray)

− returns the rarray of arctangents of rarray elements.

2.21.11. Ask 299

Examples:

 print Atan(1.) # equal to 45.
 print Atan(1) # the same.

 print Atan({−1., 0., 1.}) # returns {−45., 0., 45.}

2.21.13. Atan2

arctangent trigonometric function. Returned values are in degrees.

Atan2 (r_x, r_y)

− returns the real arctangent of r_y/r_x in the range −180. to 180. degrees using the signs of both
arguments to determine the quadrant of the returned value.

Atan2 (R_x R_y)

− returns the rarray of arctangents of R_y/R_x elements as described above.

Examples:

 print Atan2(1.,−1.) # equal to 135.
 print Atan2({−1., 0., 1.},{−0.3, 1., 0.3}) # returns phases {−106.7 0. 73.3}

2.21.14. Atanh

inverse hyperbolic tangent function.

Atanh (real)

− returns the real inverse hyperbolic tangent of its real argument.

Atanh (rarray)

− returns the rarray of inverse hyperbolic tangents of rarray elements.

Examples:

 print Atanh(0.) # returns 0.
 print Atanh(1.) # returns error

 print Atanh({−0.9999, 0., .9999}) # returns { −4.951719, 0., −4.951719 }

2.21.15. Atom

transforms the input selection to atomic level necessary since some of the commands/functions require
specific level of selection.

Atom (as_Obj_or_Mol_or_Res_selection)

300 2.21.13. Atan2

− returns selection converted to the atomic level.

Atom (vs_)

− returns atom selection (i.e. selection of atomic level) to which the selected variables vs_ belong.

Examples:

 asel=Acc(a_2/his) # select accessible His residues of
 # the second molecule
 show Atom(asel) # show atoms of these residues
 show Atom(v_//phi) # carbonyl Cs

See also: the Res, Mol, adn Obj functions.

2.21.16. Augment

creates augmented affine 4x4 space transformation matrix.

Augment (R_12transformationVector)

− rearranges the transformation vector into an augmented affine 4x4 space transformation matrix .

The augmented matrix can be presented as

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 −−−−−−−−−−−−+−−−−
 0. 0. 0. | 1.

where {a1,a2,...a12} is the R_12transformationVector . This matrix is convenient to use because it
combines rotation and translation. To find the inverse transformation simply inverse the matrix:

 M_inv = Power(Augment(R_12direct),−1))
 R_12inv = Vector(M_inv)

To convert a 4x4 matrix back to a 12−transformation vector, use the Vector(M_4x4) function.

See also: Vector (the inverse function), symmetry transformations, and transformation
vector.

Augment (R_6Cell)

− returns 4x4 matrix of oblique transformation for given cell parameters {a b c alpha beta gamma}.

This matrix can be used to generate real coordinates from fractional coordinates. It also contains vectors A,
B and C. See also an example.

Example:

2.21.16. Augment 301

 display a__crn. # load and display crambin: P21 group
 obl = Augment(Cell()) # extract oblique matrix
 A = obl[1:3,1] # vectors A, B, C
 B = obl[1:3,2]
 C = obl[1:3,3]
 g1=Grob("cell",Cell()) # first cell
 g2=g1+ (−A) # second cell
 display g1 g2

Augment (R_3Vector) − appends 1. to a 3D vector {x,y,z} (resulting in {x,y,z,1.}) to allow direct
arithmetics with augmented 4x4 space transformation matrixes.

Augment (M_XYZblock) − adds {1.,1.,..1.} column to the Nx3 matrix of with {x,y,z} coordinates
to allow direct arithmetics with augmented 4x4 space transformation matrixes.

2.21.17. Axis

calculates rotation/screw axis corresponding to a transformation

Axis ({ M_33Rot | R_12transformation })

− returns rarray with x,y,z components of the normalized rotation/screw axis vector. Additional
information calculated and returned by the function:

r_out rotation angle (degrees);•
r_2out helix rise;•
R_out 3−rarray with a point on the axis.•

See also: How to find and display rotation/screw transformation axis

2.21.18. Bfactor

crystallographic temperature factors or custom atom parameters.

Bfactor ([as_ | rs_] [simple]) − returns rarray of b−factors for the specified selection of atoms
or residues. If selection of residue level is given, the average residue b−factors are returned.
B−factors can also be shown with the command show pdb.

Option simple returns a normalized b−factor. This option is possible for X−ray objects containing
b−factor information. The read pdb command calculates the average B−factor for all non−water atoms.
The normalized B−factor is calculated as (b−b_av)/b_av . This is preferable for coloring ribbons by
B−factor since these numbers only depend on the ratios to the average. We recommend to use the following
commands to color by b−factor:

 color ribbon a_/ Trim(Bfactor(a_/ simple),−0.5,3.)//−0.5//3. # or
 color a_// Trim(Bfactor(a_// simple),−0.5,3.)//−0.5//3. # for atoms

This scheme will give you a full sense of how bad a particular part of the structure is.

See also: set bfactor.

302 2.21.17. Axis

Examples:

 avB=Min(Bfactor(a_//ca)) # minimal B−factor of Ca−atoms
 show Bfactor(a_//!h*) # array of B−factors of heavy atoms
 color a_//* Bfactor(a_//*) # color previously displayed atoms
 # according to their B−factor
 color ribbon a_/A Bfactor(a_/A) # color the whole residue by mean B−fac.

2.21.19. Boltzmann

returns the real Boltzmann constant = 0.001987 kcal/deg.

Example:

 deltaE = Boltzmann*temperature # energy

2.21.20. Box

the 3D graphics box function. This box can be displayed with the display box command or by
left−double−clicking on a grob, and interactively moved and resized with the mouse. One can select
atoms inside a box by this operation: as_ Box()

Box () − returns the 6− rarray with {X min ,Ymin ,Zmin ,Xmax ,Ymax ,Zmax } parameters of the graphics box
as defined on the screen.

Box (center) − returns the 6− rarray with {Xcenter,Ycenter,Zcenter,Xsize,Ysize,Zsize} parameters of
the graphics box as defined on the screen.

Box (as_ [r_margin]) − returns the 6− rarray with {Xmin,Ymin,Zmin,Xmax,Ymax,Zmax} parameters
of the box surrounding the selected atoms. The boundaries are expanded by r_margin (default: 0.0).

Examples:

 build string "se ala his" # a peptide
 display box Box(a_/2 1.2) # surround the a_/2 by a box with 1.2A margin
 color a_//* Box()

Box ({ g_ | m_ } [r_margin])

− returns the 6− rarray with {Xmin,Ymin,Zmin,Xmax,Ymax,Zmax} parameters of the box surrounding the
selected grob or map. The boundaries are expanded by r_margin (default: 0.0).

2.21.21. Bracket

bracket the grid potential map by value or by space.

Bracket (m_grid [r_vmin r_vmax])

− returns the truncated map . The map will be truncated by value. The values beyond r_vmin and r_vmax
will be set to r_vmin and r_vmax respectively.

2.21.19. Boltzmann 303

Bracket (m_grid [R_6box])

− returns the modified map . All the values beyond the specified box will be set to zero. Example:

 make map potential "gh,gc,gb,ge,gs" a_1 Box()
 m_ge = Bracket(m_ge, Box(a_1/15:18,33:47)) # redefine m_ge

2.21.22. Cad

Contact Area Difference function to measure geometrical difference between two different conformations
of the same molecule. Cad, as opposed to Rmsd, is contact based and can measure the difference in a wide
range of model accuracies. Roughly speaking it measures the surface weighted fraction of native contacts.
Can be used to evaluate the differences between several NMR models, the accuracy of models by
homology and the accuracy of docking solutions.

Cad can measure the geometrical difference between two conformations in several different ways:

between two conformations of the same protein based on full atom residue−residue contact area
calculation, Cad(..)

•

between two conformations of the same protein based on Cbeta−Cbeta distance evaluation (Cad(..
distance) .ICM uses an empirically derived ContactStrength(Cb−distance) function.

•

between two homologous structures based preservation of the residue contacts through the
alignment (Cad (.. alignment)) . The contact strength in this case is also derived from the
interresidue distances.

•

304 2.21.22. Cad

Comparing two conformations of the same molecule via residue−residue contact
conservation.

Cad (rs_A1 [rs_A2] rs_B1 [rs_B2] [distance])

− returns the real contact area difference measure (described in Abagyan and Totrov, 1997) between two
conformations A and B of the same set of residue pairs from two different objects. The set of residue pairs
in each object (A or B) can be defined in two ways:

by a single selection rs_A1 : all pairs between selected residues (is equivalent to rs_A1 rs_A1)•
by two residue selections rs_A1 rs_A2: cross pairs between two sets of selected residues (e.g. the
contacts between two subunits)

•

The measure is a normalized sum of differences between residue−residue contact areas in two
conformations. The measure was calibrated on a set of pairs of conformations. The average distortion due
to a noncrystallographic symmetry is about 5%, the average CAD between a pair of models in an NMR
entry is 15%. Note that the paper uses an additional factor of 1.8 (i.e. CAD=1.8*Cad()) to bring the scale
down to 0:100%, because about 40% of the contacts are trivial contacts between the neighboring residues.
However, in evaluation of the docking solutions coefficient 1.8 should not be used. Loops are somewhat
intermediate, but still a coefficient of 1.8 is recommended for consistency.

The whole matrix of contact area differences is returned in M_out . This matrix can be nicely plotted with
the plot area M_out number .. command (see example). The full matrix can also be used to
calculate the residue profile of the differences.

The table of the pairwise contact area differences is written to the s_out string which can later be read
into a proper table via: read column group name="aa" input=s_out and sorted by the area
(see below).

See also Area() function which calculates absolute residue−residue contact areas.

Options:

distance option allows to compare approximations of the inter−residue contact areas by the Ca
and Cbeta positions. This allows to calculated deformations between two homologous proteins
which is not possible in the default mode in which two chemically identical molecules are
compared. The residue pairs in two homologues are equivalenced according to the alignments
linked to the molecules. Residues deleted in a homologue are considered to have zero contact.

•

Examples:

Ab initio structure prediction, Overall models by homology
 read pdb "cnf1" # one conformation of a protein
 read pdb "cnf2" # another conformation of the same protein
 show 1.8*Cad(a_1. a_2.) # CAD=0. − identical; =100. different
 show 1.8*Cad(a_1.1 a_2.1) # CAD between the 1st molecules (domains)
 show 1.8*Cad(a_1.1/2:10 a_2.1/2:10) # CAD in a window
 PLOT.rainbowStyle = 2
 plot area grid M_out comment=String(Sequence(a_1,2.1)) link display

Loop prediction: 0% − identical; ~100% totally different

2.21.22. Cad 305

CAD for loop 10:20 and its interactions with the environment
 show 1.8*Cad(a_1.1/10:20 a_1.1/* a_2.1/10:20 a_2.1/*)
CAD for loop 10:20 itself
 show 1.8*Cad(a_1.1/10:20 a_1.1/10:20 a_2.1/10:20 a_2.1/10:20)

Evaluation of docking solutions: 0% − identical; 100% totally different
 read pdb "expr" # one conformation of a complex
 read pdb "pred" # another conformation of the same complex
 show Cad(a_1.1 a_1.2 a_2.1 a_2.2) # CAD between two docking solutions
#
ANOTHER EXAMPLE: the most changed contacts
 read object "crn"
 copy a_ "crn2"
 randomize v_ 5.
 Cad(a_1. a_2.)
 show s_out
 read column group input= s_out name="cont"
 sort cont.1
 show cont
the table looks like this (the diffs can be both + and −):
#>T cont
#>−1−−−−−−−−−−−2−−−−−−−−−−−3−−−−−−−−−−
 −39. a_crn.m/38 a_crn.m/1
 −36.4 a_crn.m/46 a_crn.m/4
 −32.1 a_crn.m/46 a_crn.m/5
 −29.8 a_crn.m/30 a_crn.m/9
 −25.2 a_crn.m/37 a_crn.m/1
...
 42.5 a_crn.m/43 a_crn.m/5
 45.1 a_crn.m/44 a_crn.m/6
 45.2 a_crn.m/43 a_crn.m/6
 55.3 a_crn.m/46 a_crn.m/7
 56. a_crn.m/45 a_crn.m/7

Comparing two different, but structurally homologues proteins, via residue−residue
contact conservation.

Cad (rs_A1 [rs_A2] rs_B1 [rs_B2] alignment)

2.21.23. Ceil

rounding function.

Ceil (r_real [r_base])

− returns the smallest real multiple of r_base exceeding r_real.

Ceil (R_real [r_base])

− returns the rarray of the smallest multiples of r_base exceeding components of the input array R_real.
Default r_base= 1.0 .

See also: Floor().

306 2.21.22. Cad

2.21.24. Cell

crystallographic cell function.

Cell ({ os_ | m_map })

− returns the rarray with 6 cell parameters {a,b,c,alpha,beta,gamma} which were assigned to the object
or the map.

2.21.25. Charge

returns an rarray of partial electric charges of selected atoms, or total charges for residue, molecule or
objects, depending on the selection level.

Charges can also be shown with a regular show as_select command.

Charge ({ os_ | ms_ | rs_ | as_ } [formal | mmff])

− returns rarray of elementary or total charges depending on the selection level.

formal : return formal charges•
mmff : return formal charges calculated according to mmff atom types and rules. Note: do not
confuse this option with a function to return the mmff charges.

•

Examples:

 buildpep "ala his glu lys arg asp"
 show Charge(a_1) # charge per molecule
 show Charge(a_1/*) # charge per residue
 show Charge(a_1//*) # charge per atom

 avC=Charge(a_/15) # total electric charge of 15th residue
 avC=Sum(Charge(a_/15/*)) # another way to calculate it
 show Charge(a_//o*) # array of oxygen charges

to return mmff charges:
 set type mmff
 set charge mmff
 Charge(a_//*)

to return total charges per molecular object:
 read mol s_icmhome+"ex_mol.mol"
 set type mmff
 set charge mmff
 Charge(a_*.)

See also: set charge.

2.21.26. Cluster

Cluster (I_bitmasks i_totalNofNeighbors i_minNofCommonNeighbors)

2.21.24. Cell 307

Cluster (M_distances r_maxDistance)

function returns iarray of cluster numbers. This function identifies the i_totalNofNeighbors nearest
neighbors for each point and assembles points sharing the specified number of common neighbors in
clusters.

Distance between two bitstrings is calculated using the Tanimoto algorithm.

All singlets (a single item not in any cluster) are placed in a special cluster number 0 . Other items are
assigned to a cluster starting from 1.

Example with a distance matrix:

let us make a distance matrix D
we will cook it from 5 vectors {0. 0. 0.}
 m=Matrix(5,3) # initialize 5 vectors
 m[2,1:3]={1. 0. 0.} # v2
 m[3,1:3]={1. 1. 0.} # v3
 m[4,1:3]={1. 1. 1.} # v4
 m[5,1:3]={1. 0.1 0.1} # v5 close to v2

 D = Distance(m) # 5x5 distance matrix created

 Cluster(D , 0.2) # v2 and v5 are assigned to cluster 1
 Cluster(D , 0.1) # radius too small. All items are singlets
 Cluster(D , 2.) # radius too large. All items are in cluster 1

2.21.27. Color

returns RGB numbers.

Color (g_grob) − returns matrix of RGB numbers for each vertex of the g_grob (dimensions: Nof (
g_grob),3).

See also: color g_ M_

Example:

 build string "se his"
 display xstick
 make grob image name="g_"
 display g_ only smooth
 M_clr = Color(g_)
 for i=1,20 # shineStyle = "color" makes it disappear completely
 color g_ (1.−i/20.)*M_clr
 endfor
 color g_ M_clr

Color (background)

− returns rarray of three RGB components of the background color.

308 2.21.27. Color

2.21.28. Consensus

Consensus (ali_)

− returns the string consensus of alignment ali_. The consensus characters are these: #
hydrophobic; + RK; − DE; ^ ASGS; % FYW; ~ polar. In the selections by consensus a letter
code (h,o,n,s,p,a) is used.

Consensus (ali_ { i_seq | seq_ })

− returns the string consensus of alignment ali_ as projected to the sequence.

Sequence can be specified by its order number in the alignment or by name.

Example displaying conserved residues:

 read alignment "sx" # load alignment
 read pdb "x" # structure
 display ribbon
 # multiply rs_ by a mask like " A C N .."
 cnrv = a_/A Replace(Consensus(sx cd59),"[.^~#]"," ")
 display cnrv red
 display residue label cnrv

2.21.29. Corr

linear correlation function (Pearson's coefficient r)

Corr (R_array1, R_array2)

− returns the real value of the linear correlation coefficient. Probability of the null hypothesis of zero
correlation is stored in r_out .

Examples:

 r=Corr(a,b) # two vectors a and b
 if (Abs(r_out) < 0.3) print "it is actually as good as no correlation"

See also: LinearFit() function.

2.21.30. Cos

cosine function. Arguments are assumed to be in degrees.

Cos ({ r_Angle | i_Angle })

− returns the real value of cosine of its real or integer argument.

Cos (rarray)

2.21.28. Consensus 309

− returns rarray of cosines of each component of the array.

Examples:

 show Cos(60.) # returns 0.5
 show Cos(60) # the same

 rho={3.2 1.4 2.3} # structure factors
 phi={60. 30. 180.} # phases
 show rho phi rho*Cos(phi) rho*Sin(phi) # show in columns rho, phi,
 # Re, Im

2.21.31. Cosh

hyperbolic cosine function.

Cosh ({ r_Angle | i_Angle }) − returns the real value of hyperbolic cosine of its real or integer
argument. Cos(x)=0.5(eiz + e−iz)

Cosh (rarray) − returns rarray of hyperbolic cosines of each component of the array.

Examples:

 show Cosh(1.) # 1.543081
 show Cosh(1) # the same

 show Cosh({−1., 0., 1.}) # returns {1.543081, 1., 1.543081}

2.21.32. Count

function creates an iarray.

Count ([i_Min,] i_Max) − returns iarray of numbers growing from i_Min to i_Max. The default
value of i_Min is 1.

Examples:

 show Count(−2,1) # returns {−2,−1,0,1}
 show Count(4) # returns {1,2,3,4}

See also the Iarray().

Count (array)

− returns iarray of numbers growing from 1 to the number of elements in the array.

2.21.33. Deletion

Deletion (rs_Fragment, ali_Alignment [, seq_fromAli] [, i_addFlanks] [{"all"|"nter"|"cter"|"loop"}])

310 2.21.31. Cosh

− returns the residue selection which flanks deletion points from the viewpoint of other sequences in the
ali_Alignment. If argument seq_fromAli is given (it must be the name of a sequence from the alignment),
all the other sequences in the alignment will be ignored and only the pairwise subalignment of rs_Fragment
and seq_fromAli will be considered. The alignment must be linked to the object. With this function (see
also Insertion function) one can easily and quickly visualize and/or extract all indels in the
three−dimensional structure. The default i_addFlanks parameter is 1. String options:

"all" (default: no string option) select deletions of all types•
"nter" select only N−terminal fragments•
"cter" select only C−terminal fragments•
"loop" select only the internal zones of deleted loops•

See example coming with the Insertion() function description.

2.21.34. Det

determinant function.

Det (matrix)

− returns a real determinant of specified square matrix.

Examples:

 a=Rot({0. 0. 1.}, 30.) # Z−rotation matrix by 30 degrees
 print Det(a) # naturally, it is equal to 1.

2.21.35. Disgeo

Solves the so called "DIStance GEOmetry" problem (finding coordinates from a distance set). This
function can be used to visualize in two or three dimensions a distribution of homologous sequences:

 group sequence se1 se2 se2 se4 mySeqs
 align mySeqs
 distMatr=Distances(mySeqs)

or any objects between which one can somehow define pairwise distances. Since principal coordinates are
sorted according to their contribution to the distances and we can hardly visualize distributions in more
than three dimensions, the first two or three coordinates give the best representation of how the points are
spread in n−1 dimensions. Another application is restoring atomic coordinates from pairwise distances
taken from NMR experiments.

Disgeo (matrix)

− returns matrix [1:n,1:n] where the each row consists of n−1 coordinates of point [i] sorted according
to the eigenvalue (hence, their importance). The first two columns, therefore, contain the two most
significant coordinates (say X and Y) for each of n points. The last number in each row is the eigenvalue
[i]. If distances are Euclidean, all the eigenvalues are positive or equal to zero. The eigenvalue represents
the "principal coordinate" or "dimension" and the actual value is a fraction of data variation due to the this
particular dimension. Negative eigenvalues represent "non−Euclidean error" in the initial distances.

2.21.34. Det 311

Example:

 read sequences "zincFinger" # read sequences from the file,
 list sequences # see them, then ...
 group sequence alZnFing # group them, then ...
 align alZnFing # align them, then ...
 a=Distance(alZnFing) # a matrix of pairwise distances
 n=Nof(a) # number of points
 b=Disgeo(a) # calculate principal components
 corMat=b[1:n,1:n−1] # coordinate matrix [n,n−1] of n points
 eigenV=b[1:n,n] # vector with n sorted eigenvalues
 xplot= corMat[1:n,1]
 yplot= corMat[1:n,2]
 plot xplot yplot CIRCLE display # call plot a 2D distribution

2.21.36. Distance

generic distance function. Calculates distances between two ICM−shell objects or molecular objects, or
extracts distances from complex ICM−shell objects.

Distance iarray

Distance (iarray1, iarray2)

− returns the real sqrt of sum of (I1i −I2 i)
2 .

Distance rarray

Distance (R_X, R_Y) − returns the real Cartesian distance between two vectors of the same length. D
= Sum((Xi − Yi)

2)

Distance as_

Distance (as_1, as_2) − returns the real distance in Angstroms between centers of mass of the two
specified selections. The interactive usage of this function:

Display your molecule•
type Dist , press TAB•
Ctrl−RightMB click on the atom you want (or double click for a residue) and press RETURN•

Distance as_ rarray

Distance (as_1 , as_2, rarray) − returns the rarray of distances in Angstroms between the two
specified selections containing the same number of atoms (1−1, 2−2, 3−3, ...).

Distance matrix

Distance (M_coor) − returns the square matrix of distances between the rows of the input matrix
M_coor. Each row contains m coordinates (3 in 3D space). For example: Distance(Xyz(a_//ca))
returns a square matrix of Ca−Ca distances.

312 2.21.36. Distance

Distance matrix

Distance (M_coor1 M_coor2) − returns the matrix of distances between the rows of the two input
matrices. Each matrix row may contain any number of coordinates coordinates (3 in 3D space).

For example: Distance(Xyz(a_/1:5/ca) Xyz(a_/10:12/ca) returns a 5 by 3 matrix of distances between
Ca−s of the two fragments.

Distance tether

Distance (a_//T)

− returns the real array of distances of the tethered atoms from their target points. Tethers are assumed
to be already set, see command set tether. Also note, that the expression Distance(as_out)
will give the same results if as_out selection was not changed by another operation; see also special
selections.

Example (totally artificial):

6 commands to create 2 object connected with tethers
 build string "se ala"
 cp a_ "b"
 set tether a_//!h* a_b.
 display a_*.
 display tether
 connect a_ # move it

output the distances
 Distance(a_//T)
 #>R
 1.677
 1.493
 1.386
 1.435
 1.645
 1.570
 2.165
 1.399

Distance Dayhoff

Distance (sequence1, sequence2) − returns the real measure of similarity between two aligned
sequences. Zero distance means 100% identity. The distance is calculated by the following two steps:

d1 = 1.0 − (nResidueIdentities/Min(Length(Seq1), Length(Seq2)) (d1 belongs to [0.,1.] range)1.
Distance(Seq1,Seq2) = DayhoffTransformation(d1)2.

Transformation practically does not change small distances d1, whereas large distances, especially above
0.9 (10% sequence identity) are increased to take occasional reversals into account. Distances d1 within
[0.9,1.0] are transformed to [5.17, 10.] range.

2.21.36. Distance 313

Distance alignment

Distance (alignment) − returns matrix of pairwise sequence−sequence distances in the alignment.

Example:

 read alignment msf "azurins" # read azurins.msf
 NormCoord = Disgeo(Distance(azurins)) # 2D sequence diversity in

Distance two alignments

Distance (ali_1 ali_2 [exact]) − returns the real distance between two alignments formed by the
same sequences.

The distance is defined as a number of non−gap columns identical between two alignments.

Two different normalizations are available:

The default normalization is to the shorter alignment. (Distance (ali_1 ali_2)). In this case the
number of equivalent pairs is calculated and is divided by the total number of aligned pairs in the shorter
alignment. This method detects alignment shifts but does not penalize un−alignment of previously aligned
residue pairs. D = (La_min − N_commonPairs)/La_min In the following alignment the residue pairs
which are aligned in both alignments are the same, therefore the distance is 0.

 show a1 # La1 = 3
 ABC−−−XYZ
 ABCDEF−−−
 show a2 # La2 = 6
 ABCXYZ
 ABCDEF
 Distance(a1,a2) # a1 is a subalignment of a2, distance is 0.
 0.

exact option: normalization to the longer alignment. By longer we mean the larger number of aligned
pairs regardless of alignment length (the latter includes gaps and ends). D = (La_max −
N_commonPairs)/La_max Now in the above example, La_max = 6 , while N_commonPairs = 3, the
distance is 0.5 (e.g. the alignments are 50% different).

 Distance(a1,a2,exact) # returns 0.5 for the above a1 and a2

Example showing the influence of gap parameters:

 read sequence msf "azurins.msf"
 gapOpen =2.2
 a=Align(Azu2_Metj Azup_Alcfa) # the first alignment
 gapOpen =1.9 # smaller gap penalty and ..
 b=Align(Azu2_Metj Azup_Alcfa) # the alignment changes
 show 100*Distance(a b) # 20% difference
 show 100*Distance(a b exact) # 21.7% difference
 show a b

314 2.21.36. Distance

2.21.37. Eigen

eigenvalues/eigenvectors function.

Eigen (M_)

− returns the square matrix of eigenvector columns of the input symmetric square matrix M_ .
Eigenvalues sorted by their values are stored in the R_outrarray.

Example:

 A = Matrix(3, 3, 0.) # create a zero square matrix...
 A[1:3,1] = {1.,−2.,−1.} # and set its elements
 A[2,2] = 4.
 for i = 1, 3−1 # the matrix must be symmetric
 for j = i+1, 3
 A[i,j] = A[j,i]
 endfor
 endfor
 X = Eigen(A) # calculate eigenvectors...
 V = R_out # and save eigenvalues in rarray V
 printf "eigenvalue 1 eigenvalue 2 eigenvalue 3\n"
 printf "%12.3f %12.3f %12.3f\n", V[1], V[2], V[3]
 printf "eigenvector1 eigenvector2 eigenvector3\n"
 for i = 1, 3
 printf "%12.3f %12.3f %12.3f\n", X[i,1], X[i,2], X[i,3]
 endfor

2.21.38. Energy

function.

Energy (string)

− returns the real sum of pre−calculated energy and penalty (i.e. geometrical restraints) terms
specified by the string.

Important: the terms must be pre−calculated by invoking one of the following commands where energy
is calculated at least once: show energy, minimize, ssearch command and montecarlo
command.

Note:

Allowed terms in the string are "vw,14,hb,el,to,af,bb,bs,cn,tz,rs,xr,sf";•
"func" stands for the total of all the terms, both energy and penalty;•
"ener" is only the energy part (i.e. "vw,14,hb,3l,to,af,bb,bs,sf");•
"pnlt" is only the penalty part (i.e. "cn,tz,rs,xr").•
load conf and load frame commands fill out all the energy/penalty terms, which are stored
in both stacks and movies (of course the values also depend on a set of free variables). You
can get the energy/penalty terms of the loaded conformation without explicitly recalculating them.

•

Examples:

2.21.37. Eigen 315

 build
 show energy
 print Energy("vw,14,hb,el,to") # ECEPP energy

 read stack "f1"
 load conf 0
 print Energy("func") # extract the best energy without recalculating it

Energy (conf i_confNumber)

− returns the table of all the energy components for the a given stack conformations.

The table has two arrays:

sarray of the energy term names (.hd) and•
rarray of energy values for each energy term (.ey) and•

Energy ({ stack | conf })

− returns the rarray of total energies of stack conformations. Useful for comparison of spectra from
different simulations.

Examples:

 set terms only "vw,14,hb,el,to" # set energy terms
 show energy v_//xi* # calculate energy with only
 # side chain torsions unfixed
 # energy depends on what variables are fixed since
 # interactions inside rigid bodies are not calculated,
 # and rigid body structure depends on variables

 a = Energy("vw,14") # a is equal to the sum of two terms

 electroMethod="MIMEL" # MIMEL electrostatics
 set terms only "el,sf" # set energy terms
 show energy
 print Energy("ener") # total energy
 print Energy("sf") # only the surface part of the solvation energy
 print Energy("el") # electrostatic energy
 print r_out # electrostatic part of the solvation energy

2.21.39. Error

function indicates that the previous ICM−shell command has completed with error.

Error

− returns logical yes if there was an error in a previous command (not necessarily in the last one).
After this call the internal error flag is reinstalled to no.

Error (string)

316 2.21.39. Error

− returns string with the last error message. It also returns integer code of the last error in your script in
i_out. In contrast to the logical Error() function, here the internal error code is not reinstalled to 0, so
that you can use it in expressions like if(Error) print Error(string) .

Examples:

 read pdb "1mng" # this file contains strange 28−th residue
 if (Error) print "These alternative positions will kill me"

 read pdb "1abcd" # file does not exist
 errorMessage = Error(string)
 ier = i_out
 if ier == 3102 print "What kind of name is that?"

See also: errorAction , s_skipMessages , l_warn, Warning

Error (r_x [reverse])

− returns real complementary error function of real x : erfc(x)=1.−erf(x)) , defined as

(2/sqrt(pi)) integral{x to infinity} of exp(−t2) dt

or its inverse function if the option reverse is specified. It gives the probability of a normally distributed
(with mean 0. and standard deviation 1./Sqrt(2.)) value to be larger than r_x or smaller than −r_x.

Examples:

 show 1.−Error(Sqrt(0.5)) # P of being inside +−sigma (about 68%)
 show Error(2.*Sqrt(0.5)) # P of being outside +− 2 sigma

Error (R_x)

− returns rarray of erfc(x)=1.−erf(x)) functions for each element of the real array (see above).

Examples:

 x=Rarray(1000 0. 5.)
 plot display x Error(x) {0. 5. 1. 1. 0. 1. 0.1 0.2 }
 plot display x Log(Error(x),10.) {0. 5. 1. 1.}
 #NB: can be approximated by a parabola
 #to deduce the appr. inverse function.
 #Used for the Seq.ID probabilities.

2.21.40. Exist

function indicates if an ICM−entity exists or not.

Exist (s_fileName) − returns logical yes if the specified file or directory exists, no otherwise.

Exist (key , s_keyName) − returns logical yes if the specified keystoke has been previously
defined. See also: set key command.

2.21.40. Exist 317

Exist (object) − returns logical yes if there is at least one molecular object in the shell, no
otherwise.

Exist (view) − returns logical yes if the GL − graphics window is activated, no otherwise.

Exist (gui) − returns logical yes if the GRAPHICS USER INTERFACE menus is activated, no
otherwise.

Examples:

 if (!Exist("/data/pdb/") then
 unix mkdir /data/pdb
 endif

 if(!Exist(key,"Ctrl−B")) set key "Ctrl−B" "l_easyRotate=!l_easyRotate"

 if !Exist(gui) gui simple

2.21.41. Existenv

function indicating if an UNIX−shell environmental variable exists.

Existenv (s_environmentName)

− returns logical yes if the specified named environment variable exists.

Example:

 if(Existenv("ICMPDB")) s_pdb=Getenv("ICMPDB")

See also: Getenv(), Putenv() .

2.21.42. Extension

function.

Extension (string [dot])

− returns string which would be the extension if the string is a file name. Option dot indicates that the
dot is excluded from the extension.

Extension (sarray [dot])

− returns sarray of extensions. Option dot indicates that the dot is excluded from the extensions.

Examples:

 print Extension("aaa.bbb.dd.eee") # returns ".eee"
 show Extension({"aa.bb","122.22"} dot) # returns {"bb","22"}
 read sarray "filelist"
 if (Extension(filelist[4])==".pdb") read pdb filelist[4]

318 2.21.41. Existenv

2.21.43. Exp

exponential mathematical function (ex).

Exp (real)

− returns the real exponent.

Exp (rarray)

− returns rarray of exponents of rarray components.

Exp (matrix)

− returns matrix of exponents of matrix elements.

Examples:

 print Exp(deltaE/(Boltzmann*temperature)) # probability
 print Exp({1. 2.}) # returns { E, E squared }

2.21.44. Field

function.

Field (s_ [s_precedingString] i_fieldNumber [s_fieldDelimiter])

− returns the specified field. Parameter s_fieldDelimiter defines the separating characters (space and
tabs by default). If the field number is less than zero or more than the actual number of fields in this string,
the function returns an empty string.

The s_fieldDelimiter string

Single character delimiter can be specified directly, e.g.

 Field("a b c",3," ") # space
 Field("a:b:c",3,":") # colon

Alternative characters can be specified sequentially, e.g.

 Field("a%b:c",3,"%:") # percent OR colon

Multiple occurence of a delimiting character can be specified by repeating the same character two times,
e.g.

 Field("a b c",3," ") # two==multiple spaces in field delim
 Field("a%b::::c",3,"%::") # a single percent or multiple colons

You can combine a single−character delimiters and multiple delimiters in one s_fieldDelimiter string.

2.21.43. Exp 319

More examples:

 s=Field("1 ener glu 1.5.",3) # returns "glu"
 show Field("aaa:bbb",2,":") # returns "bbb"
 show Field("aaa 12\nbbb 13","bbb",1) # returns "13"
 show Field("aaa 12\nbbb 13 14","bbb",2," \n\n") # two spaces and two \n .
another example
 read object s_icmhome+"all"
 # energies from the object comments, the 1st field after 'vacuum'
 show Rarray(Field(Namex(a_*.),"vacuum",1))

Field (S_ , [s_precedingString] i_fieldNumber [s_fieldDelimiter])

− returns an string array of fields selected from S_ string array . s_fieldDelimiter is the
delimiter. If the field number is less than zero or more than the actual number of fields in this string, an
element of the array will be an empty string.

Examples:

 show Field({"a:b","d:e"},2,":") # returns {"b","e"}
 s=Field({"aa 2 3.3", "bb 4 1.3", "cc 31a 1.1 3"},2)
 # returns {"2","4","31a"}
 s=Field({"aa 2 3.3", "bb 4 1.3", "cc 31a 1.1 3"},4)
 # returns {"","","3"}

See also: Split().

2.21.45. User field from a selection

Field (as_)

Field ({ rs_ | ms_ | os_ } [i_fieldNumber])

returns rarray of user−defined field values of a selection.

Atoms. Only one user defined field can be set to atoms, e.g.

set field a_//* Random(0.,1.,Nof(a_//*))
show Field(a_//*)

Residues, molecules and objects.

Three user fields can be defined for each residue and up to 16 for molecules and objects. To extract them
specify i_fieldNumber . The level of the selection determines if the values are extracted from residues,
molecules or objects. Use the selection level functions ResMol and Obj to reset the level if needed. For
example: Res(Sphere(gg, a_1. 3.)) selects residues of the 1st object which are closer than 3. A
to grob gg . Example:

set field 2 a_/A Random(0.,1.,Nof(a_/A)) # set the 2nd field to random values
color a_/* Field(a_/A 2) # color by it

See also: set field , Smooth to 2D or 3D averate user fields , Select to select by user defined field.

320 2.21.45. User field from a selection

2.21.46. File

function returning file names or attributes of named files.

File (os_) returns the name of the source file for this object. If the object was created in ICM or did not
come from an object or PDB file, it returns an empty string.

Example:

read pdb "/home/nerd/secret/hiv.ob"
File(a_)
 /home/nerd/secret/hiv.ob

File (s_file_or_dir_Name)

− returns string with the file or directory attributes separated by space. If file or directory do not exist
the function returns "− − − − 0" Otherwise, it contains the following 4 characters separated by space and
the file size:

type character:
'f' − regular file♦
'd' − directory♦
'l' − symbolic link♦
'c' − character special file♦
'p' − pipe♦

1.

'r' if you can read the file (or from the directory)2.
'w' if you can write to this file (or directory)3.
'x' if you can execute this file (or cd to this directory)4.
file size in bytes5.

To get a string with any field use Field(File(s_name), i_fieldNumber) . To get the size, use
Integer(Field(File(s_name),4)).

Example:

 if File("/opt/icm/icm.rst")=="− − − − 0" print "No such file"

 if Field(File("PDB.tab"),2)!= "w" print "can not write"

 if (Indexx(File("/home/bob/icm/") , "d ? w x *")) then
 print "It is indeed a directory to which I can write"
 endif
 # Here the Indexx function matched the pattern.

 if (Integer(Field(File(s_name),4)) < 10) return error "File is too small"

2.21.47. Find

function searching all fields (arrays) of a table.

Find (table s_searchWords)

2.21.46. File 321

− returns table containing the entries matching all the words given in the s_searchWords string.

If s_searchWords is "word1 word2" and table contains arrays a and b this "all text search" is equivalent to
the expression :

 (t.a=="word1" | t.b == "word1") (t.a=="word2" | t.b == "word2").

Examples:

 read database "ref.db" # database of references
 group table ref $s_out # group created arrays into a table
 show Find(ref,"energy profile") ref.authors == "frishman"

2.21.48. Floor

rounding function.

Floor (r_real [r_base])

− returns the largest real multiple of r_base not exceeding r_real.

Floor (R_real [r_base])

− returns the rarray of the largest multiples of r_base not exceeding components of the input array
R_real.

Default r_base=1.0 .

See also: Ceil().

2.21.49. Getenv

function returning value for an environment name.

Getenv (s_environmentName)

− returns a string of the value of the named environment variable.

Example:

 user = Getenv("USER") # extract user's name from the environment
 if (user=="vogt") print "Hi, Gerhard"

See also: Existenv(), Putenv() .

2.21.50. Gradient

function.

Gradient ()

322 2.21.48. Floor

− returns the real value of the root−mean−square gradient over free internal variables.

Gradient (vs_var)

− returns the rarray of pre−calculated energy derivatives with respect to specified variables.

Gradient (as_ | rs_)

− returns the rarray of pre−calculated energy derivatives with respect to atom positions (G[i] =
Sqrt(Gxi*Gxi+Gyi*Gyi+Gzi*Gzi))

The function returns atom−gradients for atom selection (as_) or average gradient per selected residue, if
residue selection is specified (rs_).

You can display the actual vectors/"forces" (−Gxi, −Gyi, −Gzi) by the display gradient command.

Important: to use the function, the gradient must be pre−calculated by one of the following commands:
show energy, show gradient, minimize .

Examples:

 show energy # to calculate the gradient and its components
 if (Gradient() > 10.) minimize
 show Max(Gradient(a_//c*) # show maximum "force" applied to the carbon atoms

2.21.51. Grob

function to generate graphics objects.

Grob ("arrow", { R_3 | R_6 })

− returns grob containing 3D wire arrow between either {0.,0.,0.} and R_3, or between R_6[1:3]
and R_6[4:6].

Grob ("ARROW", { R_3 | R_6 })

− returns grob containing 3D solid arrow. You may specify the number of faces by adding integer to the
string: e.g. "ARROW15" (rugged arrow) or "ARROW200" (smooth arrow).

See also: GROB.relArrowSize.

Examples:

 GROB.relArrowSize = 0.1
 g_arr = Grob("arrow",Box()) # return arrow between corners of displayed box
 display g_arr red # display the arrow

 g_arr1 = Grob("ARROW100",{1. 1. 1.})
 display g_arr1

Grob ("cell", { R_3 | R_6 })

2.21.51. Grob 323

− returns grob containing a wire parallelepiped for a given cell.

If only R_3 is given, angles {90.,90.,90.} are implied.

Grob ("CELL", { R_3 | R_6 })

− returns grob containing a solid parallelepiped for a given cell.

If only R_3 is given, angles {90.,90.,90.} are implied.

Example:

 read csd "qfuran"
 gcell = Grob("CELL",Cell()) # solid cell
 display a_//* gcell transparent # fancy stuff

Grob ("label", R_3, s_string)

− returns grob containing a point at R_3 and a string label.

Grob ("line", R_3N)

− returns grob containing a polyline R_3N[1:3], R_3N[4:6], ...

Example:

 display a__crn.//ca,c,n
 g = Grob("line",{0.,0.,0.,5.,5.,5.}) # a simple line (just as an example)
 display g yellow
 gCa = Grob("line",Rarray(Xyz(a_//ca))) # connect Cas with lines
 display gCa pink # display the grobs

Grob ("SPHERE", r_radius i_tesselationNum)

− returns grob containing a solid sphere. The i_tesselationNum parameter may be 1,2,3.. (do not go too
high).

Example:

 display a__crn.//ca,c,n
 # make grob and translate to a_/5/ca
 # Sum converts Matrix 1x3 into a vector
 g=Grob("SPHERE",5.,2)+Sum(Xyz(a_/5/ca))
 # mark it with dblLeftClick and
 # play with Alt−X, Alt−Q and Alt−W
 display g red

Grob (grob R_6rgbLimits)

returns a grob containing selection of vertices of the source grob. The vertices with colors between the
RGB values provided in the 6−dim. array of limits will be selected. The array of limits consists of real

324 2.21.51. Grob

numbers between 0. and 1. : { from_R, to_R, from_G, to_G, from_B, to_B }

If you want a limit to be outside possible rgb values, use negative numbers of numbers larger than 1., e.g. a
selection for the red color could be: {0.9,1.,−0.1,0.1,−0.1,0.1}

The grob created by this operation has a limited use and will contain only vertices (no edges or triangles).
This form of the Grob function can be used to find out which atoms or residues are located to spots of
certain color using the Sphere(grob as_) function.

Example:

buildpep "ADERD" # a peptide
dsRebel a_ no no
g=Grob(g_skin {0.9,1.,−0.1,0.1,−0.1,0.1}) # red color
display g_skin transparent
display g
show Res(Sphere(g, a_//* 1.5))

2.21.52. Histogram

function to create a histogram of an array. Function returns matrix [n,2], where n is number of cells, the
first row contains a number of elements in each cell and the second row contains mid−points of each cell.

Histogram (I_inputArray)

− returns matrix with a histogram of the input array.

Histogram (R_inputArray, i_numberOfCells)

− returns histogram matrix [i_numberOfCells,2] in which the whole range of the R_inputArray array is
equally divided in i_numberOfCells windows.

Histogram (R_inputArray, r_cellSize)

− returns matrix [n ,2], dividing the whole range of R_inputArray equally into r_cellSize windows.

Histogram (R_inputArray, r_from, r_to, r_cellSize)

− returns matrix [n,2], dividing into equal cells of r_cellSize between minimum value, maximum value.

Histogram (R_inputArray, R_cellRuler)

− returns matrix [n,2], dividing the range of the input array according to the R_cellRuler array, which
must be monotonous.

Examples:

 plot display Histogram({ −2, −2, 3, 10, 3, 4, −2, 7, 5, 7, 5}) BAR

 a=Random(0. 100. 10000)
 u=Histogram(a 50)

2.21.52. Histogram 325

 s_legend={"Histogram at linear sampling curve" "Random value" "N"}
 plot display regression BAR u s_legend

 a=Random(0. 100. 10000)
 b=.04*(Count(1 50)*Count(1 50))
 u=Histogram(a b)
 s_legend={"Histogram at square sampling curve" "Random value" "N"}
 plot display BAR u s_legend
 b=Sqrt(100.*Count(1 100))
 s_legend={"Histogram at square root sampling curve" "Random value" "N"}
 plot display green BAR Histogram(a b) s_legend

2.21.53. Iarray

function to create/declare an empty iarray or transform to an iarray.

Iarray (i_NumberOfElements [i_value])

− returns iarray of i_NumberOfElements elements set to i_value or zero. You can also create an
zero−size integer array: Iarray(0) .

Iarray (rarray)

− returns iarray of integers nearest to real array elements in the direction of the prevailing rounding
mode magnitude of the real argument.

Iarray (sarray) − converts sarray into an iarray.

Examples:

 a=Iarray(5) # returns {0 0 0 0 0}
 a=Iarray(5,3) # returns {3 3 3 3 3}
 b=Iarray({2.1, −4.3, 3.6}) # returns {2, −4, 4}
 c=Iarray({"2", "−4.3", "3.6"}) # returns {2, −5, 3}

Iarray (iarray reverse)

− converts input real array into an iarray with the reversed order of elements. Example:

Iarray({1 2 3} reverse) # returns {3 2 1}

See also: Sarray(S_ reverse), Rarray(S_ reverse), String(0,1,s)

2.21.54. Iarray(stack): numbers of visits for all stack conformations

Iarray (stack) − returns the iarray of the numbers of visits for each stack conformation. This is
the same number as shown by the nvis> line of the show stack command. Example:

 show stack
 iconf> 1 2 3 4 5
 ener> −15.3 −15.1 −14.9 −14.8 −13.3
 rmsd> 84.5 75.3 6.4 37.2 120.8
 naft> 3 0 4 0 2

326 2.21.53. Iarray

 nvis> 10 9 8 1 4
Integer(stack) # returns { 10 9 8 1 4 }

2.21.55. IcmSequence

creates a "sequence" for an ICM molecular object. Output is in icm.se −file format.

IcmSequence ({ sequence | string | rs_ }, [s_N−Term, s_C−Term])

− returns multiline string with full (3−char.) residue names which may be a content of an icm.se file.
The source of the sequence may be one of the following:

a sequence, e.g. IcmSequence(1crn_m)•
a string, e.g. "ASDGFRE", or "SfGDA;WER" .•
or residue selection, rs_ , (e.g. a_2,3/*).•

Rules for one−letter coding:

standard L amino−acids: upper case one−letter code (B,J,X,Z are illegal), e.g. ACD•
D−amino acids: lower case for a corresponding amino acid (e.g. AaA for ala Dala ala)•
new molecule: use semicolon or dot as a chain separator (;) (e.g. AAA;WWW)•

The N−terminal and C−terminal groups will be added if their names are explicitly specified. To skip a
terminal group on one end only, provide the empty string (e.g. "","cooh").

The resulting strin can be saved to a ICM mol−sequence file and further edited for unusual amino−acids
(see icm.res).

Examples:

 write IcmSequence(seq1) "seq1.se" # create a sequence
 # file for build command

 show IcmSequence("FAaSVMRES","nh3+","coo−") # one peptide with Dala

 show IcmSequence("FAAS.VMRES","nter","cooh") # two peptides
 show IcmSequence("AA;MRES","nter","cooh") # two peptides

 read pdb "2ins"
 write IcmSequence(a_b,c/* ,"nter","cooh") "b.se" # .se file for b
 # and c chains

There is a convenient macro called buildpep to create a single or multiple chain peptides. Example:

 buildpep "SDSRAARESW;KPLKPHYATV" # two 10−res. peptides

See also icm.se for a detailed description of the ICM−sequence file format.

2.21.56. Index

function.

2.21.55. IcmSequence 327

Index ({ s_source | seq_source }, { s_pattern | seq_pattern }, [{ last | i_skip])

− returns integer value indicating the position of the pattern substring in the source string, or 0
otherwise. Option last returns the index of the last occurence of the substring.

The i_skip argument starts search from the specified position in the source string, e.g. Index("words
words","word",3) returns 7 . If i_skip is negative, it specifies the number of characters from the end of the
string in which the search is performed.

Examples:

 show Index("asdf","sd") # returns 2
 show Index("asdf" "wer") # return 0
 a=Sequence("AGCTTAGACCGCGGAATAAGCCTA")
 show Index(a "AATAAA") # polyadenylation signal
 show Index(a "CT" last) # returns 22
 show Index(a "CT" 10) # starts from position 10. returns 22
 show Index(a "CT", −10) # search only the last 10 positions

Another example in which we output all positions of all −"xxx.." stretches in a sequence " xxxx xxxxx
xxxx ... xxxx " (must end with space)

EX = "xxxx xxxxxx xxxxxxxxxxxxxx xxxxxx xxx "
sp=0
while(yes)
 x=Index(EX "x" sp)
 if(x==0) break
 sp=Index(EX " " x)
 print x sp−1
endwhile

Index (sarray, string)

− returns integer value indicating the sarray element number exactly matching the string, or 0
otherwise.

Examples:

 show Index({"Red Dog","Amstal","Jever"}, "Jever") # returns 3
 show Index({"Red Dog","Amstal","Jever"}, "Bitburger") # returns 0

Index (object)

− returns integer value of sequential number of the current object in the molecular object list, or 0 if no
objects loaded. (Note that here object is used as a keyword.)

Examples:

 l_commands = no
 read pdb "1crn"
 read object "crn"
 printf "The object a_crn. is the %d−nd, while ...\n", Index(object)
 set object a_1.

328 2.21.55. IcmSequence

 printf "the object a_1crn. is the %d−st.\n", Index(object)

2.21.57. Indexx

function to find location of substring pattern.

Indexx ({ string | sequence }, s_Pattern)

− returns an integer value indicating the position of the s_Pattern (see pattern matching) in the
string, or 0 otherwise. Allowed meta−characters are the following:

* any string including an empty string;•

? any single character;•

[string] any of the enclosed characters;•

[! string] any but the enclosed characters.•
^ beginning of a string•
$ string end•

Examples:

 show Indexx("asdf","s[ed.]") # returns 2
 show Indexx("asdfff","ff$") # returns 5 (not 4)
 show Indexx("asdf" "w?r") # return 0

2.21.58. Insertion

function selecting inserted residues.

Insertion (rs_Fragment, ali_Alignment [, seq_fromAli][, i_addFlanks] [{"all"|"nter"|"cter"|"loop"}])

− returns the residue selection which form an insertion from the viewpoint of other sequences in the
ali_Alignment. If argument seq_fromAli is given (it must be the name of a sequence from the alignment),
all the other sequences in the alignment will be ignored and only the pairwise subalignment of rs_Fragment
and seq_fromAli will be considered. The alignment must be linked to the object. With this function (see
also Deletion() function) one can easily and quickly visualize all indels in the three−dimensional
structure. The default i_addFlanks parameter is 0.

String options:

"all" (or no string option) select insertions of all types•
"nter" select only N−terminal fragments•
"cter" select only C−terminal fragments•
"loop" select only the internal loops•

Examples:

 read pdb "1phc.m/" # read the first molecule form this pdb−file

2.21.57. Indexx 329

 read pdb "2hpd.a/" # do the same for the second molecule
 make sequences a_*. # you may also read the sequence and
 # the alignment from a file
 aaa=Align() # on−line seq. alignment.
 # You may read the edited alignment
 # worm representation
 assign sstructure a_*. "_"
 display ribbon
 link a_*. aaa # establish connection between sequences and 3D obj.
 superimpose a_1. a_2. aaa
 display ribbon a_*.
 color a_1. ribbon green
 color ribbon Insertion(a_1.1 aaa) magenta
 color ribbon Insertion(a_2.1 aaa) red
 show aaa

2.21.59. Integer

function converting to integer type.

Integer (r_toBeRounded)

− returns the integer nearest to real r_toBeRounded in the direction of the prevailing rounding mode
magnitude of the real argument.

Integer (rarray) − see Iarray (rarray).

Integer (string) − converts string into integer, ignores irrelevant tail. Reports error if conversion is
impossible.

Examples:

 show Integer(2.2), Integer(−3.1) # 2 and −3
 jj=Integer("256aaa") # jj will be equal to 256

See also: Iarray().

Integer (iarray) transforms integer array containing only one element into an integer . You can also
convert a one element array into an integer with the Sum() or the Mean() functions. If there are more then
one elements, the first element is taken.

2.21.60. Integral

function.

Integral (rarray r_xIncrement) − calculates the integral rarray of the function represented by
rarray on the periodically incremented abscissa x with the step of r_xIncrement.

Integral (rarrayY rarrayX) − calculates the integral rarray of the function represented by rarrayY
on the set of abscissa values rarrayX.

Examples:

330 2.21.59. Integer

Let us integrate sqrt(x)

 x=Rarray(1000 0. 10.)
 plot x Integral(Sqrt(x) 10./1000.) grid {0.,10.,1.,5.,0.,25.,1.,5.} display

Let us integrate x*sin(x). Note that Sin expects the argument in degrees

 x=Rarray(1000 0. 4.*Pi)
1000 points in the [0.,4*Pi] interval
 plot x Integral(x*Sin(x*180./Pi) x[2]−x[1]) \
 {0., 15., 1., 5., −15., 10., 1., 5. } grid display
x[2]−x[1] is just the increment

Let us integrate 3*x2−1, determined on the rarray of unevenly spaced x. The expected integral function is
x3−x

 x=Rarray(100 ,−.9999, .9999)
 x=x*x*x
 plot display x Integral((3*x*x−1.) x) cross

2.21.61. Interrupt

function.

Interrupt

− returns logical yes if ICM−interrupt (Ctrl−Backslash, ^\) has been received by the program. Useful
in scripts and macros.

Examples:

 if (Error | Interrupt) return

2.21.62. Label

function returning a molecular label string.

Label (rs_)

− returns sarray of residue labels of the selected residues rs_ composed according to the
resLabelStyle preference.

See also: Name function (returns residue names).

Label (os_objects)

− returns sarray of long names of selected objects.

See also: Name function which returns the regular object names and the most detailed chemical names of
compounds.

Label (vs_var)

2.21.61. Interrupt 331

− returns sarray of labels of selected variables.

Examples:

 build
 resLabelStyle = "Ala 5" # other styles also available
 aa = Label(a_/2:5) # extract residue name and/or residue number info
 show aa # show the created string array

2.21.63. Length

function.

Length ({ string | matrix | sequence | alignment | profile })

− returns integer length of specified objects.

Length (sarray)

− returns iarray of length of strings elements of the sarray.

Length ({ iarray | rarray })

− returns the real vector length (distance from the origin for a specified vector Sqrt(Sum(I[i]*I[i])) or
Sqrt(Sum(R[i]*R[i])), respectively).

Examples:

 len=Length("asdfg") # len is equal to 5

 a=Matrix(2,4) # two rows, four columns
 nCol=Length(a) # nCol is 4

 read profile "prof" # read sequence profile
 show Length(prof) # number of residue positions in the profile

 vlen=Length({1 1 1}) # returns 1.732051

2.21.64. LinearFit

the linear regression function.

LinearFit (R_X , R_Y , [R_Errors])

− returns the A,B,StdDev,Corr 4−dimensional array of the parameters of the linear regression for a scatter
plot Y(X): R_Y = A*R_X + B , where the slope A and the intercept B are the first and the second elements,
respectively. The third element is the standard deviation of the regression, and the fourth is the correlation
coefficient. Residuals R_Y − (A*R_X + B) are stored in the R_out array.

You can also provide an array of expected errors of R_Y . In this case the weighted sum of squared
differences will be optimized. The weights will be calculated as:

332 2.21.63. Length

Wi = 1/R_Errorsi
2

Example:

 X = Random(1., 10., 10)
 Y = 2.*X + 3. + Random(−0.1, 0.1, 10)
 lfit = LinearFit(X Y)
 printf "Y = %.2f*X + %.2f\n", lfit[1],lfit[2]
 printf "s.d. = %.2f; r = %.3f\n", lfit[3],lfit[4]
 show column X, Y, X*lfit[1]+lfit[2], R_out

A more complex linear fit between a target set of Yi , i=1:n values and several parameters Xi,j
(i=1:n,j=1:m) potentially correlating with Yi is achieved in 3 steps:

 M1=Transpose(X)*X
 M2=Power(M1,−1)
 W =(M2*Transpose(X))*Y

The result of this operation is vector of weights W for each of m components.

Now you can subtract the predicted variation from the initial vector (Y2 = Y − X*W) and redo the
calculation to find W2 , etc. A proper way of doing it, however, is to calculate the eigenvalues of the
covariance matrix.

2.21.65. Link

the linked SWISSPROT sequences function.

Link (ms_) − returns the sarray of the swissprot sequence IDs (e.g. {"PHEA_HUMAN"}) referenced
by the selected molecules. These references (or links) are read from the pdb entries.

2.21.66. Log

the logarithm function.

Log (real) − returns the real natural logarithm of a specified positive argument.

Log (real r_realBase) − returns the real logarithm of a specified positive argument (e.g. the base 10
logarithm is Log(x, 10)).

Log (rarray) − returns an rarray of natural logarithms of the array components (they must not be
negative, zeroes are treated as the least positive real number, ca. 10−38).

Log (rarray r_realBase) − returns an rarray of logarithms of the array components (they must not be
negative), arbitrary base.

Log (matrix [r_realBase]) − returns a matrix of logarithms of the matrix components (they must not
be negative).

Examples:

2.21.65. Link 333

 print Log(2.) # prints 0.693147
 print Log(10000, 10) # decimal logarithm
 print Log({1.,3.,9.}, Sqrt(3.)) # {0. 2. 4.}

2.21.67. Map

function.

Map (m_map , I_6box [simple]) − returns map which is a transformation (expansion or reduction) of
the input m_map to new I_6box box ({ iMinX,jMinY,kMinZ,iMaxX,jMaxY,kMaxZ}).

Examples:

 read object "crn"
 read map "crn"
 display a_//ca,c,n m_crn
 m1 = Map(m_crn, {0 0 0 22 38 38}) # half of the m_crn
 m2 = Map(m_crn, {0 0 0 88 38 38}) # double of the m_crn
 display m1
 display m2

2.21.68. Mass

function.

Mass (as_ | rs_ | ms_ | os_)

− returns rarray of masses of selected atoms, residues, molecules or objects, depending on the selection
level.

Examples:

 buildpep "ala his trp glu"
 objmasses = Mass(a_*.)
 molmasses = Mass(a_*)
 resmasses = Mass(a_/*)

 masses=Mass(a_//!?vt*) # array of masses of nonvirtual atoms
 molweight = Mass(a_1) # mol.weight of the 1st molecule
 molweight = Sum(Mass(a_1//*)) # another way to calculate 1st mol. weight

See also: Nof(selatom), Charge(sel)

2.21.69. Matrix

function.

Matrix (i_NofRows, i_NofColumns [r_value]) − returns matrix of specified dimensions. All
components are set to zero or r_value if specified.

Matrix (i_size) − returns square unity matrix of specified size.

334 2.21.67. Map

Matrix (rarray) − converts vector[1:n] to one−row matrix[1:1,1:n].

Tensor product

Matrix (R_A R_B)

− returns tensor product of two vectors or arbitrary dimensions: M_ij = R_A[i]*R_B[j]

Examples:

 mm=Matrix(2,4) # create empty matrix with 2 rows and 4 columns

 mm=Matrix(2,4,−5.) # as above but all elements are set to −5.

 show Matrix(3) # a unit matrix [1:3,1:3] with diagonal
 # elements equal to 1.
 a=Matrix({1. 3. 5. 6.}) # create one row matrix [1:1,1:4]

 Matrix({1.,0.},{0.,1.}) # tensor product
 #>M
 0. 1.
 0. 0.

Matrix (rs_1 rs_2) − returns matrix of contact areas. See also: Cad, Area .

Matrix (ali_) − returns a matrix of normalized pairwise Dayhoff evolutionary distances between the
sequences in alignment ali_ (for similar sequences it is equal to the fraction mismatches).

Matrix (ali_, number) − returns a matrix of alignment. It contains reference residue numbers for
each sequence in the alignment, or −1 for the gaps. The first residue has the reference number of 0 (make
sure to add 1 to access it from the shell).

2.21.70. Max

maximum−value function.

Max ({ rarray | map })

− returns the real maximum−value element of a specified object

Max (iarray) − returns the integer maximum−value element of the iarray.

Max (matrix) − returns the rarray of maximum−value element of each column of the matrix. To find
the maximum value use the function twice (Max(Max(m)))

Max (integer1, integer2, ...) − returns the largest integer argument.

Max (real1, real2, ...) − returns the largest real argument.

Examples:

2.21.70. Max 335

 show Max({2. 4. 7. 4.}) # 7. will be shown

2.21.71. MaxHKL

an array of three maximal crystallographic h,k,l indices at a given resolution.

MaxHKL ({ map_ | os_ | [R_6CellParameters] }, r_minResolution) => I3

the function extracts the cell parameters from map_ , os_ object, or reall array of {a,b,c,alpha,beta,gamma},
and calculates an iarray of three maximal crystallographic indices { hMax , kMax , lMax }
corresponding to the specified r_minResolution .

2.21.72. Mean

average−value function.

Mean ({ rarray | map })

− returns the real average−value of elements of the specified ICM−shell objects.

Mean (iarray)

− returns the real average−value of the elements of the iarray.

Mean (matrix)

− returns rarray [1:m] of average values for each i−th column matrix[1:n,i].

Mean (R1 R2)

− for two real arrays of the same size returns rarray [1:m] of average values for each pair of
corresponding elements.

Examples:

 print Mean({1,2,3}) # returns 2.

 show Mean(Xyz(a_2/2:8)) # shows {x y z} vector of geometric
 # center of the selected atoms
 Mean({1. 2. 3.} {2. 3. 4.})
 #>R
 1.5
 2.5
 3.5

2.21.73. Min

minimum−value function.

Min ({ rarray | map }) − returns the real minimum value element of a specified object

336 2.21.71. MaxHKL

Min (iarray) − returns the integer minimum−value element of the iarray.

Min (matrix) − returns the rarray of minimum−value element of each column of the matrix. To find the
minimum value use the function twice (e.g. Min(Min(m)))

Min (integer1, integer2 ...) − returns the smallest integer argument.

Min (real1, real2, ...) − returns the smallest real argument.

Examples:

 show Min({2. 4. 7. 4.}) # 2. will be shown
 show Min(2., 4., 7., 4.) # 2. will be shown

2.21.74. Money

function to print money figures.

Money ({ i_amount | r_amount}, [s_format]) − returns a string with the traditionally decorated money
figure. s_format contains the figure format and the accompanying symbols.

%m specification for the rounded integral amount;•
%.m specification to add cents after dot. The default is "$%.m", i.e. Money(1222.33) returns
$1,222.33.

•

%M the same as %m but with dot instead of comma in the European style•
%.M the same as %.m dot and comma are inverted in the European style•

Examples:

 Money(1452.39) # returns "$1,452.39"
 Money(1452.39,"DM %m") # returns "DM 1,452"
 Money(1452.39,"%.M FF") # inverts comma and dot "1.452,39 FF"

2.21.75. Mod

remainder (module) function. Similar to, but different from Remainder() function:

function description example
Mod(x,y) brings x to [0 , y] range Mod(17.,10.) => 7.
Remainder(x,y)brings x to [−y/2 , y/2] rangeRemainder(17.,10.)=> −3.

Mod (i_divisor, [i_divider]) − returns integer remainder.

Mod (r_divisor, [r_divider]) − returns the real remainder r = x − n*y where n is the integer nearest the
exact value of x/y; r belongs to [0, |y|] range.

Mod (iarray, [i_divider]) − returns the iarray of remainders (see the previous definition).

2.21.74. Money 337

Mod (rarray, [r_divider]) − returns the rarray of remainders (see the previous definition).

The default divider is 360. (or 360) since we mostly deal with angles.

Examples:

 phi = Mod(phi) # transform angle to [0., 360.] range
 a = Mod(17,10) # returns 7

2.21.76. Mol

molecule function.

Mol ({ os_ | rs_ | as_ }) − selects molecules related to the specified objects os_ , residues rs_ or atoms
as_, respectively.

Examples:

 show Mol(Sphere(a_1//* 4.))
 # molecules within a 4 A vicinity of the first one
 # Sphere function Sphere(as_atoms) selects atoms.

See also: Atom, Res, Obj .

2.21.77. Name

generic function returing strings or string arrays with names of things.

Name (s_Path_and_Name) − returns file name sub− string if full path is specified

Name ({ command | function | macro | integer | real | string | logical | iarray | rarray
| sarray | matrix | map | grob | alignment | table | profile | sequence }) − returns a string
array of object names for the specified class.

Name ({ iarray | rarray | sarray | matrix | map | grob | alignment | table | profile |
sequence } select) − returns a string array of names of selected objects for the specified class.

Name (as_) − returns sarray of names of selected atoms.

Name (as_sequence) − returns sarray of chemical names of the selected atoms according to the
icm.cod file (one−letter chemical atom names are low case, e.g. "c", two−letter names start from an
upper−case letter, like "Ca"). The names from the periodic table are used in the wrGaussian macro.

Name (rs_) − returns sarray of names of selected residues. To obtain a one−letter code sequence, use
Sequence(rs_) and to convert it to a string use String(Sequence(rs_)) .

Name (ms_) − returns sarray of names of selected molecules.

Name (ms_sequence) − returns sarray of names of sequence linked to the specified molecules ms_.

338 2.21.76. Mol

Name (os_) − returns sarray of names of selected objects.

Name (vs_) − returns sarray of names of selected variables.

Name (alignment) − returns sarray of constituent sequence names.

Name (table) − returns sarray or constituent table ICM−shell object names.

Name (sequence) − returns string name of specified sequence.

Examples:

 read alignment msf "azurins" # load alignment
 seqnames = Name(azurins) # extract sequence names

 show Name(Acc(a_/*)) # array of names of exposed residues

2.21.78. Namex

long name (or description) function.

Namex (os_)

− returns sarray of comments of selected objects os_ (i.e. a string for each object). This field is set to the
chemical compound name by the read pdb command. Alternatively, you can set your own comment
with the set comment os_ s_comment command. If you have a single object and want to convert a
string array of one element (corresponding to this one object) to a simple string, use this expression,
e.g.: Sum(Namex(a_)). Other manipulations with a multiline string can be performed with the Field,
Integer, Real, Split functions (see also s_fieldDelimiter).

Example. We stored values in the comment field in annotations like this: "LogP 4.3\n". Now we extract the
values following the "LogP" field name:

 read object s_icmhome + "all" # multiple object file with LogP data

extract numbers following the 'LogP' word in the object comments
 logPs = Rarray(Namex(a_*.),"LogP",1," \n")

Namex (seq_) − returns string of long name ('description' field in Swissprot).

Example:

 read index s_inxDir+"/SWISS.inx"
 read sequence SWISS[2] # read the 2nd sequence from Swissprot
 show Namex(sequence[0])

2.21.79. Next

selection function.

Next ({ as_ | rs_ | ms_ | os_ })

2.21.78. Namex 339

− selects atom, residue, molecule, or object immediately following the selected one. Next(the_last_element
) returns an empty selection.

Examples:

 show Next(a_/4)) # show residues number 5
 phi5=Torsion(a_/5/c)
 # psi5 formally belongs to the next residue
 psi5=Torsion(a_//n & Next(a_/5))

2.21.80. Covalent neighbors of an atom

Next (as_ bond) − selects atoms forming covalent bonds with the selected single atom.

Example:

 BS his
 display
 display a_/his/he2 ball red
 display Next(a_/his/he2 bond) ball magenta # show atom preceding he2

 cd2_neigh = Next(a_//cd2 bond)
 for i=1,Nof(cd2_neigh)
 nei = cd2_neigh[i]
 print " Distance between a_//cd2 and ",Sum(Name(nei)), " = ", Distance(a_//cd2 nei)
 endfor

2.21.81. Nof

Number−OF−elements function.

Nof ({ iarray | rarray | sarray }) − returns integer number of elements in an array

Nof (ali_) − returns integer number of sequences in the specified alignment ali_ (see also Length(
alignment)).

Nof (matrix) − returns integer number of rows in a matrix (see also Length(matrix) function which
returns number of columns).

Nof (map) − returns integer number of grid points in a map.

Nof (grob) − returns integer number of points in graphics object.

Nof ({ os_ | ms_ | rs_ | as_ | vs_ }) − returns integer number of selected objects, molecules, residues,
atoms or variables respectively.

Nof ({ os_ | ms_ | rs_ } [atom]) − returns an array of the numbers of atoms in each selected unit. This
function automatically excludes the 'virtual' atoms added automatically to the ICM−objects (equivalent to
the a_//!vt* selection). Example:

 read mol s_icmhome+"ex_mol.mol"
 Nof(a_*. atom)

340 2.21.80. Covalent neighbors of an atom

Nof ({ atoms | residues | molecules | objects | conf | tether | vrestraint }) − returns
the total integer number of atoms, residues, molecules, objects, stack conformations or tethers, variable
restraints, respectively. It is safer than the previous command (e.g. Nof(a_//*)) since Nof(atoms)
will work even if object does not exist.

Nof (library) − returns 1 if the force field parameter library is loaded and 0 otherwise.

Nof (library) − returns 1 if the mmff library is loaded and 0 otherwise.

Nof (site [ms_]) − returns integer number of sites in the selected molecule or the current
object.

Nof ({ s_stackFileName | s_objFileName }) − returns integer number of conformations in the
specified

Example:

 for i=1,Nof("def.cnf",conf) # stack is NOT loaded
 read conf i
 endfor

Nof (string, substring) − returns integer number of occurrences of substring in a string. E.g.
Nof("ababab","ba") returns 2

Nof (string, substring, pattern) − returns integer number of occurrences of regular pattern in a
string. E.g. Nof("ababab","b?") returns 2

Example with a strange DNA sequence dn1:

 if(Nof(String(dn1),"[!ACGT]" pattern) > 0.5*Length(dn1)) print " Warning> Bad DNA sequence"

Nof ({ iarray | rarray | sarray | sequence | aselection | vselection | alignment |
matrix | map | grob | string | object } [select]) − returns integer number of ICM−shell
variables of specified type. With the select option it returns the number of GUI−selected objects
(exceptions: for aselection, vselection, string , object).

Examples:

 nseq = Nof(sequences) # number of sequences currently loaded
 if(Nof(object)==0) return error "No objects loaded"

 if (Nof(sequence select) == 2) a = Align(select)

2.21.82. Norm

normalize numbers.

Norm (map) − returns the map linearly transformed into the [0.,1.] range.

2.21.82. Norm 341

2.21.83. Obj

object level function.

Obj ({ ms_ | rs_ | as_ }) − selects object(s) related to the specified molecules, residues or atoms,
respectively.

Examples:

 show Obj(a_*./dod) # show objects containing heavy water

See also: Atom, Res, Mol .

2.21.84. Occupancy

function.

Occupancy ({ as_ | rs_ }) − returns rarray of occupancy for the specified selection. If residue
selection is given, average residue occupancies are returned.

See also: set occupancy.

Examples:

 avO=Min(Occupancy(a_//ca)) # minimal occupancy of Ca−atoms
 show Occupancy(a_//!h*) # array of occupancy of heavy atoms
 color a_//* Occupancy(a_//*) # color previously displayed atoms
 # according to their occupancy
 color ribbon a_/A Occupancy(a_/A) # color residues by mean occupancy

2.21.85. Path

function.

Path (s_FullFileName) − returns header sub− string with the path.

Examples:

 sPath=Path("/usr/mitnick/hacker.loot") # returns "/usr/mitnick/"

See also: Name() and Extension() functions which return two other components of the full file name.

Path (preference)

returns the path to the directory in which the user preferences file "icm.ini" is stored. This file is always
stored in the s_icmhome , but a user can save his or her own preferences in the
s_userDir/config/icm.ini file.

Example:

342 2.21.83. Obj

read all Path(preference)+"icm.ini" # restore the settings

Path (unix)

returns a path to the ICM executable. ICM binary can also be found in the Version(full) string.

2.21.86. Pattern

function.

Pattern ({ s_consensus | ali_ } [exact]) − returns sequence pattern string which can be
searched in a single sequence with the find pattern command or in a database with the find
database pattern=s_pattern command. If ICM−consensus string s_consensus is provided as an
argument, the string is translated into a regular pattern expression (e.g. an expression "R+. ..^D"
will be translated to "R[KR]?\{3,6\}[ACGS]D"). If alignment ali_ is given as an argument, the
pattern is either extracted directly from the alignment, option exact, or is converted to consensus first,
and only after that translated into a pattern. For example, an alignment position with amino acids A and V
will be transformed into pattern [AV] with option exact and into pattern [AFILMPVW] without the
option. Additionally, the exact option will retain information about the length of the flanking regions.

Example:

 read sequence s_icmhome + "zincFing"
 group sequence aaa
 align aaa
 show Pattern("#~???A% ?P") # symbols from consensus string
 show Pattern(aaa)
 show Pattern(aaa exact)

Pattern (s_seqPattern prosite) − returns string containing the prosite−formatted
sequence pattern. The input string s_seqPattern is an ICM sequence pattern .

2.21.87. Pi

function (or rather a reserved name).

Pi − returns the real value of Pi (3.14...).

Examples:

 print Pi/2. </tt>

2.21.88. Potential

function.

Potential (as_targets as_charges) − returns rarray of Nof(as_targets) real values of electrostatic
potentials at as_targets atom centers. Electrostatic potential is calculated from the specified charges
as_charges and the precalculated boundary (see also REBEL, make boundary and How to evaluate the
pK shift).

2.21.86. Pattern 343

Examples:

 read object "crn"
 # prepare electrostatic boundary descriptions
 make boundary
 # potential from oe*, od* at cz of two args
 show Potential(a_/arg/cz a_/glu,asp/o?*)
 print 0.5*Charge(a_//*)*Potential(a_//* a_//*)
 # the total electrostatic energy which is
 # actually calculated directly by show energy "el"

2.21.89. Power

mathematical function.

Power (r_base, { r_exp | i_exp}) − returns real r_baser_exp or r_basei_exp. Note that r_base may be
negative if the exponent is an integer, otherwise error will be produced.

Power (r_base, R_exp) − returns rarray of the r_base taken to the R_exp powers.

Power (r_base, M_exp) − returns matrix of the r_base taken to the M_exp powers.

Example:

 Power(2.,{1. 2. 3.}) # returns {2.,4.,8.}

Power (rarray, r_Exponent) − returns rarray of elements taken to the specified power.

Power (matrix, integer) − for square matrix returns the source matrix taken to the specified power. If the
exponent is negative, the function returns the n−th power of the inverse matrix.

Examples:

 size=Power(tot_volume,1./3.) # cubic root

 read matrix "LinearEquationsMatrix" # read matrix [1:n,1:n]
 read rarray b # read the right−hand column [1:n]
 x=Power(LinEquationsMat,−1) * b # solve system of linear equations

 a=Rot({0. 1. 0.}, 90.0)
 # create rotation matrix around Y axis by 90 degrees
 if (Power(a,−1) != Transpose(a)) print "Wrong rotation matrix"
 # the inverse should be
 # equal to the transposed
 rotate a_1 Power(a,3) # a−matrix to the third is
 # three consecutive rotations

2.21.90. Probability

function.

Probability (s_seqPattern) − returns the real probability of the specified sequence pattern. To get
mathematical expectation to find the pattern in a protein of length L, multiply the probability by L−Length(

344 2.21.89. Power

s_seqPattern).

Examples:

 # chance to find residues RGD at a given position
 show Probability("RGD")
 # a more tricky pattern
 show Probability("[!P]?[AG]")

Probability (i_minLen, r_Score [, { identity | similarity | comp_matrix | sort }]) −
returns the real expected probability that a given or higher score (r_Score) might occur between
structurally unrelated proteins (i.e. it is essentially the probability of an error). This probability can be used
to rank the results of database searches aimed at fold recognition. A better score corresponds to a lower
probability for a given alignment. The four types of scores

no argument: alignment score•
identity: the number of identical residues * 100 and divided by the minimal sequence length•
similarity: alignment score without gap penalties *100. and divided by the minimal
sequence length

•

comp_matrix: alignment score without gap penalties (unnormalized)•
sort: an additional score for ranking•

are given in the description of the Score function. Each score has a different distribution which was
carefully derived from all−to−all comparisons of sequence of protein domains.

Example: Probability(150, 30, identity)*55000. is the mathematical expectation of the number of
structurally unrelated protein chains of 150 residues with 30% or higher sequence identity which can be
found in a search through 55000 sequences. The inverse function is Score.

Probability (ali_2seq, [i_windowSize1 w_windowSize2] [local])

2.21.89. Power 345

− returns the rarray of expected probabilities of local insignificance of the pairwise sequence alignment
ali_2seq. The Karlin and Altschul score probability values (option local) or local ZEGA probabilities
(see also Probability(i_, r_)) are calculated in multiple windows ranging in size from i_windowSize1
to w_windowSize2 (default values 5 and 20 residues, respectively). The exact formulae for the Karlin and
Altschul probabilities (option local) are given in the next section and the ZEGA probabilities are given
in the Abagyanpaper. The window with the lowest probability value is chosen in each position. The array
returned by this function can be used to color−code the regions of insignificant sequence−structure
alignment in modeling by homology. One can use the Rarray(R_,ali_,seq_) function to project the array
onto selected sequence.

Example:

 read alignment s_icmhome+ "sx" # 2 seq. alignment
 read pdb s_icmhome+"x"
 p= −Log(Probability(sx))
 display ribbon a_
 color ribbon a_/A −Rarray(p,sx,cd59)
 # Rarray projects the alignment array to the sequence

Probability (seq_1 seq_2 [i_windowSize1 w_windowSize2]) − returns a dot matrix of
probabilities of local statistical comparison between the two sequences. This matrix contains local
probability values that two continuous sequence fragments of length ranging from i_windowSize1 to
w_windowSize2 have statistically insignificant alignment score , which means that the match is random.
Visualization of this matrix allows to see periodic patterns if sequence is compared with itself as well as
identity alternative alignments. The formula is taken from the Karlin and Altschul statistics:

346 2.21.89. Power

P= 1−exp(−exp(−Lambda*Sum(score in window)/K)), where Lambda and K are coefficients depending on
the residue comparison matrix.

This example allows to trace the correct alignment despite an about 100 residue insertion:

 read pdb sequence "2mhb"
 read pdb sequence "4mbn"
 m=Probability(2mhb_a 4mbn_m 7 30)
 print " pProbability: Min=" Min(Min(m)) "Max=" Max(Max(m))
 PLOT.rainbowStyle="white/rainbow/red"
show probability of the chance matching (comparable to the BLAST P−value)
 plot area m display color={.2 0.001} transparent={0.2 1.} link grid
OR show −Log10(Probability)
 plot area −Log(m,10) display color={0.7 3.} transparent={0. 0.7} link grid

2.21.91. Profile

function.

Profile (alignment) − creates profile from an alignment

2.21.92. Putenv

function to change or add value to environment.

Putenv (" s_environmentName = s_environmentValue ") − returns a logicalyes if the named
environment variable is created or modified.

Example:

 show Putenv("aaa=bbb")
 # change/add variable 'aaa' with value 'bbb' to environment
 show Getenv("aaa")
 # check if it has been successful

See also: Existenv(), Getenv().

2.21.93. Radius

atomic radii (van der Waals, surface energy, and electrostatic).

Radius (as_) − returns the real array of van der Waals radii of atoms in the selection.

These radii are used in the construction of the molecular surface (skin) and can be found (and possibly
redefined) in the icm.vwt file.

Radius (as_ surface) − returns the rarray of the 'hydration' atomic radii.

These radii are used in construction of the solvent−accessible (surface) and can be found (and possibly
redefined) in the icm.hdt file.

2.21.91. Profile 347

Radius (as_ charge) − returns the rarray of the 'electrostatic' atomic radii.

These radii are used for building the skin (analytical molecular surface) for electrostatic dielectric boundary
calculation with electroMethod = "boundary element". These parameters can be found (and possibly
redefined) in the icm.vwt file.

2.21.94. Random

evenly distributed random function.

Random () − returns a pseudo−random real in the range from 0. to 1.

Random (i_max) − returns a pseudo−random integer distributed in [1, i_max]

Random (i_min , i_max) − returns a pseudo−random integer distributed in [i_min , i_max]

Random (r_min , r_max) − returns a pseudo−random real evenly distributed in [r_min , r_max]

Random (r_min , r_max , i_n) − returns a rarray [1: i_n] with pseudo−random real values distributed
in [r_min , r_max]

Random (r_mean , r_std , i_n , "gauss") − returns a rarray of i_n elements with normally distributed
pseudo−random values. The mean and standard deviation are provided as the first two arguments

Random (r_min , r_max , i_nRows , i_nColumns) − returns a matrix [1: i_nRows, 1: i_nColumns] with
pseudo−random real values distributed in [r_min , r_max]

Random (i_nRows, i_nColumns, r_min, r_max) − returns a matrix [1: i_nRows, 1: i_nColumns] with
pseudo−random real values distributed in [r_min, r_max]

Random (sequence) − returns a randomized sequence with the same amino−acid composition

Examples:

 print Random(5) # one of the following: 1 2 3 4 or 5
 print Random(2,5) # one of the following: 2 3 4 or 5
 print Random(2.,5.) # random real in [2.,5.]
 randVec=Random(−1.,1.,3) # random 3−vector with components in [−1. 1.]
 randVec=Random(3,−1.,1.) # the same as the previous command
 randMat=Random(−1.,1.,3,3) # random 3x3 matrix with components in [−1. 1.]
 randMat=Random(3,3,−1.,1.) # the same as the previous command
 Random(0., 1., 10, "gauss" # normal distribution
 a=Random(seq_crn) # a contains a randomized crambin sequence

2.21.95. Rarray

real−array function.

Rarray (i_NofElements) − returns a rarray; creates zero−initialized rarray [1: i_NofElements]. You
can also create an zero−size real array: Rarray(0) .

348 2.21.94. Random

Rarray (i_NofElements, r_Value) − returns a rarray [1: i_NofElements] with all elements set to
r_Value.

Rarray (i_NofElements, r_From, r_To) − returns a rarray [1: i_NofElements] with elements ranging
from r_From to r_To.

Rarray (iarray) − converts iarray into a rarray.

Rarray (sarray) − converts sarray into a rarray.

Examples:

 a=Rarray(54) # create 54−th dimensional vector of zeros
 a=Rarray(3,−1.) # create vector {−1.,−1.,−1.}
 a=Rarray(5,1.,3.) # create vector {1., 1.5, 2., 2.5, 3.}
 a=Rarray({1 2 3}) # create vector {1. 2. 3.}
 a=Rarray({"1.5" "2" "−3.91"}) # create vector {1.5, 2., −3.91}

rarray sequence projection

Rarray (R_ali ali_from { seq_ | i_seqNumber })

− returns a projected rarray. The R_ali rarray contains values defined for each position of alignment
ali_from. The function squeezes out the values which correspond to insertions into sequence seq_, that is,
in effect, projects the alignment array R_ali onto sequence seq_.

Projecting from one sequence to another sequence via alignment.

Let us imagine that we have two sequences, seq1 and seq2 which take part in multiple sequence alignment
ali . The transfer of property R1 from seq1 to seq2 can be achieved via two transfers :

seq1 to ali : RA = Rarray(R1 seq1 ali r_gapValues)1.
ali to seq2 : R2 = Rarray(RA ali seq2)2.

Now R2 has the same dimension as seq2. Values aligned with ~seq1 are transferred by alignment, other
values are set to r_gapValues .

See also:

String(s_,R_,ali_,seq_) function to project strings
Rarray(R_seq seq_ ali_to r_gapDefault) function to project from sequence to alignment
Probability function
Rarray (rarray reverse)

− converts input real array into an rarray with the reversed order of elements. Example:

Rarray({1. 2. 3.} reverse) # returns {3. 2. 1.}

2.21.95. Rarray 349

Transfer real sequence properties by alignment

Rarray (R_seq { seq_ | i_seqNumber } ali_to r_gapDefault)

− projects the input rarray from seq_ to ali_to (the previous function does it in the opposite direction).
The R_seq rarray contains values defined for each position of the sequence seq_. The function fills the gap
positions in the output array with the r_gapDefault values.

Combination of this and the previous functions allow you to project any numerical property of one
sequence to another by projecting the r1 property of seq1 first to the alignment and than back to seq2 (e.g.
Rarray(Rarray(r1,seq1,a,99.) , a, seq2)).

This function can also be used to determine alignment index corresponding to a sequence index. Example:

read alignment s_icmhome+"sh3"
t = Table(sh3)
group table t Count(Nof(t)) "n" append # add a column with 1,2,3,..
show t # t looks like this:
 #>T t
 #>−cons−−−−−−−−Fyn−−−−−−−−−Spec−−−−−−−−Eps8−−−−−−−n−−−
 " " 0 1 1 1
 " " 0 2 2 2
 " " 0 3 3 3
 " " 0 4 4 4
 . 1 5 5 5
 ...
t2forFyn = t.Fyn == 2 # table row for position 2 in seq. Fyn
t2forFyn.n # corresponding alignment position

See also the String(s_,R_,seq_,ali_,s_defChar) function to project strings.

Assign arbitrary amino−acid property to a sequence

Rarray (sequence R_26resProperty)

− returns a rarray of residue properties as defined by R_26resProperty for 26 residue types (all
characters of the alphabet) and assigned according to the amino−acid sequence.

Example with a hydrophobicity property vector:

 s= Sequence("TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN") # crambin sequence
26−dim. hydrophobicity vector for A,B,C,D,E,F,..
 h={1.8,0.,2.5,−3.5,−3.5,2.8,−.4,−3.2,4.5,0.,−3.9,3.8,1.9,−3.5,.0,−1.6,−3.5,−4.5,−.8,−.7,0.,4.2,−.9,0.,−1.3,0.}
 hs=Rarray(s,h) # h−array for each sequence position
 hh = Smooth(Rarray(s,h), 5) # window average

2.21.96. Real function

generally converts things to a real.

Real (integer) − converts integer to real number.

350 2.21.95. Rarray

Real (iarray) see Rarray(iarray).

Real (string) − converts string to real number. The conversion routine ignores trailing non−numerical
characters.

Examples:

 s = "5.3"
 a = Real(s) # a = 5.3
 s = "5.3abc" # will ignore 'abc'
 a = Real(s) # the same, a = 5.3

Real (rarray) − returns the first element of the real array. With that trick one can also transform real
array with one element into the real number. You may also convert a one element array into a real with
the Sum or the Mean functions. If there are more then one elements, the first element is taken. Important
for assignments.

Example:

 a[2,3]=Real(Value(v_/2/phi)) # a is a matrix, a[2,3] expects a real

2.21.97. Remainder function.

Returns the remainder; similar to, but different from the Mod function.

function description example
Remainder(x,y)brings x to [−y/2 , y/2] rangeRemainder(17.,10.)=> −3.
Mod(x,y) brings x to [0 , y] range Mod(17.,10.) => 7.
Remainder (i_divisor, [i_divider]) − returns the integer

Remainder (r_divisor, [r_divider]) − returns the real remainder r = x − n*y where n is the integer
nearest the exact value of x/y; if | n−x/y|=0.5 then n is even. r belongs to [−|y|/2, |y|/2] range

Remainder (iarray, [i_divider]) − returns the iarray of remainders (see the previous definition).

Remainder (rarray, [r_divider]) − returns the rarray of remainders.

The default divider is 360. (real) or 360 (integer) since we mostly deal with angles.

Examples:

 # transform angle to the standard
 # [−180., 180.] range. (Period=360 is implied)
 phi=Remainder(phi)

 # we assume that you have two objects
 # with different conf. of the same molecule
 phiPsiVec1 = Value(v_1.//phi,psi)
 phiPsiVec2 = Value(v_2.//phi,psi)
 # average angular
 # deviation

2.21.97. Remainder function. 351

 angDev=Mean(Abs(Remainder(phiPsiVec1−phiPsiVec2)))
 # cut and paste these examples into the ICM−shell
 print Remainder(13,10) Mod(13,10)
 print Remainder(17,10) Mod(17,10)
 print Remainder(−13,10) Mod(−13,10)
 print Remainder(−17,10) Mod(−17,10)

2.21.98. Replace

− text substitution function.

Replace (s_source s_regularExpression s_replacement) − returns a string, which is a copy of the
source string with globally substituted substrings matching s_regularExpression by the replacement string
s_replacement.

Example:

 a=Replace(" 1crn "," ","") # remove empty space

Replace (s_source S_fromArray S_toArray) − make several replacements in a row. The size of the two
arrays must be the same.

Example which generates a complimentary DNA strand (actually there is a special function Sequence(
seq_,reverse) which does it properly).

 invertedSeq = String(0,1,"GTAAAGGGGTTTTCC") # result: CCTTT..
 complSeq=Replace(invertedSeq,{"A","C","G","T"},{"T","G","C","A"})
result: GGAAA...

Replace (s_source S_fromArray s_replacement) − replace several strings by a single other string. If
s_replacement is empty, the found substrings will be deleted.

Example which generates a complimentary DNA strand:

 cleanStr=Replace("XXTEXTYYTEXT",{"XX","YY"},"")

Replace (S_ s_regularExpression s_replacement) − returns a sarray with globally substituted
elements (the original sarray remains intact).

Examples:

 aa={"Terra" "Tera" "Teera" "Ttera"}
 show column aa Replace(aa "er?" "ERR") Replace(aa "*[tT]" "Shm")

Replace (S_ S_fromArray S_toArray) − returns a sarray with multiple substitutions.

Replace (S_ s_regularExpression s_replacement) − returns a sarray with multiple substitutions to a
single string.

352 2.21.98. Replace

2.21.99. Res

residue selection function.

Res ({ os_ | ms_ | as_ }) − selects residue(s) related to the specified objects (os_), molecules (ms_) or
atoms (as_), respectively.

Examples:

 show Res(Sphere(a_1/1/* 4.)) # show residues within 4 A
 # vicinity from the firsts one

See also: Atom (), Mol (), Obj ().

Res (cursor) − returns residue at which interactive residue cursor is set. See also displaycursor{display
cursor}, color cursor .

2.21.100. Res(ali ..): from sequence positions in subalignment to residue
selection

Res (ali_ { seq_ | i_sequence }) − returns residue selection corresponding to the aligned positions of the
specified sequence. The sequence can be specified by its order number in the alignment (e.g. 1crn_m in
the example below has number 1), or by name.

An example in which we find residue selection corresponding to the aligned part of crambin sequence
1crn_m :

 read pdb "1crn"
 read alignment "bb" # a short sublalignment of 1crn_m
 link a_*. bb # link objects and sequences
 show bb
 #>ali bb
 # Consensus .C CP~.#A.^.#
 1crn_m TC−CPSIVARSNF−−−−−−
 a PCGCPDGIAIARIYPFAVG
 #1crn_m EE E__HHHHHHH

 # 1crn_m a nID 4 Lmin 46 ID 8.7 % Score 4.75 Sim 15.54 Gap 2.40 nOverlap 12 pP 0.16
 #MATGAP gonnet 2.4 0.15

 Res(bb 1)
 − Num Res. Type −−−− SS Molecule −−−− Object − sf − sfRatio
 2 thr Amino T E m 1crn 0.0 0.00 .
 3 cys Amino C E m 1crn 0.0 0.00 .
 4 cys Amino C E m 1crn 0.0 0.00 .
 5 pro Amino P _ m 1crn 0.0 0.00 .
 6 ser Amino S _ m 1crn 0.0 0.00 .
 7 ile Amino I H m 1crn 0.0 0.00 .
 8 val Amino V H m 1crn 0.0 0.00 .
 9 ala Amino A H m 1crn 0.0 0.00 .
 10 arg Amino R H m 1crn 0.0 0.00 .
 11 ser Amino S H m 1crn 0.0 0.00 .
 12 asn Amino N H m 1crn 0.0 0.00 .
 13 phe Amino F H m 1crn 0.0 0.00 .

2.21.99. Res 353

2.21.101. Resolution

− returns the X−ray resolution in Angstroms.

Resolution () − returns the real resolution of the current object.

Resolution (os_object) − returns the real X−ray resolution for the specified object. The resolution is
taken from the PDB files.

Examples:

 res=Resolution(a_1crn.) </tt>
 print "PDB structure 1crn: resolution = ", res, " A"

Resolution (s_pdbFileName pdb) − returns the real resolution of the specified pdb−file. The
function returns 9.90 if resolution is not found.

Resolution (T_factors [R_6cell]) − returns the rarray of X−ray resolution for each reflection of the
specified structure factor table. The resolution is calculated from h, k, l and cell parameters
taken from R_6cell or the standard defCell shell rarray.

Example:

 read factor "igd" # read h,k,l,fo table from a file
 read pdb "1igd" # cell is defined there
 defCell = Cell(a_) # extract the cell parameters from the object
 group table append igd Resolution(igd) "res"
 show igd

2.21.102. Rfactor

crystallographic R−factor.

Rfactor (T_factors) − returns the real R−factor residual calculated from the factor−table
elements T_factors.fo and T_factors.fc. Reflections marked with T_factors.free = 1 are ignored.

2.21.103. Rfree

crystallographic free R−factor.

Rfree (T_factors) − returns the real R−factor residual calculated from the factor−table elements
T_factors.fo and T_factors.fc. Only reflections marked with T_factors.free = 1 will be used.

2.21.104. Rmsd

Root−Mean−Square−Deviation function.

Rmsd ({ iarray | rarray | matrix | map })

− returns the real standard deviation (sigma) from the mean for specified sets of numbers

354 2.21.101. Resolution

Rmsd (as_select1 as_select2 [{ { ali_ |align } | exact }])

− returns the real root−mean−square−distance between two aligned sets after these two sets are optimally
superimposed using McLachlan's algorithm.

The optional third argument defines how atom−atom alignment is established between two selections
(which can actually be of any level atom selectionas_ , residue selectionrs_ , molecular selectionms_ ,
or object selectionos_ , see alignment options). Number of equivalent atom pairs is saved in
i_out. Two output selections as_out and as2_out contain corresponding sets of equivalent atoms.

See also: superimpose and Srmsd ().

Examples:

 read pdb "1mbn" # load myoglobin
 read pdb "1pbx" # load alpha and beta
 # subunits of hemoglobin
 print Rmsd(a_1.1 a_2.1 align) # myo− versus alpha subunit
 # of hemo− all atoms
 print Rmsd(a_1.1//ca a_2.1//ca align) # myo− versus alpha subunit
 # of hemo− Ca−atoms

 print Rmsd(a_1./4,29/ca a_2.1/2,102/cb exact) # exact match

2.21.105. Rot

rotation matrix function.

Rot (R_12transformVector) − extracts the 3x3 rotation matrix from the transformation
vector.

Rot (R_axis, r_Angle) − returns matrix of rotation around 3−dimensional real vector R_axis by angle
r_Angle.

Examples:

 # rotate molecule by 30 deg. around z−axis
 rotate a_* Rot({0. 0. 1.},30.)

Rot (R_3pivotPoint R_3axis, r_Angle)

− returns rarray of transformation vector of rotation around 3−dimensional real vector R_axis
by angle r_Angle so that the pivotal point with coordinates R_3pivotPoint remains static.

Examples:

rotate by 30 deg. around {0.,1.,0.} axis through the center of mass
 nice "1crn"
 R_pivot = Mean(Xyz(a_//*))
 transform a_* Rot(R_pivot,{0. 1. 0.}, 30.)

2.21.105. Rot 355

2.21.106. Sarray

sarray function.

Sarray (integer)

− returns empty sarray of specified dimension

Sarray (integer s_Value) − returns sarray of specified dimension initialized with s_Value

Sarray (string) − converts the input string into a ONE−dimensional sarray . To split a string into
individual lines, or to split a string into a sarray of characters, use the Split() function.

Sarray (iarray) − converts input iarray into an sarray

Sarray (rarray) − converts input rarray into an sarray

Sarray (rs_) − converts input residue selection into an sarray of residue ranges, e.g.: {"a_a.b/2:5",
"a_a.b/10:15",..} . See also String(rs_) which returns one string. Multiple selections

Sarray (stack , vs_var) − creates a string representation of all the conformations in the stack
Variable selection allows to choose the conformational feature you want. Character code:

Backbone (phi,psi pairs):

'B': −200 < phi < −80 , 140 < psi < 200•
'A': −101 < phi < −24 , −81 < psi < 4•
'g': −169 < phi < −15 , −64 < psi < 54•
'd': −211 < phi < −5 , 8 < psi < 136•
'L': 24 < phi < 101 , −4 < psi < 81•
'_': the rest•

Sidechain (chi1):

'M': −120 <= xi1 < 0•
'P': 0 <= xi1 < 120•
'T': 120 <= xi1 < 240•

Example:

 show Sarray(stack,v_/2:10/x*) # coding of side−chain conformations
 show Sarray(stack,v_//phi,psi) # backbone conformation character coding
 show Sarray(stack,v_/2:10/phi,PSI) # character coding of a chain fragment

(Note use of special PSI torsion in the last example.)

Other examples:

 ss=Sarray(5) # create empty sarray of 5 elements
 ss[2]="thoughts" # assign string to the second element of the sarray

356 2.21.106. Sarray

 sa=Sarray("the first element")

 show Sarray(Count(1 100)) # string array of numbers from 1 to 100

Sarray (sarray reverse)

− converts input sarray into an sarray with the reversed order of elements. Example:

Sarray({"one","two"} reverse) # returns {"two","one"}

See also: Iarray(I_ reverse), Rarray(S_ reverse), String(0,1,s)

2.21.107. Score

function.

Score (R_1, R_2) − returns the real shift between two distributions based on the overlap between the
two real arrays. This measure of changes between −1 and 1.. (all values of R_1 are smaller than all values
of R_2) and +1. (all values of R_1 are greater than all values of R_2) and may serve as a ranking criterion.

Examples:

 show Score({1. 2. 5. 3.} {3. 1.5 1.5 5.}) # 0. perfectly overlapping arrays
 show Score({2. 5. 3.} {1. 1.5 0.5}) # 1. no overlap R_1 > R_2
 show Score({1. 1.5 0.5} {2. 5. 3.}) # −1. no overlap R_2 > R_1
 show 1.−Abs(Score({1. 3. 2.5} {2. 5. 3.})) # relative overlap between R1 and R2

Score (sequence1, sequence2)

− returns the real score of the Needleman and Wunsch alignment.

Each pair of aligned residues contributes according to the current residue comparison table, which is
normalized so that the average diagonal element is 1. Insertions and deletions reduce the score according to
the gapOpen and gapExtension parameters. Approximately, the score is equal to the number of
residue identities.

Examples:

 read sequence "seqs"
 a = Score(Azur_Alcde Azur_Alcfa) # it is around 90.

See also: Distance().

Score (ali_, [{ identity | similarity | comp_matrix | sort }]) − returns the real score of
the given alignment calculated by different methods:

no second argument : the straight Needleman and Wunsch score: aligned residues score according
to the residue comparison table, gaps according to the gapOpen and gapExtension
parameters.

•

2.21.107. Score 357

identity the number of identical residues in the alignment divided by the smallest sequence
length and multiplied by 100 %.

•

comp_matrix the alignment score without the gap component. It contains only the total score of
the aligned residues calculated from the residue comparison table and does not include penalty
term.

•

similarity the alignment score without the gap component multiplied by 100. and divided by
the smallest sequence length.

•

sort a score occasionally used for ranking/sorting the alignments in fold recognition. Currently it
is equal to the comp_matrix_score − 1.3*totalGapPenalty

•

Score (i_minLen, r_Probability [, { identity | similarity | sort }]) − returns the real
threshold score at a given r_Probability level of occurrence of alignment with a protein of unrelated fold.
The threshold is related to the corresponding method of the score calculation (see above). For example,

 Score(150, 1./55000.,identity)

gives you the sequence identity percentage for sequences of 150 residues at which only one false positive is
expected in a search through the Swissprot database of 55000 sequences.

See also the inverse function: Probability .

2.21.108. Select

Selection of atoms according to their coordinates or properties.

Atoms with certain Cartesian coordinates can also be selected by multiplying selection to a box specified
by 6 real numbers {x,y,z,X,Y,Z}, e.g. show a_//* {−1.,10.,2.,25.,30.,22.} or a_//*
Box().

See also: display box and the Box function.

Select (as_ s_condition [r_Value]) − returns a subselection of atom selection as_ according to the
specified condition s_condition.

Three example conditions:

"X >= 2.0" , "Bfactor != 25." , "charge == 0." . Allowed properties and their
aliases (case does not matter, the first character is sufficient) are as follows:

x,y,z atomic coordinates ("x","y","z")•
bfactor ("bfactor","b","B")•
occupancy ("o")•
charge ("charge","c","q")•
accessible surface area ("area","a")•
user−field ("u") which can be set with set field and extracted with the Field function.•
residue user−fields: "u","v","w" for the 1st, 2nd and 3rd field, respectively.•

Note: do not forget to calculate surface in advance with the show area command. Allowed comparisons:
(== != > < >= <=). The value can either be specified inside the string or used as a separate argument

358 2.21.108. Select

r_Value.

See also the related functions: Area, Bfactor, Xyz, Charge, Field .

Examples:

 build string "se glu arg"
 show Select(a_//* "charge < 0.")|Select(a_//c* "x> −2.4")
 show Select(a_//c* , "x>", −2.4)

 show Select(a_/* , "w>3.") # 3rd res. user field greater than 3.

Select (as_sourceSelection os_targetObject)

− returns the source selection as_sourceSelection from a source object which is transferred to another
object (os_targetObject). The two objects must be identical in content. Example:

 buildpep "ASD"
 aa = a_/2/c* # selection in the current obj a_
 copy a_ "b" # a copy of the source object
 bb = Select(aa,a_b.) # selection aa moved to a_b.

2.21.109. Sequence

function.

Sequence (as_select) − returns sequence extracted from specified residues.

Sequence (string [nucleotide | protein]) − converts a string (e.g. "ASDFTREW") into an ICM
sequence object. By default the type is "protein". To reset the type use the set type seq {
nucleotide | protein } command.

Examples:

 seqA = Sequence(a_1./15:89) # create sequence object
 # with fragment 15:89

 show Align(seq1, Sequence("HFGD−−KLS AREWDDIPYQ")
 # non−characters will be squeezed out
 a=Sequence("ACTGGGA", nucleotide)
 Type(a , 2) # returns the type−string :
 nucleotide

Sequence (ali_) − returns a chimeric sequence which represents the strongest character in every
alignment position.

Sequence (prf_) − returns a chimeric sequence which represents the strongest character in every
profile position.

2.21.109. Sequence 359

2.21.110. reverse complement dna sequence function

Sequence (seq_DNAsequencereverse) − returns the reverse complement DNA sequence:

 nucleotide |complement
_____________________|__________
 |
 A = Adenosine | T (replace by U for RNA)
 C = Cytidine | G
 G = Guanosine | C
 T = Thymidine | A
 U = Uridine | A
 R = puRine (G A) | Y
 Y = pYrimidine(T C) | R
 K = Keto (G T) | M
 M = aMino (A C) | K
 S = Strong (G C) | S
 W = Weak (A T) | W
 B = !A (G T C) | V
 D = !C (G A T) | H
 H = !G (A C T) | D
 V = !T (G C A) | B
 N = aNy | N

2.21.111. Sign

transfer−of−sign function. It returns the value (or values) of sign { −1.|0.|+1.} of its argument.

Sign (real) − returns real sign of the argument.

Sign (integer) − returns integer .

Sign (iarray) − returns iarray.

Sign (rarray) − returns rarray.

Examples:

 Sign(−23)
 −1
 Sign(−23.3)
 −1.
 Sign({−23,13})
 {−1,1}
 Sign({−23.0,13.1})
 {−1.,1.}

2.21.112. Sin

sine trigonometric function. Arguments are assumed to be in degrees.

Sin ({ real | integer }) − returns the real sine of its real or integer argument.

360 2.21.110. reverse complement dna sequence function

Sin (rarray) − returns the rarray of sines of rarray elements.

Examples:

 print Sin(90.) # equal to 1
 print Sin(90) # the same

 print Sin({−90., 0., 90.}) # returns {−1., 0., 1.}

2.21.113. Sinh

hyperbolic sine function.

Sinh ({ real | integer }) − returns the real hyperbolic sine of its real or integer argument.
Sinh(x)=0.5(eiz − e−iz)

Sinh (rarray) − returns the rarray of hyperbolic sines of rarray elements.

Examples:

 print Sinh(1.) # equal to 1.175201
 print Sinh(1) # the same
 print Sinh({−1., 0., 1.}) # returns {−1.175201, 0., 1.175201}

2.21.114. Site

site selection function

Site (s_siteID [ms_]) − returns the iarray of the site numbers in the selected molecule. The default is
all the molecules of the current object.

Example:

 nice "1est" # contains some sites
 delete site a_1 Site("CONFLICT",a_1)

2.21.115. Smiles

convert chemical structure into a Smiles string.

Smiles (as_) − returns the smiles− string with the coded representation of the chemical structure
of selected fragment.

See also: build smiles, String(as_) − chemical formula.

2.21.116. Smooth

sliding window averaging, convolution, 3D−gaussian smoothing, map smoothing and function derivatives.

2.21.113. Sinh 361

Smooth

Smooth (R_source, [i_windowSize]) − returns the window−averaged rarray. The array is of the
same dimension as the R_source and i_windowSize is set to windowSize by default. An average value is
assigned to the middle element of the window. i_windowSize must be an odd number. At the array
boundaries the number of averaged elements is gradually reduced to one element, i.e. if i_windowSize=5,
the 3rd element of the smoothed array will get the mean of R1,R2,R3,R4,R5, the second element will get
the mean of R1,R2 and R3, and the first element will be set to R1.

Smooth (R_source, R_weightArray) − returns the rarray of the same dimension as the R_source,
performs convolution of these two arrays. If R_weightArray contains equal numbers of 1./ i_windowSize, it
is equivalent to the previous option. For averaging, elements of R_weightArray are automatically
normalized so that the sum of all elements in the window is 1.0.

Normalization is not applied if the sum of elements in the R_weightArray is zero. Convolution with such an
array may help you to get the derivatives of the R_source array. Use:

 {−1.,1.}/Xstep # for the first derivative
 {1.,−2.,1.}/(Xstep*Xstep) # for the second derivative
 {−1.,3.,−3.,1.}/(Xstep*Xstep*Xstep) # for the third derivative
 # ... etc.

Examples:

 gauss=Exp(−Power(Rarray(31,−1.,1.) , 2)) # N(0.,1.) distribution on a grid
 x = Rarray(361,−180.,180.) # x−array grows from 0. to 180.
 a = Sin(x) + Random(−0.1,0.1,361) # noisy sine

 b = Smooth(a,gauss) # gauss averaging
 # see how noise and smooth signals look
 plot x//x a//b display {−180.,180.,30.,10.}
 # take the first derivative of Sin(x)
 c = Smooth(Sin(x),{−1., 1.}) * 180.0 / Pi
 # plot the derivative
 plot x c display {"X","d(Sin(X))/dX","Derivative"}

Smooth: three−dimensional averaging of residue properties

Smooth (rs_, R_property, r_smoothRadius) − gaussian averaging of property array R_property of
residues rs_ . The averaging is performed according to the spatial distance between residue Ca atoms. The
function returns the rarray of the residue property AVERAGED in 3D using spherical gaussian with
sigma of r_smoothRadius. Each residue contributes to the smoothed property with the weight of
exp(−Dist_i_j2/ r_smoothRadius2).

The interresidue distances Dist_i_j are calculated between atoms carrying the residue label (normally
a_//ca). These atoms can be changed with the set label command. Array R_1 is normalized so that the
mean value is not changed.

The distances are calculated between

Examples:

362 2.21.116. Smooth

 nice "1tet" # it is a macro displaying ribbon++
 R = Bfactor(a_/A) # an array we will be 3D−averaging
 color ribbon a_/A Smooth(a_/A R 1.)//5.//30. # averaging with 1A radius
 color ribbon a_/A Smooth(a_/A R 5.)//5.//30. # with 5A radius
 color ribbon a_/A Smooth(a_/A R 10.)//5.//30. # with 10A radius
 # 5.//30. are appended for color scaling from 5. (blue) to 30.(red)
 # rather than automated rescaling to the current range

 set field a_/A Smooth(a_/A R 5.)
 show Select(a_/A "u>30.") # select residues with 1st field > 30.

Smooth: expanding alignment gaps

Smooth (ali_, [i_gapExpansionSize]) − returns a transformation of the initial alignment in which
every gap is widened by the i_gapExpansionSize residues. This transformation is useful in modeling by
homology since the residue pairs flanking gaps usually deviate from the template positions.

The default i_gapExpansionSize is 1 (the gaps are expanded by one residue)

Smooth: transforming three−dimensional map functions.

Smooth (map_ , ["expand"])

weighted 3D−window averaging

Smooth (map_) − returns map with averaged map function values. By default the value in each grid node
is averaged with the six immediate neighbors (analogous to one−dimensional averaging by
Smooth(R,{1.,2.,1.}) . By applying Smooth several times you may effectively increase the window. This
operation may be applied to "ge","gb","gs" and electron density maps

low−values propagation

Smooth (map_ "expand") − returns map in which the low values were propagated in three dimensions to
the neighboring nodes. This trick allows to generate more permission van der Waals maps.

This operation may be applied to "gh","gc" and electron density maps.

Examples:

 m_gc = Smooth(Smooth(m_gc "expand"), "expand")

See also: map .

2.21.117. Sql

functions to connect to a MySql server and run SQL queries. This function has the following properties:

it supports one connection at a time•
requires a running MySql server (see www.mysql.com) with a database•
the record columns from the database are converted into the ICM sarrays, rarrays and iarrays with
one exception. The mysql BIGINT values can not be converted into iarray and are stored as a

•

2.21.116. Smooth 363

string array (sarray).

Sql (connect s_host s_loginName s_password s_dbName) − returns the logical status of
connection to the specified server. The arguments are the following:

s_host (default "localhost") − the host name•
s_loginName (default "root")•
s_password − the database password•
s_dbName − the database name•

Sql (s_SQLquery) − returns the table of the selected records. Some SQL commands are not really
queries and do not return records, but rather perform certain operations (e.g. insert or update records, shows
statistics). In this case an empty table is returned. An example:

 if !Sql(connect "localhost","john","secret","swiss") print "Error"
 id=24
 T =Sql("SELECT * FROM swissprothits WHERE featureid="+id)
 sort T.featureid
 web T
Another example
 tusers = Sql("select * from user where User=" + s_usrName)
 Sql(off)

Sql (off) − disconnects from the database server and returns the logical status.

2.21.118. Sqrt

square root function.

Sqrt (real) − returns the real square root of its real argument

Sqrt (rarray) − returns rarray of square roots of the rarray elements.

Sqrt (matrix) − returns matrix of square roots of the matrix elements.

Examples:

 show Sqrt(4.) # 2.
 show Sqrt({4. 6.25}) # {2. 2.5}

2.21.119. Sphere

sphere selection function. It returns a selection containing atoms, residues or molecules within a certain
radius around the initial selection. It returns atom selection which can be then converted into residue and
molecules with the Res and Mol functions respectively. The default value is defined by the
selectSphereRadius . ICM−shell variable which is equal to 5.0 A by default.

Sphere ({ as_source | g_ | R_xyz| M_xyz } [as_whereToSelect] [{ i_Radius | r_Radius}]) this function
always returns a selection of atoms in a certain vicinity of the following:

a group of atoms (as_)•

364 2.21.118. Sqrt

any vertex point of a grob (g_)•
a point in space (R_xyz)•
a group of points in space (M_xyz) (e.g. see the Xyz function)•

The atoms will be searched in the specified selection as_whereToSelect if the second selection is explicitly
specified. If only one atom selection is specified, the atoms will be selected from the same object.

Use the selection level functions (Res , Mol , and Obj to convert the atom selection into residues,
molecules or objects, respectively (e.g. Res(Sphere(a_/15,4.))). For example, selection

 show Sphere(a_subA/14:15/ca,c,n,o , 5.2)
 Res(Sphere(a_1.2 a_2.)) # residues of a_2. around ligand a_1.2

2.21.120. Split

function.

Split (s_multiFieldString, [s_Separators]) − returns sarray of fields separated by s_Separators. By
default s_Separators is set to s_fieldDelimiter. Multiple spaces are treated as one space, while all
other multiple separators lead to empty fields between them. If s_Separator is an empty string (""), the line
will be split into individual characters. To split a multi−line string into individual lines, use Split(s_, "\n").

Examples:

 lines=Split("a 1 \n 2","\n") # returns 2−array of {"a 1" " 2 "}
 flds =Split("a b c") # returns 3−array of {"a" "b" "c"}
 flds =Split("a b:::c",":") # returns 4−array of {"a b","","","c"}
 resi =Split("ACDFTYRWAS","") # splits into individual characters
 # {"A","C","D","F",...}

See also: Field().

2.21.121. Srmsd

"static" root−mean−square deviation function.

Srmsd (as_select1 as_select2 [{ { align | ali_ } | exact }]) − returns real value of
root−mean−square deviation. Similar to function Rmsd, but works without optimal superposition, i.e.
atomic coordinates are compared as they are without modification. Number of equivalent atom pairs is
saved in i_out (see alignment options).

Examples:

 superimpose a_1.1 a_2.1 # two similar objects, each
 # containing two molecules
 print Srmsd(a_1.2//ca a_2.2//ca) # compare how second molecule
 # deviates if first superimposed

Srmsd (as_select) − returns real root−mean−square length of absolute distance restraints (tethers)
for the tethered ICM−objects.

2.21.120. Split 365

Equivalent to

Sqrt(Energy("tz")/Nof(tether)) after show energy "tz" .

2.21.122. String

function.

String (sequence) − converts sequence into a string

String (integer) − converts integer into a string

String (real [i_nOfDecimals]) − converts real into a string . It also allows to round a real number to
a given number of digits after decimal point.

String (string, i_NofRepeats) − repeat specified string i_NofRepeats times

String (string, all) − adds flanking quotes and extra escape symbols to write this string in a form
interpretable in shell in $string expression.

String (s_input, s_default) − if the input s_input string is empty returns the s_default, otherwise
returns the s_input string

String (string, i_offset, i_length) − returns substring of length i_length. If i_length is negative
returns substring from the offset to the end.

String (sarray) − extracts the first string from the array

String ({ iarray | rarray | matrix } } [s_translateString]) − converts numbers into a string or ascii
characters (the "Ascii art", i.e. 12345 −> "..:*#").

The range between the minimal and maximal values is equally divided into equal subranges for each
character in the string. This function is useful for ascii visualization of arrays and matrices. The default
translation string is ".:*0#". Another popular choice is "0123456789".

Examples:

 file=s_tempDir//String(Energy("ener")) # tricky file name
 show Index(String(seq),"AGST") # use Index to find seq. pattern
 tenX = String("X",10) # generate "XXXXXXXXXX"

 read matrix
 show String(def," ..:*#")

See also: show map.

String (i_from, i_to, string) − returns substring starting from i_from and ending at ~i_to. If i_from
is less than i_to the string is inverted. Zero value is automatically replaced by the string length, −1 is the
last but one element etc.

366 2.21.122. String

Examples:

 String(1,3,"12345") # returns substring "123"
 String(4,2,"12345") # returns substring "432"
 String(1,0,"12345") # returns "12345"
 String(0,1,"12345") # returns INVERTED string "54321"
 String(−1,1,"12345") # returns "4321"

String (ali_) − converts the alignment into a multiline string . You can further split it into individual
lines like "−−NSGDG" with the Split(String(ali_)) command. The offset in a specific sequence
and its number can be found as follows.

Examples:

 read alignment s_icmhome+"sh3"
 offs=Mod(Indexx(String(sh3),"−−NSGDG"),Length(sh3)+1)
 # extract alignment into a string, (+1 to account for '\n')
 iSeq = 1 + Indexx(String(sh3),"−−NSGDG")/(Length(sh3)+1)
 # identify which sequence contains the pattern

String (ali_ tree) − returns a Newick tree string describing the topology of the evolutionary tree.
The format is described at
http://evolution.genetics.washington.edu/phylip/newicktree.html .

Example:

 read alignment s_icmhome+"sh3"
 show String(sh3 tree)

Projecting properties from alignment to a member sequence.

String (s_ali ali_from { seq_ | i_seqNumber })

− returns a projected string . The s_ali string contains characters defined for each position of alignment
ali_from. The function squeezes out the characters which correspond to insertions into sequence seq_ . This
operation, in effect, projects the alignment string s_ali onto sequence seq_.

See also the Rarray(R_,ali_,seq_) function to project rarrays.

Example (projection of the consensus string onto a sequence):

 read alignment s_icmhome+"sh3" # 3 seq.
 cc = Consensus(sh3)
 show String(Spec)//String(cc,sh3,Spec)

Projecting properties from member sequence to alignment

String (s_seq { seq_ | i_seqNumber } ali_to s_gapDefChar) − projects the input string from seq_ to
ali_to (the previous function does it in the opposite direction). The R_seq string contains characters defined
for each position of the sequence seq_. The function fills the gap positions in the output with the
r_gapDefChar character. Combination of this and the previous functions allow you to project any string s1
from one sequence to another by projecting the s1 of seq1 first to the alignment and than back to seq2 (e.g.

2.21.122. String 367

String(String(s1,seq1,a,"X") , a, seq2)).

See also the Rarray(R_,seq_,ali_,r_gapDefault) function to project real arrays.

Example (transfer of the secondary structure from one sequence to another):

 read alignment s_icmhome+"sh3" # 3 seq.
 ssFyn = Sstructure(Fyn)
 set sstructure Spec String(String(ssFyn,Fyn,sh3,"_"),sh3,Spec)
 show Spec

String(selection): converting selections into the text form

String ({ os_ | ms_ | rs_ | as_ } [i_number]) converts a selection into a compact string form.
Continuous blocks of selected elements in different molecules or objects are separated by vertical bar (|)
which means logical or (e.g. a_a.1:4|a_b.2,14) You can also divide this selection info a string array
with the Split function.

Option i_number allows to print only i−th element of the selection. It is convinient in scripts. For atom
selections it will also show full information about each atom, rather than only the ranges of atom numbers.

This string form is convenient used for several purposes:

to store selections in tables and arrays.•
to transfer selections from object to object and from session to session (see also the Select
function)

•

An example in which we generate text selection of the Crn leucine neighbors :

 nice "1crn"
 nei = String(Res(Sphere(a_/leu a_/!leu , 4.)))
 show nei
 a_1crn.m/14:17,19:20
 display xstick $nei

Another example with a loop over atom selection of carbon atoms:

 read pdb "2ins"
 for i=1, Nof(a_//c*)
 print String(a_//c* i)
 endfor

2.21.123. Chemical formula

String ([all | dot | smiles | sln] as_)

− returns string with the following chemical information:

option description example
all chemical formula e.g. C2H6O
dot chemical formula with dot−separated moleculese.g. C2H6O.C3H8

368 2.21.122. String

smiles smiles string e.g. [CH3][CH2][OH]
sln sln notation e.g. CH3CH2OH
See also: Smiles , smiles .

Example:

 build string "se ala" # alanine
 show String(a_//* all) # returns chemical formula: C3H5NO
 show String(a_//* sln) # returns SLN notation: NHCH(CH3)C=O
 show String(a_//* smiles) # returns SMILES string: [NH][CH]([CH3])C=O

2.21.124. Sstructure

secondary structure function.

Sstructure (rs_) − returns string of secondary structure characters ("H","E","_", etc.) extracted
from specified residuesrs_ .

Sstructure ({ rs_ | s_seqStructure } compress) − returns the compressed string of secondary
structure characters, one character per secondary structure segment, e.g. HHE means helix, helix, strand.
Use the Replace function to change B to '_' and G helices to H helices, or simply all non H,S residues to
coil (e.g. Sstructure(Replace(ss,"[!EH]","_"),compress))

Example:

 show Sstructure("HHHHHHH_____EEEEE",compress) # returns string "HE"

 read object "crn"
 show Sstructure(a_/A , compress) # returns string "EHHEB"

Sstructure ({ seq_ | s_sequenceString }) − returns string of secondary structure characters
("H","E","_"). If this string has already been assigned to the sequence seq_ with the set sstructure
command or the make sequence ms_ command, the function will return the existing secondary
structure string. To get rid of it, use the delete sstructure command.

Alternatively, if the secondary structure is not already defined, the Sstructure function will predict the
secondary structure of the seq_ sequence with the Frishman and Argos method.

If the specified sequence is not a part of any alignment of sequence group only a single
sequence prediction will be effected (vide infra). Otherwise, a group or an alignment will be identified and
a true multiple sequence prediction algorithm is applied. The multiple sequence prediction by this method
reaches the record of 75% prediction accuracy on average for a standard selection of 560 protein chains
under rigorous jack−knife conditions. The larger the sequence set the better the prediction. Prediction
accuracy for a single sequence is about 68%. To collect a set perform the fasta search (Pearson and
Lipman, 1988) with ktup=1 and generate a file with all the sequences in a fasta format.

Method used for derivation of single sequence propensities.

Seven secondary−structure related propensities are combined to produce the final prediction string. Three
are based on long−range interactions involving potential hydrogen bonded residues in anti−parallel and

2.21.124. Sstructure 369

parallel beta sheet and alpha−helices. Other three propensities for helix, strand and coil, respectively, are
predicted by the "nearest neighbor" approach (Zhang et al., 1992), in which short fragments with known
secondary structure stored in the database (icmdssp.dat) and sufficient similarity to the target sequence
contribute to the prediction. Finally, a statistically based turn propensity (also available separately via the
Turn(sequence) function), is employed over the 4−residue window as described by Hutchinson and
Thornton (1994). The function also returns four real arrays in the M_outmatrix [4, seqLength]. There
arrays are:

M_out[1] : alpha−helix propensity [0., 1.]•
M_out[2] : beta−sheet propensity [0., 1.]•
M_out[3] : coil propensity [0., 1.]•
M_out[4] : prediction reliability [0., 1.]•

Note that these propensities are not directly related to the prediction. Usually the reliability level of 0.8
guaranties prediction accuracy of about 90%. Do not be surprised if the propensities are all zero for a
fragment. It may just mean that the statistics is too scarce for a reliable estimate.

Examples:

 show Index(Sstructure(a_1crn.,"HHHHHH")) # first occurrence of
 # helix in crambin

 read sequence "sh3" # load 3 sequences (the full name is s_icmhome+"sh3")
 show Sstructure(Spec) # secondary structure prediction for one of them
 show Sstructure("AAAAAAAAAAAAA") # sec. structure prediction for polyAla

 read sequence "fasta_results.seq"
 group sequences a unique 0.05 # remove redundant sequences
 show Sstructure(my_seq_name) # the actual prediction, be patient
 plot number M_out display # plot 3 propensities and reliability

2.21.125. Sum

function.

Sum (iarray) − returns the integer sum of iarray elements.

Sum ({ rarray | map }) − returns the real sum of elements.

Sum (matrix) − returns the rarray of sums in all the columns.

Sum (sarray [s_separator]) − returns string of concatenated components of a sarray separated by the
specified s_separator or blank spaces by default. See also the opposite function: Split .

Examples:

 show Sum({4 1 3}) # 8
 show Sum(Mass(a_1//*)) # mass of the first molecule
 show Sum({"bla" "blu" "bli"}) # "bla blu bli" string
 show Sum({"bla" "blu" "bli"},"\t") # separate words by TAB
 show Sum({"bla" "blu" "bli"},"\n") # create a multiple line string

370 2.21.125. Sum

2.21.126. Symgroup

function.

Symgroup ({ s_groupName | os_object | m_map }) − returns the integer number of one of 230 named
space groups defined in ICM.

Symgroup ({ i_groupNumber | os_object | m_map } string) − returns the string name of one of
230 space groups defined in ICM.

Symgroup (i_groupNumber) − returns the rarray of transformation matrices (12 numbers each)
describing symmetry operations of a given space group.

Examples:

 iGroup = Symgroup("P212121") # find the group number=19
 print "N_mol. in the cell =", Nof(Symgroup(iGroup))/12

2.21.127. Table

generic function return a table.

Table (s_URL_encoded_String [crypt])

− returns the table of "name" and "value" pairs organized in two string arrays. The
URL−encoding is a format in which the HTML browser sends the HTML−form input to the server either
through standard input or an environmental variable. The URL−encoded string consists of a number of the
"name=value pairs separated by ampersand (&). Additionally, all the spaces are replaced by plus signs
and special characters are encoded as hexadecimals with the following format %NN. The Table function
decodes the string and creates two string arrays united in a table.

Option crypt allows to interpret doubly encoded strings (e.g. ' ' is translated to '+' which then converted
into a hexadecimal form). Frequently the problem can be eliminated by specifying the correct port.
Example: you need to set a="b c" and d="<%>". Normal server will convert it to a=b+c> Double
encoding leads to a=b%2bcE. To parse the last string, use the crypt
option.

To see all the hidden symbols (special attention to '\r'), set l_showSpecialChar=yes.

Examples:

 read string # read from stdin in to the ICM s_out string
 a=Table(s_out) # create table a with arrays a.name and a.value
 show a # show the table
 for i=1,Nof(a) # just a loop accessing the array elements
 print a.name[i] a.value[i]
 endfor

See also: Getenv().

2.21.126. Symgroup 371

2.21.128. Converting alignment into a table

Table (ali_ [number]) − returns the table of relative amino acid positions for each of the sequence
in alignment ali_. Gaps are marked by zero. The first column of the table, .cons , contains sarray of
consensus characters. All the other arrays are named according to the sequence names by default,
or by the sequential number of a sequence in the alignment, if option number is specified. The table may
be used to project numbers from one sequence to another. See also the Rarray(R_, ali_, seq_) function.
This table may look like this:

#>T pos
#>−cons−−−−seq1−−−−−seq2−−−−−−−
 " " 0 1
 " " 0 2
 C 1 3
 " " 2 0
 ~ 3 4
 C 4 5
 " " 0 6
for the following alignment:
Consensus C ~C
seq1 −−CYQC−
seq2 LQC−NCP

Example:

 read alignment "sh3"
 t = Table(sh3 number) # arrays t.1 t.2 t.3
 t = Table(sh3) # arrays t.cons t.Fyn t.Spec t.Eps8
#
 cc = t.cons ~ "[A−Z]" # all the conserved positions
 show cc # show aa numbers at all conserved positions
 show t.Fyn>=10 t.Fyn<=20 # numbers of other sequences in this range

2.21.129. Extracting parameters of stack conformations

Table (stack [vs_])

− return table of parameters for each conformation in a stack . If a variable selection argument is
provided, the values of the specified variables are returned as well.

% icm
 buildpep "ala his trp"
 montecarlo
 show stack
 iconf> 1 2 3 4 5 6 7
 ener> −15.1 −14.6 −14.6 −14.2 −13.9 −11.4 −1.7
 rmsd> 0.3 39.2 48.0 44.1 27.4 56.6 39.3
 naft> 1 0 0 1 1 1 0
 nvis> 4 1 1 4 4 4 1
t= Table(stack)
show t
 #>T t
 #>−ener−−−−−−−−rmsd−−−−−−−−naft−−−−−−−−nvis−−−−−−−
 −15.126552 0.295555 1 4
 −14.639667 39.197378 0 1

372 2.21.128. Converting alignment into a table

 −14.572973 47.996203 0 1
 −14.220515 44.058755 1 4
 −13.879041 27.435388 1 4
 −11.438268 56.636246 1 4
 −1.654792 39.265912 0 1
t1= Table(stack v_//phi,psi) # show also five phi−psi angles
 #>T
 #>−ener−−−−rmsd−−naft−nvis−−−−−−v1−−−−−−v2−−−−−−v3−−−−−−v4−−−−−−−v5−−−−−
 −15.12 0.29 1 4 −79.10 155.59 −75.30 146.99 −141.13
 −14.63 39.19 0 1 −157.22 163.56 −78.25 139.51 −137.30
 −14.57 47.99 0 1 −157.26 166.87 −85.08 92.55 −84.74
 −14.22 44.05 1 4 −67.65 80.43 −76.67 103.05 −81.85
 −13.87 27.43 1 4 −82.72 155.86 −85.02 93.11 −81.46
 −11.43 56.63 1 4 −78.28 152.80 −154.79 66.26 −77.61
 −1.65 39.26 0 1 −78.17 169.41 −133.89 96.39 −96.03

See also: Iarray(stack) function

2.21.130. Tan

tangent trigonometric function. Arguments are assumed to be in degrees.

Tan ({ r_Angle | i_Angle }) − returns the real value of the tangent of its real or integer argument.

Tan (rarray) − returns rarray of the tangents of each component of the array.

Examples:

 show Tan(45.) # 1.
 show Tan(45) # the same

 show Tan({−30., 0. 60.}) # returns {−0.57735, 0., 1.732051}

2.21.131. Tanh

hyperbolic tangent function.

Tanh ({ r_Angle | i_Angle }) − returns the real value of the hyperbolic tangent of its real or integer
argument.

Tanh (rarray) − returns rarray of the hyperbolic tangents of each component of the array.

Examples:

 show Tanh(1) # returns 0.761594
 show Tanh({−2., 0., 2.}) # returns −0.964028, 0., 0.964028

2.21.132. Tensor

function the second moments for a multidimensional distribution.

2.21.130. Tan 373

Tensor (M_) − returns the square matrix of second moments of K points in N −dimensional space, Mki
(k=1,K,i=1,N) . The matrix NxN is calculated as

< Xi >< Xj > − < Xi Xj > , where < .. > is averaging over a column k=1,K, and i,j=1,N.

In one−dimensional case, N=1, when M_ is just one column (k=1,K; i=1,1) the function returns a
one by one matrix with the mean−square−deviation of the vector (which is equal to
Rmsd(R_)*Rmsd(R_)).

•

N=2, x and y dimensions; In this case the function returns the 2 by 2 matrix: with <x>2−<x2> and
<y>2−<y2> on the diagonal and <x><y>−<xy> off−diagonal elements.

•

In three−dimensional case the function returns three by three tensor of inertia (it was too tiring to
type the formula in html). This matrix is useful for superposition of bodies or molecules on the
basis of shape, since three principal coordinates can be easily derived from the tensor using the
Eigen or Disgeo functions. This trick used in the _dockScan script.

•

Example: buildpep "AAA" # a long molecules xyz = Xyz(a_//c*) # a coordinate matrix of
carbons # you can also do it with grobs: xyz = Xyz(g_myGrob) a=Tensor(xyz) # compute 3 by 3
matrix of the second moments b=Eigen(a) # returns 3 axis vectors ax1= b[?,1] # this is the longest
half axis ax2= b[?,2] # this is the second half axis ax3= b[?,3] # this is the shortest half axis len1 =
Length(ax1) # long axis length len2 = Length(ax2) # mid axis length len3 = Length(ax3) # short
axis length r = Matrix(3,3) # to make the rotation matrix from b normalize the axes r[?,1] = ax1 /
Length(ax1) r[?,2] = ax2 / Length(ax2) r[?,3] = Vector(r[?,1], r[?,2]) rotate a_ Transpose(r) #
rotates the principal axes to x,y,z # x the longest

This commands are assembled in the calcEllipsoid M_xyz macro which returns
ellipseRotMatrix , and three vectors: ellipseAxis1 , ellipseAxis2 and ellipseAxis3

See also: Rot, rotate, transform

Example to orient the principal axes of the molecule along X,Y and Z (the longest axis along X, etc.).

 build string "se ala ala ala ala" # let is define the ellipsoid
 display virtual
 a = Tensor(Xyz(a_//!h*)) # Xyz returns matrix K by 3
 b=Eigen(a) # 3x3 matrix of 3 eigenvectors
 b[?,1] = b[?,1] / Length(b[?,1]) # normalize V1 in place
 b[?,2] = b[?,2] / Length(b[?,2]) # normalize V2
 b[?,3] = Vector(b[?,1], b[?,2]) # V3 is a vector product V1 x V2
 rotate a_ Transpose(b) # b is the rotation matrix now
 # Transpose(b) is the inverse rotation
 set view # set default X Y Z view

2.21.133. Temperature

function returning the oligonucleotide duplex melting temperature.

Temperature ({ s_DNA_sequence | seq_DNA_sequence } [r_DNA_concentration_nM [r_Salt
concentration_mM]])

− returns the real melting temperature of a DNA duplex at given concentration of oligonucleotides and
salt. The temperature is calculated with the Rychlik, Spencer and Roads formula (Nucleic Acids Research,

374 2.21.133. Temperature

v. 18, pp. 6409−6412) based upon the dunucleotide parameters provided in Breslauer, Frank, Bloecker, and
Markey, Proc. Natl. Acad. Sci. USA, v. 83, pp. 3746−3750. The following formula is used:

Tm=DH/(DS + R ln(C/4)) −273.15 + 16.6 log[K+]

where DH and DS are the enthalpy and entropy for helix formation, respectively, R is the molar gas
constant and C is the total molar concentration of the annealing oligonucleotides when oligonucleotides are
not self−complementary. The default concentrations are C=0.25 nM and [K+]= 50 mM. This formula can
be used to select PCR primers and to select probes for chip design. Usually in primer design the
temperatures do not differ from 60. by more than several degrees.

2.21.134. Time

function returning time spent in ICM.

Time (string) − returns the string of time (e.g. 00:12:45) spent in ICM.

Time () − returns the real time in seconds spent in ICM.

Examples:

 if (Time() > 3660.) print "Tired after " Time(string) " of work?"

2.21.135. Tolower

convert to the lowercase.

Tolower (string) − returns the string converted to the lowercase. The original string is not changed

Tolower (sarray) − returns the sarray converted to the lowercase. The original sarray is not changed.

Examples:

 show Tolower("HUMILIATION")

 read sarray "text.tx" #create sarray 'text' (file extension is ignored)
 text1 = Tolower(text)

See also: Toupper().

2.21.136. Torsion

angle function.

Torsion (as_) − returns the real torsion angle defined by the specified atom as_ and the three
previous atoms in the ICM−tree. For example, Torsion(a_/5/c) is defined by { a_/5/c , a_/5/ca ,
a_/5/n , a_/4/c } atoms. You may type: print Torsion(and then click the atom of interest, or
use GUI to calculate the angle.

2.21.134. Time 375

Torsion (as_atom1, as_atom2, as_atom3, as_atom4) − returns the real torsion angle defined by four
specified atoms.

Examples:

 d=Torsion(a_/4/c) # d equals C−Ca−N−C angle

 print Torsion(a_/4/ca a_/5/ca a_/6/ca a_/7/ca) # virtual Ca−Ca−Ca−Ca
 # torsion angle

2.21.137. Toupper

convert to the uppercase.

Toupper (string) − returns the string converted to the uppercase. The original string is not changed

Toupper (sarray) − returns the sarray converted to the uppercase. The original sarray is not changed.

Examples:

 show Toupper("promotion")

 read sarray "text.tx"
 text1 = Toupper(text)

See also: Tolower().

2.21.138. Tr123

translate one−character sequence to three−character notation.

Tr123 (sequence) − returns string like "ala glu pro".

Examples:

 show Tr123(seq1)

See also: Tr321(). IcmSequence().

2.21.139. Tr321

translate three−character sequence to one−character notation.

Tr321 (s_) − returns sequence from a string like this: "ala glu pro". This function is complementary to
function Tr123(). Unrecognized triplets will be translated into 'X'.

Examples:

 show Tr123("ala his hyp trp") # returns AHXT

376 2.21.137. Toupper

2.21.140. Trace

matrix function.

Trace (matrix) − returns the real trace (sum of diagonal elements) of a square matrix.

Examples:

 show Trace(Matrix(3)) # Trace of the unity matrix [3,3] is 3.

2.21.141. Trans

translation function. 3D translation vector or DNA sequence translation.

Trans (R_12transformationVector) − extracts the R_3 vector of translation from the
transformation vector.

Trans (seq_DnaOrRnaSequence)

− returns the translated DNA or RNA sequence ('−' for a Stop codon, 'X' for an ambiguous codon) using the
standard genetic code. See also: Sequence(seq_reverse) for the reverse complement DNA/RNA
sequence.

Example (6 reading frames):

 w=Sequence("CGGATGCG>>AAATGATGCTGTGGCTCTTAAAAAAGCAGATATTGGAG")
 show Trans(w), Trans(w[2:999]),Trans(w[3:999])
 c=Sequence(w,reverse)
 show Trans(c), Trans(c[2:999]),Trans(c[3:999])

Trans (seq_DnaOrRnaSequence { all | frame } [i_minLen] [s_startCodons])

return a table of identified open reading frames in DNA sequence not shorter than i_minLen . The
function was designed for very large finished sequences from the genome projects. Currently the Standard
Genetic code is used. Option s_startCodons allows to provide a comma−separated list of starting codons; if
omitted, the default is "ATG" , another example would be "ATG,TTG" (for S.aureus).

Option frame indicates that both start and stop codons need to be found. If they is not found or the
fragment is too short, the table will be empty.

Option all allows to translate ALL POTENTIAL peptides by assuming that the start and/or stop codons
may be beyond the sequence fragment. In this case, initially all 6 frames are produces. Later, some of them
can be filtered out by the i_minLen threshold. The unfinished end codons will be marked by 'X'.

The table has the following structure:

frame − integer 1 2 3 for the direct chain, or −1, −2, −3 for the complementary chain, respectively•
left − translation offset in the direct strand (even if translation occurred in the complementary
chain)

•

right − translation offset in the direct strand.•

2.21.140. Trace 377

dir − direction (+1 for the direct, −1 for the complementary)•
len − fragment length•
seq − sequence string•

For example, if the fragment is in the complementary strand it may have the following parameters:

#>−frame−−−−−−−left−−−−−−−−right−−−−−−−dir−−−−−−−−−len−−−−−−−−−seq−−−−−−−−
 −1 22 57 −1 12 XCVXVAAESVAS

In this case translation follows the reverse strand (frame=−1), starts in position 57 of the original direct
sequence and proceeds to position 22.

Example:

 dna=Sequence("TTAAGGGTAA TATAAAATAT AAAGTTCGAA CAATACCTCA CTAGTATCAC AACGCATATA")
 T=Trans(dna frame 10)
 sort T.left
 show T

2.21.142. Transpose

matrix function.

Transpose (matrix) − converts the argument matrix[n,m] into the transposed matrix [m,n]

Transpose (rarray) − converts real vector [n] into a one−column matrix [n,1]

Examples:

 Transpose(a) # least squares fit
 Transpose({1. 2. 3.}) # [3,1] matrix

2.21.143. Trim

function to trim array/matrix/string.

Trim (I_iarray i_lower i_upper) − returns iarray clamped into the specified range. Values smaller than
i_lower are replaced with i_lower, and values greater than i_upper are replaced with i_upper.

Trim (R_rarray r_lower r_upper) − returns rarray clamped into the specified range.

Trim (i_ i_lower i_upper) − returns integer clamped into the specified range (e.g. Trim(6,1,3) returns
3).

Trim (r_ r_lower r_upper) − returns real clamped into the specified range.

Trim (M_matrix r_lower r_upper) − returns matrix clamped into the specified range.

Trim (s_string [all]) − returns string with removed trailing blanks and carriage returns. If option
all is specified, both leading and trailing blank characters will be removed.

378 2.21.142. Transpose

Trim (s_iarray s_list_of_allowed_characters) − returns string with all characters except for the listed
in the second argument are removed. Example:

Trim("as123d","abcds")
 asd

Trim (s_string i_maxLength) − returns string which is truncated if it is longer than the i_maxLength
argument.

Trim (S_sarray) − returns sarray of strings with removed trailing blanks.

2.21.144. Turn

beta−turn prediction function.

Turn ({ seq_ | rs_ }) − returns rarray containing beta−turn prediction index. The index is derived from
propensities for i,i+1,i+2,i+3 positions for each amino−acid. Pi = pi+pi1+pi2+pi3, then high Pi values are
assigned to the next three residues. The propensities are taken from Hutchinson and Thornton (1994).

Examples:

 s = Sequence("SITCPYPDGVCVTQEAAVIVGSQTRKVKNNLCL")
 plot comment=String(s) number Turn(s) display # plot Turn prediction

See also the predictSeq macro.

2.21.145. Type

generic function returning type.

Type (icm_object_or_keyword) − returns a string containing the object type (e.g. Type(4.32) and
Type(tzWeight) return string "real"). The function returns one of the following types:
"integer", "real", "string", "logical", "iarray", "rarray", "sarray",
"aselection","vselection","sequence", "alignment", "profile", "matrix", "map", "grob",
"command", "macro", "unknown".

Type (as_ , 1) − returns a string containing the level of the selection
("atom","residue","molecule","object").

Type (os_object , 2) − returns a string containing the os_object (or current by default) molecular
object type. Defined types follow the EXPDTA (experimenal data) card of PDB file with some exceptions,
see below:

"ICM" ready for energy calculations. Those objects are either built in ICM or converted
to the ICM−type.

"X−Ray" determined by X−ray diffraction
"NMR" determined by NMR
"Model" theoretical model (watch out!)

2.21.144. Turn 379

"Electron" determined by electron diffraction
"Fiber" determined by fiber diffraction
"Fluorescence" determined by fluorescence transfer
"Neutron" determined by neutron diffraction
"Ca−trace" upon reading a pdb, ICM determines if an object is just a Ca−trace.
"Simplified" special object type for protein folding games.
The non−ICM types can be converted to "ICM" with the convert command or convertObject
macro.

Type ({ ms_ | rs_ }, 2) − returns the string type of the specified molecule or residue. Legal types are
"Amino", "Hetatm", "Nucl", "Sugar", "Lipid", "empty". Residues of the "Amino" type can be selected with
the 'A' character (e.g. a_/A). See also a one−letter code for the type which is used in selections, (e.g.
a_A,H). Examples:

 if (Type(a_1.1)!="Amino") goto skip: # deal only with proteins
 if (Type() == "NMR") print "Oh, yes!"

Type (as_ { atom | mmff }) − returns an iarray containing the ICM or MMFF atom types. Example:

 buildpep "his ala"
 show Type(a_//!?vt* atom) # icm types for non−virtual atoms

Type (as_1 as_2) − returns an integer containing the covalent bond type between the selected atoms.

Type (seq_ , 2) − returns the string type of the sequence. Two types are recognized: "protein" and
"nucleotide" . An example in which we rename and delete all DNA sequences from the session:

 read pdb sequence "1dnk"
 Type(1dnk_b, 2)
 nucleotide

read pdb sequence "1dnk" Type(1dnk_b, 2) nucleotide

for i=1,Nof(sequence)
 if Type(sequence[i],2) == "nucleotide" rename sequence[i] "dna"+i
endfor
delete sequence "dna*"

2.21.146. Unix

the output of a UNIX command.

Unix (s_unix_command) − returns the string output of the specified unix command. This output is
also copied to the s_out string. This function is quite similar to the unix command. However, the
function, as opposed to the command, can be used in an expression.

Examples:

 show Unix("which netscape") # equivalent to 'unix which netscape'
#

380 2.21.146. Unix

 if (Nof(Unix("ls"),"\n") <= 1) print "Directory is empty"

2.21.147. Value

values of bond lengths, bond angles, phase and torsion angles.

Value (vs_var) − returns rarray of selected parameters. The function considers variables only in the
current object.

Examples:

 ang=Value(a_/14:50/phi,PSI) # array of phi−psi values
 hbonds=Value(a_//bh*) # array of lengths for all H−X bonds

(Note use of special torsion PSI in the first example.)

2.21.148. Vector

vector product between two 3D−vectors.

Vector product

Vector (R_vector1 R_vector2) − returns rarray [1:3], which is the vector product with components

{ v1[2]*v2[3] − v2[2]*v1[3], v1[3]*v2[1] − v2[3]*v1[1], v1[1]*v2[2] − v2[1]*v1[2] }

Vector symmetry transformation

Vector (M_matrix) − transforms an augmented affine 4x4 space transformation matrix into a
transformation vector.

See also: Augment() function.

2.21.149. Version

information about version of the current executable.

Version ([full]) − returns string containing the current ICM version. The second field in the
string specifies the operating system: "UNIX" or "WIN". At the end there is a list of one−letter
specifications of the licensed modules separated by spaces (e.g. " G B R ").

Option full adds a few fields:

The compilation date of the executable, e.g. [Mar 18 2002 14:48]•
the path of the current executable•
the names of the licensed modules spelled explicitly•

See also: show version.

2.21.147. Value 381

Example:

 show Version() # it returns a string
 if (Real(Version()) < 2.6) print "YOUR VERSION IS TOO OLD"

 if (Field(Version(),2) == "UNIX") unix rm tm.dat
 if (Field(Version(),2) == "WIN") unix del C:\tm\tm.dat
 if Version() == " D " print " Info> the Docking module license is ok"

2.21.150. Volume

volumes of grobs, spheres, residues and cells.

Volume (grob) − returns real volume of a solid graphics object (would not work on dotted or
chicken wire grobs). ICM uses the Gauss theorem for calculate the volume confined by a closed surface:

V = 1/3 * Sum(A * n * R)

where A is a surface area of a triangle, n a normal vector, and R is is a vector from an arbitrary origin to
any vertex of the triangle. It is important that the grob is closed, otherwise, strictly speaking, the volume is
not defined. However, small surface defects will not affect substantially the calculation. ICM minimizes
possible error by rational choice of the origin, which is mathematically unimportant for an ideal case. To
define directions of the normals the program either takes the explicit normals (i.e. they may be present in an
input Wavefront file) or uses the order of points in a triangle. ICM−generated grobs created by the make
grob [potential | matrix | map] command have the correct vertex order (the corkscrew
rule), while the make grob skin command calculates explicit normals. The best way to make sure that
everything is all right is to display grob solid and check the lighting. If a grob is lighted from the
outside, the normals point outwords, and the grob volume will be positive. If a grob is lighted from the
inside (as for cavities), the normals point inwords and the volume will be negative. If the lighting, and
therefore normals, are inconsistent you are in trouble, since Mr Gauss will be seriously disappointed, but he
will issue a fair warning from the grave. The surface area is calculated free of charge and is stored in
r_out .

Example:

 read grob "swissCheese"
 # divide one grob it into several grobs
 split g_swissCheese
 for i=3,Nof(grob)
 # see, all the holes have negative volume
 print "CAVITY" i, Volume(g_swissCheese$i)
 endfor

See also: the Area(grob)} function, the split command and How to display and characterize protein
cavities section.

Volume (r_radius) − returns real volume of a sphere, (4/3)Pi*R3

Volume (s_aminoAcids) − returns real total van der Waals volume of specified amino−acids.

382 2.21.150. Volume

Volume (R_unitCellParameters) − returns real volume of a cell with parameters {a,b,c} for a
parallelepiped or {a, b, c, alpha, beta, gamma} in a general case.

Volume (g_grob) − returns real volume confined by a grob.

Examples:

 vol=Volume(1.) # 4*Pi/3 volume of unit sphere
 vol=Volume("APPGGASDDDEWQSSR") # van der Waals volume of the sequence
 vol=Volume({2.3,2.,5.,80.,90.,40.}) # volume of an oblique cell

2.21.151. View

parameters of the graphics window and graphics view.

View ([window]) − returns rarray of 36 parameters of the graphics window and view. With the
window option the function returns only WindowWidth and WindowHeight .

first 16 numbers: rotation matrix and perspective.
V[1] V[5] V[9] screen X−axis (from left to right)♦
V[2] V[6] V[10] screen Y−axis (from bottom to top)♦
V[3] V[7] V[11] screen Z−axis (outwords into the screen)♦

•

V[17:32] (next 16 numbers): the model view matrix, view point, scale and cliping planes•
V[33:34] XleftPos YupperPos•
V[35:36] WindowWidth WindowHeight. Size is given in pixels, Y is measured from the top
down.

•

See also set view and set view.

Example (how to save the image with 3 times larger resolution):

 nice "1crn" # resize window
 write image window=2*View(window) # 2−times larger image

View (R_36_FromView, R_36_ToView, r_factor)

− returns rarray of the interpolated view between the from and to view at the intermediate point 0
r_factor1. If r_factor is out of the [0,1] range, the operation becomes extrapolation and should be used with
caution. The camera view is changed in such a manner that the physical space is not distorted (the principal
rotation is determined and interpolated, as are translation and zoom)

Example:

 nice "1crn" # manually rotate and zoom
 r1= View() # save the current view
 # INTERACTIVELY CREATE ANOTHER VIEW
 r2= View() # save the new view
 for i=1,100 # INTERPOLATION
 set view View(r1,r2,i*0.01)
 endfor

2.21.151. View 383

See also View(), set view and set view.

View ({ "x"|"X"|"y"|"Y"|"z"|"Z" }) − returns rarray of 3 coordinates of the specified axis of the screen
coordinate system.

Example:

 build string "se ala"
 display # rotate it now
 show View("x")
 g1=Grob("ARROW",3.*View("x"))
 display g1

2.21.152. Warning : the ICM warning message

indicates that the previous ICM−shell command has completed with warning.
Warning ()
− returns logical yes if there was an warning in a previous command (not necessarily in the last one).
After this call the internal warning flag is reinstalled to no.
Warning (string)
− returns string with the last warning message. In contrast to the logical Warning() function, here the
internal warning code is not reinstalled to 0, so that you can use it in expressions like if Warning()
print Warning(string) .

Example:

read pdb "2ins" # has many warnings
if Warning() s_mess = Warning(string) # the LAST warning only
print s_mess

2.21.153. Xyz : atom coordinates and surface points

function returning a matrix of x,y,z coordinates.

Xyz (as_)

− returns matrix [number_of_selected_atoms , 3] in which each row contains x,y,z of the selected atoms.

Examples:

 coord=Xyz(a_//ca) # matrix of Ca−coordinates
 show coord[i] # 3−vector x,y,z of i−th atom
 show Mean(Xyz(a_//ca)) # show the centroid of Ca−atoms

Xyz (as_ r_interPointDistancesurface)

384 2.21.152. Warning : the ICM warning message

− returns a subset of representative points at the accessible

surface which are spaced out at approximately
r_interPointDistance distance. This distance from the van
der Waals surface (or skin) is controlled by the
vwExpand parameter.

Example:

 buildpep "ala his trp"
 vwExpand = 3.
 mxyz = Xyz(a_ 5. surface)
 display skin white
 dsXyz mxyz
 color a_dots. red

2.22. Macros
Macros provide you with a great mechanism to create and develop your ICM environment and adjust it to
your own needs (see also How do I customize my ICM environment.). Very often a repeated series of ICM
commands is used for dealing with routine tasks. It is wise not to retype all these commands each time, but
rather to combine them into a bunch for submission as a single command. Several examples follow.

2.22.1. buildpep: Building peptides from a sequence

buildpep s_seq

creates a new ICM object from an input sequence. This macro recognizes if you specified the sequence in
one−letter upper−case letters or lower−case three−letter code and adds uncharged N− and C−
termini. Use semicolon (;) to separate molecules. If you want to use different termini, or build a
non−peptide molecule apply the build command directly or modify the macro.

For a multimolecular object you can also create separate objects and then move them together.

Examples:

 buildpep "ala his trp glu" # one tetrapeptide: nter and cooh added
 buildpep "ala his ; trp glu" # two di−peptides
 buildpep "one ; one" # two oxygens

 buildpep "YTGSNVKVAV" # decapeptide
 buildpep "AQSVPYGVSQ;IKAPALHSQG" # two decapeptides

2.22. Macros 385

2.22.2. calcBindingEnergy: estimates electrostatic, hydrophobic and
entropic binding terms

calcBindingEnergy ms_1 ms_2 s_terms ("el,sf,en")

evaluates energy of binding of two complexed molecules ms_1 and ms_2 s_terms for the given set of
energy terms s_terms. This macro uses the boundary element algorithm to solve the Poisson equation. The
parameters for this macro have been derived in the Schapira, M., Totrov, M., and Abagyan, R. (1999)
paper.

Example:

 read object s_icmhome+"complex"
 cool a_
 calcBindingEnergy a_1 a_2 "el,sf,en"

2.22.3. calcDihedral4atoms: calculate a torsion angle defined by four atoms

calcDihedral4atoms as_1 as_2 as_3 as_4

calculates an angle between the two planes specified by any four atoms, as_1 as_2 as_3 as_4. Usually
these are four consequtive covalently bound atoms.

Example:

 buildpep "ala his his"
 display atom label
 calcDihedral4atoms a_/3/nd1 a_/3/cg a_/3/cd2 a_/3/ne2
 Angle= −0.06781 deg. (also saved in r_out) # it is almost flat

2.22.4. calcDihedralAngle: calculate an angle between two planes in a
molecule

calcDihedralAngle as_plane1 as_plane2

calculates an angle between the two planes specified by two triplets of atoms, specified by the as_plane1
and as_plane2 selections

An example in which we measure an angle between planes of two histidines:

 buildpep "ala his his" # we use another macro here
 display atom labels
 calcDihedralAngle a_/2/cg,nd1,cd2 a_/3/cg,nd1,cd2
 Angle= 131.432612 deg. (in r_out).

2.22.5. calcEnsembleAver: Boltzmann average the energies of the stack
conformations

calcEnsembleAver r_temperature s_parameter

386 2.22.2. calcBindingEnergy: estimates electrostatic, hydrophobic and entropic binding terms

a macro showing an example of how to calculate a Boltzmann−weighted average given a conformational
stack of conformation representatives. The stack may be formed as a result of a Monte Carlo simulation
or created manually. The s_parameter string contains any expression returning the parameter to be
averaged (e.g. "Value(v_/2/phi)" or "Distance(a_/2/ca a_/4/ca)").

Example:

 buildpep "ala his his"
 set vrestraint a_/* # impose rotamer probabilities
 mncallsMC = 5000
 montecarlo # a stack is formed with energies
 calcEnsembleAver 300. "Value(v_/2/phi)"

See also macro helicity.

2.22.6. calcMaps: calculate five energy maps and write them to files

calcMaps s_fileNameRoot ("rec") R_box (Box (a_ 5.)) r_gridSize (0.5)

calculates five energy grid maps for the current object with the grid size r_gridSize in the 3D box
volume defined by the R_box . The maps are saved to files with names s_fileNameRoot_gc.map
s_fileNameRoot_gh.map etc. and are deleted upon return from the macro. Be careful with selecting a box.
You may focus the box on the area of interest (e.g. Box(a_/55,66 , 7.)). To use the maps read
them in, rename to m_gc m_gh, etc. and set terms "gc,gh,ge,gb,gs" . If you determined the
box interactively you may just use the Box () function without arguments (it returns the parameters of the
graphical box).

Example:

 read object s_icmhome+"crn"
 calcMaps "crn" Box(a_/15 4.) 0.6
 read map "crn_ge"
 rename m_crn_ge m_ge
 display m_ge {1 2 3 0 4 5 6}
the maps can be used in another session

2.22.7. calcPepHelicity: calculate average helicity of a peptide from movie
frames

calcPepHelicity s_movieName r_temperature (300.)

a macro showing an example of how to calculate the helicity of a peptide structure given an ICM movie of
the conformations accepted during a Monte Carlo run. A simulation using montecarlo movie option is
a prerequisite for this macro. A good script prototype can be found in the $ICMHOME/_folding file.
The movie option saves each accepted conformation to a movie file. The secondary structure of all
transient conformations is assigned with the assign sstructure command.

Example:

% _folding # run the _folding script with the movie option.
% icm

2.22.6. calcMaps: calculate five energy maps and write them to files 387

 read object "mypep" # the name of your peptide object
 calcPepHelicity "mypep" 600.

See also macro calcEnsembleAver

2.22.8. calcProtUnfoldingEnergy: rough estimate of solvation energy
change upon unfolding

calcProtUnfoldingEnergy ms_ (a_1) i_mncalls (100)

calculates an octanol/water transfer solvation energy for the given # conformation as compared to an
extended chain conformation.

2.22.9. calcRmsd: calculate three types of Rmsd between protein
conformations

calcRmsd rs_1 (a_1.1/*) rs_2 (a_2.1/*)

calculates Ca−atom, backbone−atom, and heavy−atom RMSD for two input residue selections. The main
effort in this macro is to take the internal symmetry of amino−acid sidechains into account.

For example, two phenylalanines related by the 180 degrees rotation of the xi2 angle are identical, but will
have a non−zero Rmsd(a_1./phe a_2./phe) because cd1 and ce1 of one selection lay on top of cd2
and ce2 atoms of the second selection, respectively. To calculate this Rmsd correctly, we need to find the
rotation The following residues have internal symmetry (or pseudo−symmetry):
leu,tyr,phe,asp,glu,arg,val.

2.22.10. calcSeqContent

calcSeqContent s_seqNamePattern ("*")

analyzes amino acid composition of the input sequence or sequences. Specify quoted sequence name,
pattern (e.g. "*_HUMAN") or "*" for all sequences.

Example:

read sequence s_icmhome+"seqs"
calcSeqContent "*" # matches names of all sequences
 ..
 Statistics for 3 sequence(s): Azur_Alcde Azur_Alcfa Azur_Alcsp
 AA N % Expected
 A 42 10.34 7.85
 C 9 2.22 2.55
 ...

calcSeqContent "*de" # sequences ending with 'de'
 Statistics for 1 sequence(s): Azur_Alcde
 Res N % Expected
 A 20 13.42 7.85
 C 3 2.01 2.55
 D 8 5.37 5.17

388 2.22.8. calcProtUnfoldingEnergy: rough estimate of solvation energy change upon unfolding

 E 6 4.03 6.95

The columns are as follows:

One−letter amino−acid code1.
The total occurrence of the amino acid2.
Relative percentage occurrence in the given set of sequences3.
Expected mean occurrence of the amino acid in proteins4.

convertObject auto ms_ (a_) l_delete_water (yes) l_optimize_hydrogens (no)
l_replace_the_original (no) l_display (no)

converts a non−ICM object into and ICM object and performs some additional refinements. The macro
returns r_residialRmsd value containing the Rmsd of the model atoms from the equivalent template
atoms (the same value is returned by the convert command in r_out). If this residual is greater than
0.5 , it usually means some problems with the conversion (e.g. unusual residues, missing parts, etc.).

clusterChem s_inObjects ("*.ob") s_outObject ("clustered.ob")

performs clustering based on chemical similarity

2.22.11. icmCavityFinder: analyze and display cavities

icmCavityFinder as_ (a_1) l_interactive (no) r_minVolume (3.)

calculates and displays cavities in a molecular structure. These
cavities are sorted by size, and displayed. The l_interactive
argument allows cavities to be displayed one by one interactively.
To display the transparent outer shell edit the macro and activate
this feature.

The r_minVolume parameters defines the volume of the smallest
retained cavity. Increase it if you want only large cavities.

For each cavity this macro calculates volume V (in square
Angstoms), area A and an effective radius R (compare it with the
radius of a water molecule of 1.4A).

The icmCavityFinder macro uses two powerful features of ICM−shell:

a grob with analytical molecular surface (a.k.a. skin) of the selected atoms can be built using
the make grob skin as_ as_ "g_skin" command.

•

this grob can be divided into the separate grobs with the outer shell and all the inner cavities with
the split g_skin command.

•

2.22.11. icmCavityFinder: analyze and display cavities 389

icmCavityFinder also uses the Volume(g) and Area(g) functions to measure volume and area
of the cavities, as well as the Sphere(g_ r_radius) function to select atoms and residues
around any grob.

•

Example:

 read object s_icmhome+"1qoc"
 delete a_w* # remove water molecules
 icmCavityFinder a_1 yes 4.
 3 icm−objects deleted
 Info> finished surface search, n_of surface atoms = 744
 Surface ..
 Info> finished basic surface element calculations
 Info> Estimated vertex number = 335800, actual = 184896
 Info> packing vertices... sorted... done!
 Info> skin grob "g_skin" created (solid model: 32197 point
 Info> 3 grobs g_skin1 ... g_skin3 created
 Shell 1: V=11039.291805 A=4525.876702
 Warning> Volume(g_skin2) may be improperly calculated: env
 CAVITY 2: V=25.253718 A=44.282805 R~1.710848 −−−−−−−−−−−−−−
 − Num Res. Type −−−− SS Molecule −−−− Object − sf − sfRati
 26 ile Amino I H m 1qoc 0.0 0.00
 53 leu Amino L E m 1qoc 0.0 0.00
 58 val Amino V _ m 1qoc 0.0 0.00
 76 val Amino V E m 1qoc 0.0 0.00
 87 val Amino V E m 1qoc 0.0 0.00
 89 ile Amino I E m 1qoc 0.0 0.00
 ...

2.22.12. dsCellBox: displays crystallographic unit cell

dsCellBox os_

displays unit crystal cell box for the specified object os_ generated according to crystal symmetry
parameters. This tiny macro extracts the cell from the object using the Cell function and makes a grob out
of this array with the Grob function.

macro dsCellBox os_ (a_)
 gCell = Grob ("cell" Cell(os_))
 display gCell magenta
 keep gCell
endmacro

See also: dsCell

2.22.13. dsCell: cell and crystallographic neighbors

dsCell os_ (a_) l_deleteRemoteNeighbors (yes) i_Ncells (4)

displays copies of the input molecular object generated according to crystal symmetry parameters.

390 2.22.12. dsCellBox: displays crystallographic unit cell

2.22.14. dsCharge: one of many ways to show charge residues

dsCharge

displays CPK representation of positively and negatively charged amino acid residues in red and blue
colors, respectively. See also macro undsCharge

macro dsCharge
 display a_*./asp,glu/o?* cpk red
 display a_*./lys,arg/nz,n?* cpk blue
endmacro

2.22.15. dsChem : chemical style display

dsChem as_ (a_)

3D display of the input atom selection in chemical style and on white background.

If you want to 'flatten' the molecule you can perform a procedure from the following example:

 buildpep "trp" # you need an ICM object
 tzMethod = "z_only" # tether to the z−plane
 set tether a_ # each atom is tethered to z=0
 minimize "tz" # keep the cov. geometry

2.22.16. dsConsensus: 3D display of conserved residues

dsConsensus ali_ seq_ l_dsLabels (yes) s_graphType ("skin")

identifies and displays a consensus sequence pattern on the surface of a molecular structure.

2.22.17. dsCustom: extended display and property−coloring

dsCustom as_ (a_//*) s_dsMode ("wire") s_colorBy ("atom") l_color_only (no)

Displays the specified representation ("wire", "cpk", "ball", "stick", "xstick",
"surface", "ribbon") of a molecular selection and colors the selection according to the following
series of features:

atom type (s_coloringType="atom"),•
residue type ("residue"),•
unique molecules ("molecule"),•
secondary structure type ("sstructure"),•
N−to−C−terminal chain course (NtoC""),•
B−factors ("bfactor"),•
electric charges ("charge"),•
solvent accessibility ("accessibility"),•
residue polarity ("polarity"),•
residue hydrophobicity ("hydrophobicity")•

2.22.14. dsCharge: one of many ways to show charge residues 391

2.22.18. dsCustomFull macro for molecular display

dsCustomFull as_ (a_//*) s_display_mode ("wire") s_color_by ("atom") l_noWater (yes)
l_areaSelfMode (no) l_color_only (no)

an extension of the previous dsCustom macro which, in addition, allows to color by an external rarray
of 26 elements for each character. This user−defined array may contain any residue property information.

Flag l_areaSelfMode determines if the surface area is calculated for the selection in the context of all the
atoms of the object (no) or only the selection itself, as if no other atoms existed (the self mode)

2.22.19. dsDistance: display distances between two selections

dsDistance as_1 as_2 r_lowerLimit (0.) r_upperLimit (3.)

displays distances in a specified range between atoms of two input atom
selections. This macro saves atom names and distances in T_dist
table. This table can later be resorted and analyzed.

Example:

 read object s_icmhome + "crn"
 dsDistance a_/15 a_/18 0. 10.
 show T_dist

2.22.20. dsPropertySkin: display molecular surfaces colored by properties
essential for binding

dsPropertySkin as_sel (a_) l_wire (yes)

displays essential properties of molecular surfaces which are
essential for binding small ligands, peptides or other proteins.

The first argument is a selection of atoms involved in the
surface calculation. The second argument allows you to
display the surface as:

skin (l_wire=no), or•
wire (l_wire=yes)•

392 2.22.18. dsCustomFull macro for molecular display

The color code:

white − neutral surface•
green − hydrophobic surface•
red − hydrogen bonding acceptor potential•
blue − hydrogen bonding donor potential•

Example shown:

 read pdb "1a9e"
 delete a_w*
 convert # convert to ICM for map calculations
 # select receptor atoms 9. away from the peptide with Sphere
 cool a_ # display ribbon
 dsPropertySkin Sphere(a_3 a_1 9.) yes
 # adjust clipping planes for better effect
 write image png

Interactive surface display under GUI The same can be performed interactively on ICM objects with the
popup−menu:

display your ICM object1.
switch selection level to residue (R)2.
select region with selection box or lasso3.
click on the right mouse button over one of the selected residues4.
selected Display and then Property Skin5.
it creates grob g_recSkin which can then be undisplayed and further manipulated6.

2.22.21. dsEnergyStrain: analyzing energy strain in proteins

dsEnergyStrain rs_ (a_/A) l_colorByStrain (yes) R_limits ({−2., 5.})

calculates relative energy of each residue for residue selection rs_ ; and colors the selected residues by
strain (if logical l_colorByStrain is "yes"). The R_limits argument determines the range represented by
the color gradient (i.e. residues strained beyond 5. will still be shown in red).

2.22.21. dsEnergyStrain: analyzing energy strain in proteins 393

This macro uses statistics obtained in the Maiorov, Abagyan, 1998 paper.

Example:

 read object s_icmhome + "crn"
 dsEnergyStrain a_/A yes {−2., 5.}
 #>−S1−−−−−−−−−−eStrain−−−−
 " T1 " −0.438031
 " T2 " 1.500011
 " C3 " 0.171743
 ...

2.22.22. dsEnergyStrain1

dsEnergyStrain1 rs_ l_colorByStrain (yes) l_sstruct

another version of above. If l_sstruct in on, the type of the secondary structure is taken into account
for energy strain calculations.

2.22.23. icmPmfProfile

macro icmPmfProfile os_ (a_)
l_accessibilityCorrection (yes) l_display (no)

calculates a statistical energy of mean−force for each
residue of a provided object. This energy is calculated
with the "mf" parameters defined in the icm.pmf
file. The residue energies are then normalized to the
expected mean and standard deviation of the same
residue in real high resolution structures. The mean
energy value can be calculated as a function of its
solvent accessibility if l_accessibilityCorrection is set
to yes.

The calculated table contains residue energies and
accessibilites. These values can be used to color
residues of the molecule according to those values. In
an example shown here we build a model (using the
build model command of HCV protein on the
basis of another viral coat protein. Then the profile
was calculated for the model and the original structure.
The calculation clearly shows the problematic regions
of the model (the red parts) while the source structure
looks quite reasonable.

394 2.22.22. dsEnergyStrain1

2.22.24. dsPrositePdb

dsPrositePdb ms_ (a_*) r_prositeScoreThreshold (0.7) l_reDisplay (no) l_dsResLabels (yes)

Finds all PROSITE pattern−related fragments in the current object and displays/colors the found fragments
and residue labels.

2.22.25. dsRebel: surface electrostatic potential

dsRebel ms_ l_assignSimpleCharges

2.22.24. dsPrositePdb 395

generates the skin representation of the molecular surface colored according to the electrostatic potential
calculated by the REBEL method (hydrogen atoms are ignored). The coloring is controlled by the
maxColorPotential parameter. This macro uses a simplified charge scheme (a_/lys/nz : 1.0,
a_/arg/nh* : 0.5 , a_/asp,glu/oe*,od* : −0.5) and uses only the heavy atoms for the calculations for the sake
of speed. A full atom version of this macro is dsRebel .

2.22.26. dsSeqPdbOutput : visualize the sequence similarity search results

dsSeqPdbOutput s_searchSeqPdbOutput ("tm.ou")

Goes through a list of PDB hits resulting in find database command and displays alignment(s) of the
input sequence(s) with the found PDB structures and SWISSPROT annotations.

2.22.27. dsSkinLabel

dsSkinLabel rs_ s_color ("magenta")

For all residues specified by the input residue selector, rs_, displays residue labels shifted toward the user
to make the labels visible when skin representation is used.

2.22.28. dsSkinPocket and dsSkinPocketIcm

dsSkinPocket ms_ligand (a_2) ms_receptor (a_) r_radius (7.) : *dsSkinPocketIcm ms_ligand (a_2)
ms_receptor (a_1) r_radius (7.)

display the receptor pocket around the selected ligand ms_ligand. Only the largest contiguous pocket
surrounding the ligand is retained for clarity. The dsSkinPocketIcm macro also colors the molecular
surface by hydrogen bonding potential and hydrophobicity. Best used with the ligand shown in cpk, if the
ligand is small.

These macros can also be used to show the protein−protein interface.

Example:

 read object s_icmhome+"complex"
 cool a_
 dsSkinPocket a_1 a_2 7. # shows the surface of a_1

2.22.29. dsStackConf

dsStackConf as_

displays superimposed set of conformations from a conformational stack for given selection as_.

2.22.30. dsVarLabels

dsVarLabels

displays color labels for different types of torsion variables.

396 2.22.26. dsSeqPdbOutput : visualize the sequence similarity search results

2.22.31. ds3D

ds3D M_interObjectDistances
[S_names]

display 3D coordinates
corresponding to an input
square distance data matrix.
Relative errors (in percent) of
embedding to 3D space are in
R_out: first entry is for the
total error, next three are for X,
Y and Z coordinates.

Representation of inter−sequence evolutionary
distances in three−dimensional space

2.22.32. dsWorm

dsWorm ms_

displays "worm" (or "tube") representation of selected molecule(s). Residue colors are smoothly changed
from blue (at N−terminus) to red (at C−terminus).

2.22.33. dsXyz : display

dsXyz M_xyz_coordinates

2.22.31. ds3D 397

displays points from the N_atoms x 3 matrix of
M_xyz_coordinates in 3D space as blue balls. The origin
of the Nx3 matrix is not important. The macro creates
an object called a_dots. In this object each dot is a
one−atom residue called 'dot'. The atom type is
arbitrarily assigned to oxygen, and the atom names are
'o'.

One can further manipulate this object, e.g. color a_/12:15/o green .

An example in which we generate sparse surface points at vwExpand distance around a molecule and
display them.

 buildpep "ala his trp"
 mxyz = Xyz(a_ 5. surface)
 display skin white
 dsXyz mxyz
 color a_dots. red

2.22.34. findFuncMin

findFuncMin s_Function_of_x ("Sin(x)x −1.") r_xMin (−1.) r_xMax (2.) r_eps (0.00001)

minimizes one−dimensional functions provided as a string with the function expression. The macro uses
successive subdivision method, and assumes that the function derivative is smooth and has only one
solution in the interval

Example:

findFuncMin "Sin(x)*x−1." , −1. 2. 0.00001
 −1.000000 < x < 0.500000
 −0.250000 < x < 0.500000
 −0.062500 < x < 0.125000

 −0.000004 < x < 0.000008
 −0.000004 < x < 0.000002

398 2.22.34. findFuncMin

2.22.35. findFuncZero

findFuncZero s_Function_of_x ("Cos(x)x ") r_xMin (1.) r_xMax (100.) r_eps (0.00001)

finds a root of the provided function of one variable with specified brackets with iterations. E.g.

findFuncZero "x*x*x−3.*x*x" 1. 33. 0.00001
 => x=17.000000 F=4046.000000
 => x=9.000000 F=486.000000
 => x=5.000000 F=50.000000
 => x=3.000000 F=0.000000

2.22.36. nice

nice s_PdbFileName ("1crn") l_wormStyle (no)

reads and displays a PDB structure in ribbon representation; colors each molecule of the structure by colors
smoothly changing from blue (at N−terminus) to red (at C−terminus).

Example:

 nice "365d" # new DNA drug prototype
 nice "334d" # lexitropsin, derivative of netropsin

2.22.37. cool

cool auto rs_sel (a_)

similar to the macro nice above, but refers to a residue selection.

2.22.38. homodel

homodel ali_ l_quick (yes)

homology modeling macro. The first sequence in the input alignment should contain the sequence of a PDB
template to which the modeling will be performed. If flag l_quick is on, only an approximate
geometrical model building is performed. You can also use the build model command directly.

2.22.39. makeIndexChemDb

makeIndexChemDb s_dbFile ("/data/acd/acd.mol") s_dbIndex ("/inx/acd") s_dbType
("mol") S_dbFields ({"ID"})

Creates and saves an index to a small compound database existing in standard mol or mol2 formats
(specified by the s_dbType parameter). s_dbIndex defines full−path root name of several
index−related files. String array S_dbFields specifies fields of the input database which are
indexed by the macro.

An example in which we index the cdi.sdf file and generate the cdi.inx file in a different directory:

2.22.35. findFuncZero 399

% icm
makeIndexChemDb "/data/chem/chemdiv/cdi.sdf" "/data/icm/inx/cdi" "mol" {"ID"}

2.22.40. makeIndexSwiss

makeIndexSwiss s_swiss ("/data/swissprot/fseq.dat") s_indexName
(s_inxDir+"/SWISS.inx")

Creates and saves an index to the SWISSPROT sequence database (datafile s_swiss).
s_indexName defines the root name of several index−related files with respect to ICM user directory,
s_userDir.

2.22.41. makePdbFromStereo: restore 3D coordinates from a stereo picture

transforms two stereo sets of two−dimensional coordinates in arbitrary scale into 3D coordinates. See also:
How to reconstruct a structure from a published stereo picture .

2.22.42. mkUniqPdbSequences

mkUniqPdbSequences i_percentDifference (5) s_seq_dir s_pdb_dir (s_pdbDir+"") l_replace (no)

Creates a collection of PDB sequences with specified degree of mutual dissimilarity,
i_percentDifference. Replace old dataset if l_replace is on.

2.22.43. plot2DSeq

plot2DSeq ali_

generates a 2D representation of "distances" between each pair of sequences from the input alignment.

2.22.44. plotSeqDotMatrix

plotSeqDotMatrix seq_1 seq_2 s_seqName1 ("Sequence1") s_seqName2 ("Sequence2") i_mi
(5) i_mx (20)

generates an EPS file in which local sequence similarities between two sequences are shown in the form of
a two−dimensional dot−matrix plot. Significance of local sequence similarities is shown by logarithm of
the probability values and is calculated in multiple windows from i_mi to i_mx. The log−probability values
are color−coded as follows: light blue: 0.7, red 1.0.

2.22.45. plotSeqDotMatrix2

plotSeqDotMatrix2 seq_1 seq_2 s_seqName1 ("Sequence1") s_seqName2 ("Sequence2") i_mi
(5) i_mx (20)

generates an EPS file in which local sequence similarities between two sequences are shown in the form of
a two−dimensional dot−matrix plot. Significance of local sequence similarities is shown by (1. −
Probability(..)) values and is calculated in multiple windows from i_mi to i_mx. The (1 − P)
values are color−coded as follows: light blue: 0.7, red 0.99.

400 2.22.40. makeIndexSwiss

2.22.46. plotBestEnergy

plotBestEnergy s_McOutputFile ("f1,f2") r_energyWindow (50.)

plots profile of energy improvement during an ICM Monte Carlo simulation. Data are taken from the MC
output log file or files, s_McOutputFile. You can specify a single output file (e.g. "f1.results"), or
several files, e.g. "f1.ou,f2.ou", or drop the default ".ou" extension, e.g. "f1,f2,f2".

This macro gives you an idea about the convergence between several runs.

2.22.47. plotOldEnergy

plotOldEnergy s_McOutputFile ("f1.ou") r_energyWindow (50.)

plots profile of energy changes during an ICM Monte Carlo simulation. Data are taken from the MC output
log file, s_McOutputFile.

2.22.48. plotFlexibility

plotFlexibility seq_ i_windowSize (7)

calculates and plots flexibility profile for input sequence seq_ and smooths the profile with i_windowSize
residue window.

2.22.49. plotCluster

plotCluster M_distances S_names ({""}) s_plotArgs ("CIRCLE display {\"Title\"
\"X\" \"Y\"}")

plot distribution of clusters. Arguments:

a square matrix of distances between n objects. For arrays it may be calculated with the
Distance () function (e.g. Distance(Xyz(a_//ca))). For angular RMSD the distance can be
calculated from a matrix v of values of torsion angles for many conformations:

•

 for i=1,n−1
 di[i,i]=0.
 for j=i+1,n
 # takes care of −179 and 181, base 360 is the default
 dif=Remainder(v[i]−v[j])
 # angular RMSD
 di[i,j]=Sqrt(Mean(dif*dif))
 di[j,i]=di[i,j]
 endfor
 endfor
 di[n,n]=0.

sarray of names for each of n points . Possibilities:
the empty sarray: {""}. No name tags will be attached to each point♦
Sarray(Count(n)) generates names like this: {"1" "2" "3" ... }♦
user−defined: e.g. Name(a_*.) if each point correspond to an object♦

•

2.22.46. plotBestEnergy 401

manual: e.g. {"A" "compound X" "c"}♦
See also: arguments for the plot command.•

2.22.50. plotMatrix

plotMatrix M_data s_longXstring S_titles ({"Title","X","Y"}) s_fileName ("tm.eps")
i_numPerLine (10) i_orientation (1)

generates combined X−Y plot of several Ys (2nd, 3rd , etc. rows of the input matrix M_data) versus the
one X−coordinate, assumed to be the first row of the matrix. i_numberPerLine parameter defines the
size of the plotted block size if the number of data points is greater then i_numberPerLine.
i_orientation equal to 1 defines portrait orientation of the output plot, landscape otherwise.

2.22.51. plotRama

plotRama rs_ l_show_residue_label (no) l_shaded_boundaries (yes)

generates a phi−psi Ramachandran plot of an rs_ residue selection. If logical l_show_residue_label is on,
the macro marks the residue labels. If l_shaded_boundaries is on, the allowed (more exactly, core) regions
are shown as shaded areas; otherwise the contours of the core regions are drawn.

2.22.52. plotRose

plotRose i_prime (13) r_radius (1.)

just a nice example of a simple macro generating "rose" plot.

2.22.53. plotSeqProperty

plotSeqProperty R_property s_seqString S_3titles {"Y property","Position","Y"} s_fileName
("tm.eps") i_numPerLine (30) s_orientation ("portrait")

a generic macro to plot local sequence properties. Modify it for your convenience. Here is an example in
which we plot residue b−factors along with the crambin sequence. s_seqString could be the sequence
(e.g. String(1crn_m)) or secondary structure, (e.g. Sstructure(1crn_m)) or any other string of
the same length as the sequence.

 read pdb "1crn"
 make sequence
 b = Bfactor(a_/*)
 plotSeqProperty b String(1crn_m) {"" "" ""} "tm.eps" 20 "portrait"

2.22.54. predictSeq

predictSeq s_seq s_fileName l_predictSecStr

calculates and plots hydrophobicity and flexibility profiles and secondary structure diagrams for the given
sequence s_seq (this is a string with the sequence name) and saves the results in s_fileName PostScript file.

402 2.22.50. plotMatrix

2.22.55. prepSwiss

prepSwiss s_IDpattern ("VPR_*") l_exclude (yes) s_file ("tm")

extracts all sequences from the SWISSPROT database which exclude (l_exclude= yes) or include (
l_exclude= no) the specified sequence pattern, s_IDpattern and creates a set of database files with
the rootname s_file intended to use in the command find database.

2.22.56. printFast

printFast s_ofPrinterName ("graphic")

writes current content of the graphic window to a PostScript file and calls unix ' lp' command to send the
resulting PostScript file to the specified printer, s_ofPrinterName .

2.22.57. printMatrix

printMatrix s_format (" %4.1f") M_matrix (def)

prints matrix M_matrix according to the input format s_format.

2.22.58. printPostScript

printPostScript s_ofPrinterName ("grants")

converts the current content of the graphics window to a PostScript file and directs it to the
s_ofPrinterName printer.

2.22.59. printTorsions

printTorsions rs_

outputs all torsion angles of the input residue selection.

2.22.60. refineModel: globally optimize side−chains and anneal the
backbone

refineModel i_numberOfAnnealingIters (5) l_sideChainSampling (no)

This macro can be used to improve any ICM model. The model can come from the build model
command or the convert command or regul macro, etc. It performs

side−chain sampling using montecarlo fast•
interative annealing with tethers you have provided•
second side−chain sampling to resolve the new problems resulting from the second step•

To perform only the side−chain refinement, set the i_numberOfAnnealingIters argument to 0 .

2.22.55. prepSwiss 403

2.22.61. regul

regul rs_ (a_/A) s_regObjName ("regobj") s_ngroup ("nh3+") s_cgroup ("coo−") l_newIcmSeq
(yes) l_displayRegul (yes) l_freeMin (no)

creates a regularized ICM−model of an input residue selection (rs_) under the name
s_regObjName. If l_newIcmSeq is set to yes , the macro will create sequence from that of the input
residue selection, optionally modified by the N− and C−terminal groups (s_ngroup and s_cgroup,
empty "" strings are allowed); otherwise the macro will use an ICM−sequence file, s_regObjName.se The
protocol course may be displayed if l_displayRegul set to yes . The resulting ICM model will be
written to file s_regObjName.ob. If l_freeMin set to *yes*, the resulting model will be additionally
minimized, now without tethers, and be written to file s_regObjNamef.ob. The summary of the
macro's work will be saved to file s_regObjName.log .

2.22.62. rdBlastOutput

rdBlastOutput S_giArray

reads a set of sequences defined in a BLAST's output file, S_giArray from the NCBI database.

2.22.63. rdSeqTab

rdSeqTab s_dbase ("NCBI")

reads a set of sequences listed in the ICM−tableSR, an output of find database command, from
the database defined by s_dbase.

2.22.64. readPdbList

readPdbList S_list_of_pdb_codes

reads a series of PDB files specified in the input string array and creates sequences for all loaded structures.

2.22.65. remarkObj

remarkObj

allows editing an annotation (comment) of the current object. Existing comment (if any) is read in
an editor and after modification assigned to the object.

2.22.66. searchPatternDb

searchPatternDb s_pattern ("?CCC?") s_dbase ("SWISS")

searches for the pattern in the sequences of the specified indexed database s_dbase.

404 2.22.61. regul

2.22.67. searchPatternPdb

searchPatternPdb s_pattern

searches for the specified pattern in pdb sequences taken from the foldbank.db file.

Example (first hydrophobic residue, then from 115 to 128 of any residues, non−proline and alanine at the
C−terminus):

 searchPatternPdb "^[LIVAFM]?\{115,128\}[!P]A$"

2.22.68. searchObjSegment

searchObjSegment ms_ i_MinNofMatchingResidues (20) r_RMSD (5.)

for given molecule ms_ finds all examples of similar 3D motifs not shorter than
i_MinNofMatchingResidues residues with the accuracy r_RMSD A in the ICM protein fold database.

2.22.69. searchSeqDb

searchSeqDb s_projName ("sw1") S_seqNames ({""}) r_probability (0.00001) l_appendProj (no)
s_dbase ("SWISS")

search the database s_dbase using query sequence(s) specified in S_seqNames. Found hits and their
specs are collected in the output table file s_projName.tab. If logical flag l_appendProj is on data
will be appended to the existing table. Similarity of hits to the query sequence(s) is controlled by parameter
r_probability (see Probability()).

2.22.70. searchSeqPdb

searchSeqPdb s_projName ("pdb1") r_probability (0.01) l_appendProj (no)

sequence search of all currently loaded sequences in the sequences of the proteins from the fold bank
collection. Found hits and their specs are collected in the output table file s_projName. If logical
flag l_appendProj is on data will be appended to the existing table. Similarity of hits to the query
sequence(s) is controlled by parameter r_probability (see Probability()).

2.22.71. searchSeqPdb

searchSeqPdb s_projName ("pdb1") r_probability (0.01) l_appendProj (no)

sequence search of all currently loaded sequences through all proteins from the collection
s_pdbDir+"/derived_data/pdb_seqres.txt.Z", a subset of PDB sequences with given degree of mutual
dissimilarity. Found hits and their specs are collected in the output table file s_projName. If logical flag
l_appendProj is on data will be appended to the existing table. Similarity of hits to the query
sequence(s) is controlled by parameter r_probability (see Probability()).

2.22.67. searchPatternPdb 405

2.22.72. searchSeqSwiss

searchSeqSwiss seq_

Searches for homologues of the query sequence seq_ in the SWISSPROT database.

2.22.73. setResLabel

setResLabel

moves displayed atom labels to the atoms specific to each residue type.

2.22.74. sortSeq

sortSeq

sort sequences by their length and suggest outliers.

2.22.75. undsCharge

undsCharge

color display of the charged residues.

2.22.76. makeSimpleModel

makeSimpleModel seq_ ali_ os_

This macro rapidly builds a model by homology using simplified residues described in the residue library.
Input data are the sequence of the model, seq_ and alignment ali_ of the model's sequence with the
template object os_ .

2.22.77. makeSimpleDockObj

makeSimpleDockObj [os_object] [s_newObjName]

This macro builds an ICM object from simplified residues described in the residue library. The goal is to
convert an all−atom molecular object into an object in simplified representation for fast docking
calculations.

2.22.78. searchSeqProsite

searchSeqProsite seq_

compares input sequence against all sequence patterns collected in the PROSITE database.

Examples:

406 2.22.72. searchSeqSwiss

 read sequence "zincFing.seq" # load sequences
 find prosite 2drp_d # search all < 1000 patterns
 # through the sequence
 find profile 2drp_d # search profile from prosite database

See also:

find pattern, find database pattern=s_pattrn, find prosite.

2.23. Files

2.23.1. _macro. A collection of ICM macros.

This file contains a set of ICM macros. You can use them, modify them, or browse them to develop your
own macros. _macro is downloaded by the call _macro command.

2.23.2. _startup. ICM startup file

This ICM script contains a set of commands issued automatically upon invoking ICM. The file will be
searched for in the directory defined by the UNIX environmental variable ICMHOME. This location may
be different from the $ICMHOME directory. It allows users to share the ICM executable but have their
individual _startup files. Important: edit this file to customize your environment. A template to modify
follows.

 s_pdbDir = "/data/pdb/" # set it to the place where PDB lives
 pdbDirStyle = "pdb1abc.ent" # style currently distributed by PDB
 s_helpEngine = "icm" # reasonable default, HTML−help is
 # an alternative

 # you may have your own PROSITE updated file
 s_prositeDat = Getenv("ICMHOME")+"/prosite.dat"

 # xpsview may be more standard
 s_psViewer = "/usr/opt/bin/gs −q"

 # better be accessible only for you
 s_tempDir = "/usr/tmp/"
#
 read libraries # they will be read from $ICMHOME

 call _aliases # by default it will be taken
 # from the directory defined by
 # environmental variable $ICMHOME
 call _macro # by default it will be taken
 # from the directory defined by
 # environmental variable $ICMHOME

 print "...ICM startup file executed..."

2.23.3. _startCheck script

This script checks the presence of and access to the directories and files used by ICM and specified by
some ICM−shell string variables. This script is recommended during customization of the

2.23. Files 407

ICM.

2.23.4. foldbank.db

Bank of assigned secondary structures (foldbank.db) This text file may be created by _mkSegmentLib
script and contains secondary structures for a nonredundant set of protein chains. Description of fields:

NA − chain name ('m' usually stands for main or 'NO chain identifier')•
RZ − resolution. NMR entries get 9.99 (they may be actually worse than that).•
ER − all−atom RMSD−error upon PDB−>ICM conversion. Beware of entries with ER > 0.5!!•
SE − amino acid sequence as extracted from the structure (not SEQRES)•
SX − authors' secondary structure assignment, all _____ if not provided (as in 1knt.m).•
SS − automatically assigned by ICM secondary structure using modified Kabsh and Sander
algorithm.

•

•
The commented field contains a serial number.

Example two entries:

...

...
355
NA 4tpi.i
RZ 2.20
ER 0.027
SE RPDFCLEPPYTGPCRARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA
SX _______________EEEEEEEEEE__EEEEEEEEE__________HHHHHHHHHH__
SS ___GGG___________EEEEEEE____EEEEEEE_________B__HHHHHHHH___
...
...
364
NA 1knt.m
RZ 1.60
ER 0.015
SE TDICKLPKDEGTCRDFILKWYYDPNTKSCARFWYGGCGGNENKFGSQKECEKVCA
SX ___
SS _GGGG______B____EEEEEEE____EEEEEEE__B______B__HHHHHHHH_
...
...

2.23.5. Bank of protein folds (foldbank.seg)

This text file contains descriptions of segment (or vector) representations of protein three−dimensional
structures.

Example:

sis.m scorpion insectotoxin i5a _E_H_E_E_ 1 1 2 3 6 8 4 4 1 5 3 −1 2.50 1.11 −0.95 3.95 2.97 −3.10 5.41
−3.20 −10.98 13.48 −0.74 −12.05 11.31 4.10 −3.08 13.56 0.33 −0.05 5.08 −8.21 −5.66 4.15 −7.57 −8.58
8.77 −1.09 2.21 6.15 0.21 7.04

Each molecule is represented by a single line containing the following fields:

408 2.23.4. foldbank.db

sis.m : molecular selection (note 'm' is used as a chain identifier if the pdb−file has no chain
information).

•

scorpion insectotoxin i5a : long name (up to the 30th position)•
_E_H_E_E_ : secondary structure of ('_' coil, 'E' extended, 'H' helix)•
1 1 2 3 6 8 4 4 1 5 3 −1 : a segment list; the first integer indicates the format for the segment list,
the last −1 is a terminator. There are two formats, indicated by numbers 1 and 0.

•

1 : concise : ResNumberOffset 1st_SegmentLength 2nd_Segment_Length 3rd_Segment_Length ...•
0 : full format (e.g. 0 74b 4 78b 8 86b 4 90b 5 −1) : 1st_Res_Number/char 1st_Segment_Length
2nd_Res_Number/char 2nd_Segment_Length ...

•

* 2.50 1.11 −0.95 ... : x,y,z for all reference points. The full format allows more complex residue
numbering which may frequently be found in the pdb−entries (i.e. 4 5 6 8 9 9a 9b 9c 10 12 ..). The concise
format is used for the regularly numbered molecules.

2.23.6. Atom codes (icm.cod)

This text file contains description of (1) atom types and references to (2) MMFF types, (3) van der Waals
types, (type 0 or 9 to ignore) (4) hydrogen bonding types, (type 1 means no H−bonds) and (5) hydration
types (0 to ignore). The real numbers are atomic mass (6) and surface (7). The character (8) is used to
define atom color. Free−format. Two example lines:

(1) (2) (3) (4) (5) (6) (7) (8) * Comment
#> cd mmff vw hb hd wt sf na comment
cod 63 6 18 6 6 16.000 40.77 o * o in r−c−oh (thr,ser)
cod 71 32 19 6 8 16.000 36.79 o * o− in carboxylate ion
cod 92 12 61 1 1 35.453 133.8 Cl * (MMFF)
cod 223 38 13 4 3 14.007 61.16 n * pyridin nitrogen (MMFF)

2.23.7. Bond angle bending and improper torsion deformation parameters
(icm.bbt)

This text file contains a factor (kcal/mole) and an equilibrium angle in degrees for the bond angle bending
deformation energy for different types of angles.

Type Factor OptAngle(a0). E=Factor*(a−a0)²
#
bbt 1 160.7000 115.0000 ca−c#−n
bbt 2 128.2000 120.5000 ca−c#=o
...

2.23.8. Bond stretching parameters (icm.bst)

This text file contains a factor (kcal/mole) and an equilibrium bond length in Angstroms for the bond
stretching energy for different types of bonds.

E=Factor*(b−b0)²
Type Factor BondLength(b0).
#> ity eybs eqbl bt comment

bst 1 500.0 1.4530 1 cn n−ca
bst 2 1150.0 1.3250 1 cn c#−n
bst 3 460.0 1.5300 1 cc ca−c#

2.23.6. Atom codes (icm.cod) 409

bst 4 430.0 1.5300 1 cc ca−cb
...

2.23.9. Conformational stack (*.cnf)

This binary file contains descriptions of several conformations of the same molecule. You can not edit this
file. The stack is automatically generated and saved in the course of Monte Carlo, or systematic search
procedures. Alternatively the stack may be created directly by the store conf command. To read/write
a stack use: read stack [s_StackName] write stack [s_StackName]

2.23.10. Distance restraint types (icm.cnt or *.cnt)

The file describes legal types of drestraints to impose attraction or repulsion between atom pairs (e.g. NOE
distance restraints derived from NMR data). This penalty term is called "cn". The system icm.cnt can be
edited, however, user files (e.g. mydist.cnt) of the same format can be created and loaded with the read
drestraint type command. The file contains:

type weight lower upper sharpness
4 special types for S−S bonds
ssSS1 10.0 2.04 2.04 10.0 # Sharp well for S−S dist.
ssSS2 2.0 2.04 2.04 1.0 # Wide well for S−S dist.
ssSC 5.0 3.052 3.052 10.0 # S −Cb distance
ssCC 3.0 3.855 3.855 10.0 # Cb−Cb distance
global 1 1.0 0.0 3.0 # a global drestraint
global 2 1.0 2.0 4.0 # a global drestraint
local 12 1.0 2.5 2.8 1.0 # a local drestraint

Both local distance restraints and global ones force two atoms to stay between the upper and lower
boundaries, however, the local restraints diminish at large distances (similar to van der Waals interactions),
whereas the global restraints grow bi−quadratically as deviation from the target distance range increases.
You can have and read several *.cnt files. If the type numbers overlap the previous types are redefined.

See also related commands: read drestraint type, show drestraint type, set
drestraint type, make drestraint type.

2.23.11. Distance restraints (*.cn)

Contains list of atom pairs for which interatomic distances should be restrained according to specified types
defined in a separate icm.cnt file. The .cn files are created by the user. Supplied icm.cn file is just an
example.

ml1 re1 at1 ml2 re2 at2 cn_type
cn crn 1 val hg22 * 1 val ca 1
cn * 1 val hg23 * 1 val cg1 1
cn * 2 gln ca * 1 val hg11 1
cn * 2 gln ca * 1 val ha 1

Molecule name and residue number (e.g. 14, 25A, etc.) are normally used to find an atom. An asterisk
instead of the molecule name means that only the residue number should be matched. See also: read
drestraint, show drestraint, set drestraint, and make drestraint (un)display
drestraint

410 2.23.9. Conformational stack (*.cnf)

2.23.12. Graphics objects (*.gro)

This text file contains streams of POINT coordinates (i.e. a triple of floats in one line, preceded by an
integer reference number), LINE descriptors (i.e. pair of integer numbers of recently described POINTS in
one line) and/or TRIPLES (or TRIANGLES, i.e. triples of integer numbers of POINTS). The order of
streams is arbitrary, provided that referenced POINTS are already described. Either LINES or TRIPLES
can be omitted. Graphics objects can be read, written, displayed , or made from a 3D map.

1 1.00 −1.00 0.00
2 1.00 1.00 1.00
3 0.00 2.00 0.50
 1 2
 1 3
 2 3
1 2 3

Check content of other .gro files in you icm directory. ICM also understands the Wavefront obj−format (
files *.obj). You can create your own dot, wire or solid graphics objects either manually or automatically.

2.23.13. ICM HTML help file (icm.htm)

contains this manual

2.23.14. Hydrogen bonding types (icm.hbt)

A and B parameters for the A/r12 − B/r10 potential between HB donors and acceptors. See Nemethy et al. for
reference.

Example lines:

i j B A E r0

hbt 2 4 8244.0 32897.0 0.550 2.190 * n−h...n
hbt 3 4 8244.0 32897.0 0.550 2.190 * o−h...n

2.23.15. Hydration parameters (icm.hdt)

Parameters to calculate solvation energy based on atomic solvent−accessible surfaces (see solvation term).
The file contains several sets (e.g. Eisenberg and McLachlan (1986), Wesson and Eisenberg (1992))
although only one of them is not commented out.

Example lines:

rwater 1.4000 # water radius used to roll around the molecule
#
1 2 3 4 5
#
hdt 4 −0.0500 1.7000 0.0016 n+

reference type number1.
solvation energy density from vacuum−water transfer experiments for a given hydration type2.

2.23.12. Graphics objects (*.gro) 411

solvation energy density from octanol−water transfer experiments for a given hydration type3.
radius used to calculate accessible surface4.
comment5.

2.23.16. Configuration file (icm.cfg)

This file contains limits and memory requirements for ICM. It will be searched in the current directory (
./) first and, if not found, in the directory defined by the UNIX environmental variable $ICMHOME or
$HOME/.icm/config/ directory ($USERPROFILE/.icm/config/ for Windows), if present.

You may edit the file and change the limits.

ICM configuration file. Free format
Mn stands for "Maximal Number of"
Mx stands for "Maximal Size of"
BufferSpace 2097152 # ICM will not let you decrease BufferSpace less than 131072
MnResidueTypes 200
MnSequences 20000
MnAlignments 1500
MnProfiles 40
MnGrobs 200
MnMaps 40
MnMacros 400
XTermFont *−fixed−medium−*−*−*−24−* # to set font in the terminal window
Xterm xwsh # default for SGI
Xterm xterm # default for Linux and other UN*Xes

2.23.17. Colors (icm.clr)

file contains default color and font settings. The default icm.clr file resides in the $ICMHOME directory.
The LIBRARY.clr variable defines the default path and name of the icm.clr file.

Keep your own color and graphics controls file in ~/.icm directory. Example of
~/.icm/user_startup.icm file ($USERPROFILE/user_startup.icm under Windows):

LIBRARY.clr = Getenv("HOME")+"/.icm/icm.clr"
read color # load your custom settings

Modify the file if needed. The following lines are recognized (free format):

CONFIGURABLE GRAPHICS.mode translation table
Use keywords Left Mid Right, Shift Ctrl Alt Dbl, At
TopNN LeftNN RightNN BottomNN, where NN is a percentage of the zone
Modes 0,3,4,5,14,15 require a hit in 'At' = (atom | grob)
otherwise control falls through to next best appropriate action
Some modes have submode switches listed in parentheses ()
Users are encouraged to modify bindings to their needs
−−−mode−−combination−−−−−−−−−−−−− # equivalent GRAPHICS.mode preference
mode 0 Right−At # popup (in GUI only)
mode 1 (Shift)−Left # Rotation
mode 2 (Shift)−Mid # Translation
mode 3 (Ctrl)−Shift−Right−At # Label atoms
mode 4 (Ctrl)−Dbl−Right−At # Label residues
mode 5 (Shift)−Ctrl−Left−At # Change torsion angles

412 2.23.16. Configuration file (icm.cfg)

mode 6 (Shift)−Bottom5−Left # Rotation of the view
mode 7 (Shift)−Top5−Left # Z−axis rotation
mode 8 Left5−Mid # Zoom
mode 9 Alt−Mid # Move rear clipping plane
mode 10 Ctrl−Mid # Move front clipping plane
mode 11 Ctrl−Alt−Mid # Slab
mode 12 (Shift)−Right # Rectangular selection
mode 13 (Shift)−Ctrl−Left # Lasso selection
mode 14 (Shift)−Ctrl−Alt−Right−At # Connect to molecule
mode 15 Shift−Ctrl−Dbl−Right−At # Set alignment cursor
mode 16 Ctrl−Mid−At # Drag atoms
mode 17 Right5−Mid # Z−translate

#−−−−−−−−−−−−−− Colors −−−−−−−−−−−−−−
−−−−−color−−−−−−−−−−−−RRGGBB−−A_real_if_not_1
....
color lightgreen # 80ff80
color rita # ff1b00 0.3
color darkseagreen # 8fbc8f
...
#−−−−−−−− Atom/Grob/Font Colors −−−−−−−−−−
atom c grey # c is the first character of chemical element.
background black
color font size bold italic underline
atomFont rose times 12 0 0 0
varFont yellow symbol 12 0 0 0
residueFont green helvetica 18 0 0 0
grobFont green helvetica 18 0 0 0
stringFont green times 24 0 0 0
auxiliaryFont green symbol 28 0 0 0
fixedFont green courier 12 0 0 0
#
alphaRibbon magenta
betaRibbon green
coilRibbon yellow
#− 0:127 rainbow colors (address them by number: color 15.5) −−−−−−−
−−−−−−−−−i−color−−−−
rainbow 0 # 0000ff
rainbow 63 # ffffff
rainbow 127 # ff0000
....

2.23.18. Electron density map (*.map)

This binary file contains a complete description of the electron density map, compatible with the format
devised by Phil Evans. Maps are stored as a 3−dimensional array preceded by a header which contains all
the necessary information about the map. See "The CCP4 Suite" manual for details.

2.23.19. MC simulation movie (*.mov)

This binary file contains a description of a set of geometric parameters (free variables, usually torsions and
overall rotation/translation variables), participating in MC simulation, followed by a stream of their values
for each conformation accepted during the simulation, together with the energy of each accepted
conformation. Movies can be created or appended during MC simulation runs, and then played in any
direction with optional smoothing, superimposition (to the initial conformation) and/or centering. These
files tend to be large, watch them carefully and do not create them without a need. See also: display

2.23.18. Electron density map (*.map) 413

movie.

2.23.20. ICM−object (*.ob)

a binary noneditable file describing one or several molecules forming an ICM−object. In addition to
information available in a PDB−file it contains a description of atomic charges, tree−like connectivity,
detailed atom codes, information about which internal coordinates are constrained, references to energy
parameters, secondary structure, etc. The object can be read and written.

2.23.21. Residue library (icm.res or *.res)

The main residue library, describing all "residues" and molecules which can constitute a legal ICM−object.
You can create your own entry either manually or using the write library command and add the
entry to the icm.res file. You can also keep it in a separate file and append the file to the
LIBRARY.res sarray (i.e. LIBRARY.res=LIBRARY.res//"usr" followed by the read
library command). A example of an entry for a pro residue:

resName 1−ch Type AccSurf Eentropy LongName
nare pro P AMINO 150 0.0 proline
rem
rem _________atom_________ _dihedral_angles __bond_angles__ _bond_lengths
rem / \ / \ / \ / \
rem at na cd lwat qu gu na fe vuva ey na fe vuva ey na fe vuva ey qfm
Fields:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
atre 1 n 216 0 −0.285 0 psi + 180.000 2 an . 118.000 1 bn . 1.340 31
atre 2 ca 113 1 0.050 0 omgp + 180.000 24 aca . 121.000 1 bca . 1.465 1
atre 3 ha 1 2 0.040 0 fha . 116.800 0 aha . 110.200 1 bha . 1.090 0
atre 4 cb 112 2 −0.025 0 fcb . −120.850 0 acb . 103.700 37 bcb . 1.530 4
atre 5 hb1 1 4 0.015 0 fhb1 . 120.200 0 ahb1 . 111.600 1 bhb1 . 1.090 0
atre 6 hb2 1 4 0.015 0 fhb2 . −120.200 0 ahb2 . 111.600 1 bhb2 . 1.090 0
atre 7 cg 112 4 −0.050 0 xi1 . 27.400 21 acg . 103.700 1 bcg . 1.502 4
atre 8 hg1 1 7 0.025 0 fhg1 . 120.450 0 ahg1 . 111.200 1 bhg1 . 1.090 0
atre 9 hg2 1 7 0.025 0 fhg2 . −120.450 0 ahg2 . 111.200 1 bhg2 . 1.090 0
atre 10 cd 114 7 0.100 0 xi2 . −35.600 21 acd . 105.300 39 bcd . 1.501 4
atre 11 hd1 5 10 0.010 0 fhd1 . −119.730 0 ahd1 . 111.600 1 bhd1 . 1.090 0
atre 12 hd2 5 10 0.010 0 xi3 . −90.760 21 ahd2 . 111.600 1 bhd2 . 1.090 0
atre 13 c 121 2 0.455 1 phip . −68.800 19 ac . 112.300 3 bc . 1.520 3
atre 14 o 81 13 −0.385 1 fo . 180.000 0 ao . 120.500 1 bo . 1.230 5
F 20
lwat 13
F 21
exbo 1 10

Eentropy is the entropic contribution to the free energy for a fully accessible residue divided by the solvent
accessible surface of this residue (in gly gly X gly gly environment) and multiplied by a factor of 1000.

Fields:

relative atom number1.
atom name2.
main atom code (see icm.cod file). It in turn refers to other codes such as hydrogen bonding
code, van der Waals code and hydration code.

3.

414 2.23.20. ICM−object (*.ob)

previous atom in a connectivity graph of the directed ICM−tree.4.
electric charge5.
groups of close charges (they should not be separated due to cutoffs distance in interaction lists)6.
torsion name7.
fixation status (+ free variable, . fixed)8.
torsion angle (degrees)9.
torsion energy type (see icm.tot file).10.
bond angle name11.
bond angle fixation status12.
bond angle value (degrees).13.
bond angle deformation energy type (see icm.bbt file).14.
bond length name15.
bond fixation status16.
bond length (Angstroms)17.
bond stretching energy type (see icm.bst file).18.
(qfm) formal charge (may be +1, −1/3, −1/2 etc.), if any19.
(lwat) exit atom of the residue20.
(exbo) additional (non−tree) covalent bonds (atom1 atom2). Normal ICM−tree bonds form regular
directed graph without cycles, therefore all the remaining bonds should be declared separately.

21.

See also: LIBRARY.res .

2.23.22. Object Variables (*.var)

Text file containing either a subset or a complete set of internal coordinates (variables). Usually created by
the write vs_var command. It may also be typed manually. In contrast to an object file (*.ob) which
is a complete description of an object, icm.var may contain any selection of variables. These variables can
be read and automatically assigned to a molecule according to molecule name, residue number and variable
name.

Examples:

rem Va fx Atom Residue Mol Obj VaType Symm Value
va psi + n 3 gln mol dl 2 1 180.00
va phi + c 3 gln mol dl 1 1 −60.00
va psi + n 4 met mol dl 2 1 120.00
va phi + c 4 met mol dl 1 1 180.00

2.23.23. Multidimensional variable restraint types (icm.rst or *.rst)

define generic attraction zones in internal coordinate space (usually torsion space) in terms of residue name
pattern (* for any residue type), relative residue number, and variable names. After the types are loaded,
you may use them to assign specific vrestraints using the set vrestraint command. Three example
restraint types (the third one marked with 'rse' will be used as a penalty term, the first two will be used for
BPMC steps):

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Two−variable vrestraint
rs aa −3.300 0.700 0.542
va ala* 1 phi −63.200 22.500
va * 2 psi −38.540 25.500
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− One−variable vrestraint

2.23.22. Object Variables (*.var) 415

rs vt −3.511 0.700 0.670
va val* 1 xi1 174.690 29.225
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rse fmr −3.267 0.700 0.525
va phe* 1 xi1 −66.780 29.700
va * 1 xi2 98.680 75.100

Explanation of fields:

aa − rs−name (not longer than 4 characters). Usually the first character is a 1−char residue name,
and the second is the zone character (a − alpha, b−beta, g−gamma,d−delta,t−trans,p−plus 60,
m−minus 60,n−null)

•

−3.300 − well depth (should be negative)•
0.700 − flat fraction of the well•
0.542 − occupancy (probability) of the well with respect to other wells which could be assigned to
the same set of variables.

•

ala* − residue name pattern•
1 − relative residue number•
phi − variable name•
−63.2 − center of the well for 1 phi•
22.5 − size of the well (well is −63.2 +− 22.5)•
* 2 psi − residue name pattern (* means any), relative residue number (psi formally belongs to C
atom of the next residue, that is why the relative number is 2) and variable name

•

WARNING: remember that the outer borders of the two−dimensional restraints are ellipses, rather than
rectangles (the same for the multidimensional ones). To create a sloped surface for all variables involved in
the restraint, the well sizes for these variables should be greater than 180.*sqrt(number of angles in the rs)
(255.0 for 2 angles).

2.23.24. Multidimensional variable restraints (*.rs)

This file has similar format to the icm.rst file. The differences are:

rse and rs fields indicate whether the zone will be used for energy or probability, respectively.•
.rs file contains specific residue numbers rather than the relative ones.•
instead of the residue name pattern the file should contain molecule name or "*".•

Example:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Two−variable vrestraint
rs aa −3.300 0.700 0.542
va 1crn 1 phi −63.200 22.500
va 1crn 2 psi −38.540 25.500
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− One−variable vrestraint
rse vt −3.511 0.700 0.670
va * 3 xi1 174.690 29.225
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rs fmr −3.267 0.700 0.525
va 1crn 4 xi1 −66.780 29.700
va 1crn 4 xi2 98.680 75.100

416 2.23.24. Multidimensional variable restraints (*.rs)

2.23.25. A sample *.col file

The file shows an example of a multicolumn file which can be read with the read column command.
Arrays r, e s and ent will be created.

Entropies of several amino acids
#>−r−−−e−−−−−−s−−−−−−−−ent−−−
arg 2.13 184.920211 11.5181
asn 0.81 99.516352 8.1393
asp 0.61 89.629773 6.8057
cys 1.14 85.947233 13.263
gln 2.02 129.68481 15.576
glu 1.65 119.957333 13.75
his 0.99 121.124577 8.173
ile 0.75 132.717054 5.651

2.23.26. A sample *.tab file

The file shows an example of a .tab file which can be read with the read table. It is similar to the
previous file but additionally command. Table t consisting of header string t.titl and arrays t.r, t.e t.s and
t.ent will be created.

#>s t.titl
 Entropies of several amino acids
#>T t
#>−r−−−e−−−−−−s−−−−−−−−ent−−−
arg 2.13 184.920211 11.5181
asn 0.81 99.516352 8.1393
asp 0.61 89.629773 6.8057

2.23.27. Torsion parameters (icm.tot)

The file contains torsion parameters according to Momany et al., 1975. Parameters for type 21 for pro taken
from Venkatachalam et al., (1974), Macromolecules, 7, 212, parameters for types 22−23 for cooh taken
from Karplus et al., J.Comp.Chem., (1983),4,187−217, DNA parameters are from Veal and Wilson, 1991.
Format is free.

+−−−−symmetry−−−−−+
maxEner sign fold exact heavy Pseudo selChar
#
tot 0 0.00 0 0 1 1 1 − 0. # fixed dihedrals
tot 2 0.25 1 1 1 1 1 S 90. # psi
tot 44 0.50 1 1 1 1 1 S 90. # psi beta preference
tot 3 10.00 −1 2 1 1 1 S 0. # omg
tot 4 1.35 1 3 1 1 1 H 0. # xi CH2−CH2
tot 8 0.90 1 3 3 3 3 M 0. # nh3 term.group of lys,lysn
tot 14 0.00 0 2 1 1 2 H 0. # xi2 of his (+−90)

Torsion energy is calculated as: maxEner*(1 + sign*Cos(fold * torsion_angle)) Symmetry is a rotational
symmetry in different situations: Exact is the exact symmetry (implies presence of all atoms, including
hydrogens), Heavy implies presence of only the heavy atoms (no hydrogens) but uniqueness of different
atom types. Pseudo implies that all heavy atoms are equivalent, and hydrogens are ignored. The last
character is a short reference name which can be used in vs_var. For example: v_//M specifies all the

2.23.25. A sample *.col file 417

torsions rotating terminal hydrogen atoms with symmetry higher than 1, v_//H side−chain torsions rotating
heavy atoms, etc.

2.23.28. Van der Waals parameters (icm.vwt)

The file contains ECEPP/2 parameters for peptides (Momany et al., 1975, Nemethy et al., 1983),
parameters for DNA atoms: Veal and Wilson, 1991 and other parameters (unpublished).

Example lines:

type pzat n_el energy Deq Rvw Rvwel electroRadii

vwt 1 0.42 0.85 0.0370 2.92 1.200 1.200 * h aliphatic
vwt 2 0.42 0.85 0.0610 2.68 1.200 0.808 * h amide,amine
vwt 7 1.51 5.20 0.1400 3.74 1.700 1.700 * c carbonyl
vwt 39 0.00 0.00 0.55 5.911 2.631 2.631 * pseudo atom

Each line contains:

type reference number (see icm.cod file)1.
atomic polarizability *1024 (cm cubed);2.
effective number of electrons3.
−e(kk), kcal/mol − depth of energy minimum at the optimal interatomic distance4.
r(kk), a − equilibrium (optimal) distance between two atoms of the same type5.
van der Waals radius (used in graphics,electrostatics,etc)6.
electrostatic radii, used to calculate geometrical surface boundary in boundary element method
and MIMEL calculations

7.

Normally van der Waals parameters A and B are calculated from polarizability and effective number of
electrons (fields 2 and 3). However, if these two fields contain zeros, parameters A and B are calculated
directly from the energy depth and equilibrium distance (e.g. for type 39).

2.23.29. Protein databank file (or *.ent)

Protein Data Bank formatted files consist of x,y,z coordinates, occupancies, and B−factors.

Examples:

ATOM 1 N THR 1 17.047 14.099 3.625 1.00 13.79
ATOM 2 CA THR 1 16.967 12.784 4.338 1.00 10.80
ATOM 3 C THR 1 15.685 12.755 5.133 1.00 9.19

This file does not provide a complete and unambiguous description of a molecular object. Therefore an
object resulting from the read pdb command has a special type and needs conversion in order to become
a full−scale ICM−object for which energy calculations are possible.

See also: convert and minimize tether commands .

418 2.23.28. Van der Waals parameters (icm.vwt)

2.23.30. Sequence (*.seq *.pir *.gcg *.msf *)

Acceptable formats of sequence files:

FASTA and ICM format (*.seq the simplest and the most natural):•

> Name1 comment1 comment2
AGFDSTREMNH−FQW
> Name2
RTPIYQWSCCVANMKL

PIR format: (*.pir)•

>P1;Azur_Pses4
 Length: 80
AECSVDIQGN DQMQFSTNAI TVDKACKTFT VNLSHPGSLP KNVMGHNWVL TTAADMQGVV
TDGMAAGLDK NYVKDGDTRV*
//
>P2;Azur_Pses3
 Length: 50
AECSVDIQGN DQMQFSTNAI TVDKACKTFT VNLSHPGSLP KNVMGHNWVL*

GCG format (difficult to generate and impossible to edit because of the CheckSum):•

Azur_Alcfa Length: 69 Check: 4484 ..

 1 ACDVSIEGND AMQFNTKSIV VDKTCKEFTI NLKHTGKLPK AAMGHNVVVS
 51 DGMKAGLNND YVKAGDERV

MSF format − obsolete multiple sequence format for alignments. Noneditable, contains
CheckSums.

•

2.23.31. ICM−sequence file (*.se)

contains molecular names and sequences. A simple example with two peptides:

ml a
se gly ala ser pro tyr his
se phe trp tyr
ml b
se ala ala ser asn

A more advanced example with numbering, N− and C−termini and D−amino acids:

ml sub1
se 0 nter 1 gly 2 ala 2A Dglu 4 asp cooh
ml water
se 18 hoh

ml field followed by molecule name signals that a new molecule is started. se field indicates sequence
lines (free format). Residue names should correspond to entries in the icm.res residue library. Residue
numbers (if any) may be arbitrary, negative and may contain additional characters (e.g. 15A, 15B, etc.).
Terminal modifiers (nter, nh3+, cooh, coo−, conh, etc.) may be explicitly specified.

2.23.30. Sequence (*.seq *.pir *.gcg *.msf *) 419

2.23.32. ICM−alignment file

ICM−format for sequence alignments. The consensus string contains the following symbols:

symbol description
space gap in at least one of the sequences
characterthis amino acid is conserved in all the sequences
+ positively charged amino acids (R,K)
− negatively charged amino acids (D,E)
^ small amino acids: (A,S,G,S)
% aromatic residues (F,Y,W)
hydrophobic amino acid (F,I,L,M,P,V,W)
~ polar amino acid (C,D,E,G,H,N,Q,S,T,Y)
dot the rest (no consensus, no gap)
The file looks like this:

comments
Consensus: .C~.~I.^ND.MQ.~.K~#.V~K~CK~FT#~LKH.GK#.K..MG
Azur_Alcde MLAKATLAIVLSAASLPVLAAQCEATIESNDAMQYNLKEMVVDKSCKQFTVHLKHVGKMAKVAMG
Azur_Alcfa −−−−−−−−−−−−−−−−−−−−−ACDVSIEGNDSMQFNTKSIVVDKTCKEFTINLKHTGKLPKAAMG
Azur_Alcsp −−−−−−−−−−−−−−−−−−−−AECSVDIAGNDQMQFDKKEITVSKSCKQFTVNLKHPGKLAKNVMG

Consensus: FCSFPGH#^#MKG.#
Azur_Alcde FCSFPGHWAMMKGTLKLSN
Azur_Alcfa FCSFPGHWSIMKGTIELGS
Azur_Alcsp FCSFPGHFALMKGVL−−−−

2.23.33. ICM all−file: a file with multiple icm objects.

a file containing several ICM−shell objects divided by the following separators:

#> type1 ICM−shell−object−name1
.... obj1.....
.... obj1.....
..............
#> type2 ICM−shell−object−name2
.... obj2.....
.... obj2.....
..............
 etc.

Legal separators:

#>i integer_name•
#>r real_name•
#>s string_name•
#>l logical_name•
#>p preference_name•
#>I iarray_name•
#>R rarray_name•

420 2.23.32. ICM−alignment file

#>S sarray_name•
#>M matrix_name•
#>seq sequence_name•
#>prf profile_name•
#>ali alignment_name•
#>m map_name•
#>g grob_name•
#>T table_name # the column layout•
#>col table_name•

the column layout

#>db table_name•

the database layout

#> brk # a protein−data−bank file content•
#> var # internal variables (torsions, angles, bonds) for the current ICM−object•

A sample file a.all containing an integer, real, logical, real array, a pdb−file and a table. You can read
all this from a file or simply mark the lines and paste them into your ICM−session after the command:
read all unix cat followed by Ctrl−D.

#>i numberOffset
 0
#>r lineWidth
 1.00
#>l logo
 yes
#>R boxx
 0. 0. 1. 1.
#>brk
ATOM 1 n leu m 1 2.602 −12.770 −6.750 1.00 20.00
ATOM 2 ca leu m 1 2.423 −11.442 −7.311 1.00 20.00
ATOM 3 cb leu m 1 0.947 −11.187 −7.625 1.00 20.00
ATOM 4 cg leu m 1 0.758 −11.068 −9.138 1.00 20.00
ATOM 5 cd1 leu m 1 1.487 −9.824 −9.649 1.00 20.00
ATOM 6 cd2 leu m 1 1.335 −12.309 −9.822 1.00 20.00
#>s tt.h
this is a header string of table tt. The arrays follow.
#>i tt.i
15
#>T tt
#> a b c d
1 2. bla 13
3 5. bli 13

2.23.34. Residue comparison table (icm.cmp or *.cmp)

A triangular matrix with relative residue exchange frequences (see actual file). The amino acid character
line serves as a ruler. Use your favorite comparison matrix.

2.23.34. Residue comparison table (icm.cmp or *.cmp) 421

2.23.35. Protein profiles (*.prf)

A profile table contains residue preferences for each residue type in each sequence position. The
preferences may be derived from a multiple sequence alignment or from three−dimensional structure.

Examples:

Cons A B C D E F etc. Z Gap Len ..
C 35 −32 143 −42 −52 −12 etc. −62 100 100
P 55 17 6 17 17 −71 etc. 26 100

2.23.36. Integer array (*.iar)

File looking like this (free−format):

everything which is not a number will be skipped
1 2 4
 9
numbers may be in a row, or column or be in an arbitrary order.
 −14 9

2.23.37. String array (*.sar)

Actually any text file. Each line will be a separate element of a string array

2.23.38. Matrix (*.mat)

File looking like this:

1 0 0
0 1 0
0 1 1

or like that

my matrix
0. 1. 1. 2.2
1. 0. blu 1. 2. # text will be skipped
1. 1. 0. 3. this line is commented out

In the latter case the result of read matrix command is a matrix of two rows {0. 1. 1. 2.2 } and
{1. 0. 1. 2.} . Lines can be commented out with # sign. All the fields which do not look like
numbers are skipped. If you matrix is symmetric, you may specify only the upper left or the lower right
triangle like this:

1.
1. 2
1. 2 −1.
1. 2 3. 5.

422 2.23.35. Protein profiles (*.prf)

2.23.39. Numerical data (real arrays) (*.rar)

File may contain arbitrarily mixed numbers and strings. Strings will be skipped and numbers will form an
array. A hash sign # at the beginning of a line comments this line out.

Examples:

1.2
1.4
1.8
rem 2.2

This array will lead to {1.4 1.8 2.2} array.

2.23.39. Numerical data (real arrays) (*.rar) 423

424 2.23.39. Numerical data (real arrays) (*.rar)

3. User's guide
This section of the ICM manual contains answers to some popular questions and example scripts for
different tasks. We assume that you now understand the basic syntax and concepts of the ICM−shell and
elementary molecular operations.

3.1. ICM−shell

3.1.1. How to get help

This entire book can be searched from the command line. You may just type help and use /searchString
to find what you want, or use help commands or help functions to find out about the syntax. If you want
help on a multi−word term, e.g. read pdb, merge the words, e.g. help readpdb . The web version of
this book with links is also available (man.tar.gz file contains about 2000 html files). See also: help,
help commands, help functions.

3.1.2. Customization

There are several mechanisms of helping you to customize your ICM environment:

ICMHOME

Define UNIX environmental variable ICMHOME in your .cshrc file, e.g.

 setenv ICMHOME /opt/icm/

This will be the directory from which ICM program takes all necessary libraries, databases, etc.

USER environment: $HOME/.icm files and directories

In contrast to $ICMHOME directory which may be installed under root for several users, the
$HOME/.icm directory contains files which can be changed by a user. Under Windows the directory is
$USERPROFILE/.icm . The icm−user directory contains the following files and directories:

dir/file description

blastdb/ contains blast−formatted files for ICM sequence searches (see also
s_blastdbDir)

config/ contains icm.cfg and icm.rc files with startup preferences.

icm_projects/ contains subdirectories with icm files for saved project (see also
s_projectsDir).

inx/ default location for database index files (see also s_inxDir)
log/ contains session logs, (see also s_logDir)
_startup if present, overrides the global _startup in $ICMHOME.
user_startup.icm user startup files. Executed in addition to _startup

3. User's guide 425

general _startup

Adjust _startup file to your needs. Define directories, PostScript viewer, help engine, database
directories, etc.

Examples are given below.

 s_pdbDir = "/data/pdb/" # set it to the place where PDB lives
 s_helpEngine = "icm" # default, web−browser is an alternative
 s_prositeDat = s_icmhome+"prosite.dat" # you may have your own updated file
 s_psViewer = "/usr/opt/bin/gs −q" # xpsview may be more standard
 s_tempDir = "/tmp" # better be accessible only for you

Set $BLASTDB system environment variable for searches in the blast−preprocessed sequence databases
(see the find database command).

individual user_startup.icm , gui−controls and menus :

additional personal custom commands can be stored in $HOME/.icm/user_startup.icm file under UNIX
and $USERPROFILE/.icm/user_startup.icm under Windows . This allows to have your own
additional setup which follows a general $ICMSCRIPTDIR/_startup[.icm] file execution. We also
recommend that you create a .icm directory in your home directory and store all additional files, such as
your personal icm.clr , GUI−setup and color file, and other custom files. Example personal
user_startup.icm file in which we use personal GUI files:

LIBRARY.clr = Getenv("HOME")+"/.icm/icm.clr" # USERPROFILE under Windows
LIBRARY.men = Getenv("HOME")+"/.icm/icm.gui" # now gui will invoke your file
read color # updates your GUI−control and color setup

aliases :

Define aliases convenient for you.

hotkeys :

Use, define new or modify old keystrokes. Set key command allows you to create efficient keystrokes to
control graphics

macros:

Create macros for all frequently used interactive operations and their combinations.

3.1.3. How to write a nice demo with menus to impress the boss

See example in the description of the menu command and the _demo family of scripts.

3.1.4. How to boost learning process while reading the ICM manual

Start ICM, mark (copy) all the example lines from the manual with the mouse and paste them to
the ICM−shell text window. Try each line as you read it! You will immediately see the result and

•

426 3.1.2. Customization

will be able to play around. Note: in principle you may mark several lines, but sometimes the
buffer gets overflown. In this case paste lines in smaller chunks or one by one.
Use HTML cross−references.•
Write to support@molsoft.com if you have questions or need an ICM−shrink.•
Always use TAB key while typing the command.•

3.1.5. How to get the list of the command words

Use list command to see the whole list of valid ICM words. If you need a list of all available ICM
functions, use list function command instead.

help commands and help functions will give all the syntax lines too.

3.2. ICM graphics

3.2.1. How to learn the ICM molecular graphics in 30 seconds

To master ICM graphics you only need to know the following words: commands:display,
undisplay, color, center, delete, connect ;

nouns:wire, cpk, ball, stick, xstick, surface, skin, ribbon, label, residue, atom ;

selection : e.g.

 a_1. # the first object
 a_1.1 # the first molecule
 a_1.1/5:10 # residues from 5 to 10
 a_1.1//ca,c,n # the backbone atoms
 Sphere(a_1.1 a_2. 10.) # atoms around a_1.1 in a_2.

colors: white, black, blue, green, etc. (see file icm.clr).

output image formats: png , tif (default) , targa, gif , rgb .

Now start from the command word and type what you need, and use controls to rotate,
translate, label, zoom, mark and color.

Example:

 read pdb "1crn"
 display ribbon
 color ribbon a_/4:8 blue
 display xstick a_1.1/10 green
 center a_/6:12
 display residue label a_/6:12
 display string "Crambin" 36 red
 write image rgb "crn" # use IRIX imgview to check the image
 write image window=2*View(window) # hi−res picture

More advanced topics: connect , graphics objects .

3.1.5. How to get the list of the command words 427

3.2.2. How to make a nice high−resolution image

So called computational biology is primarily about generating nice pictures. Here are a few tips.

1) image display. Display your molecule or molecule the way you like. Running the nice macro (e.g.
nice "1est") is a good start.

2) background. Change background color with Ctrl−E and Ctrl−Q to your liking.

3) fog. It is a great visual effect. Use it! Switch on the depth−cueing effect, i.e. fog with Ctrl−D (depth).
Move the bright front clipping planes with Ctrl−MidMB and move the back clipping plane closer with
vertical movements with MidMB at the right margin of your graphics window (the mapping of the mouse
controls to effects is defined by the icm.clr file).

You may color the fog with color volume color command and modify fogStart to increase or
decrease the unfogged slice of the molecule.

4) grobs. Make them smooth with select g_.. and pressing Ctrl−X and unselecting with the Esc
button. To shine light from outside sometimes you need to say display reverse .

5) quality of graphic elements. set IMAGE.quality=12 or 15. This parameter determines the number
of triangles in shapes like spheres and cylinders. The default value is only 5. because at routine interactive
work you prefer speed to quality.

6) image resolution. Let us count pixels. Your screen window is usually about 600x600 pixels which
corresponds to 2x2inch picture at 300dpi resolution, or 1x1 inch at 600dpi. Therefore, if you want to
generate image at high resolution use two tricks: (i) make your window as large as possible; (ii) use
the write image command with option window= and select a factor 2 or 3 to generate 2 or 3 times
large image respecively, e.g.

write image png window= 2 * View(window)

Be careful, the window option will not save the text labels. It is preferable to add text labels outside ICM
anyway.

7) The picture is ready. Enjoy the attention.

3.2.3. How to rotate one molecule around its own center of mass

First, you need to move the molecule of interest to the center of the screen: center to this molecule and
use the connect a_molselection command to 'connect' your mouse to just this molecule and leave
everything else unchanged. You will see that E.g.

 read pdb "2ins"
 center a_b
 connect a_b # use mouse LB to rotate and translate

428 3.2.2. How to make a nice high−resolution image

3.2.4. How to annotate a molecular image in the graphics window

Simply use display string command allowing to place a string into the graphics screen. The string
can be dragged later to any location with the middle mouse button. You can set font, color and positions
you like. Obsolete strings can also be undisplayed or removed by the command delete label, or
by the BACKSPACE key when the cursor is in the graphics window (see keyboard and mouse
controls).

3.2.5. How to save and print the generated image

Save the image using write image command, preview it with the IRIX imgview, convert it to the
PostScript format and print it. You may also save image directly in PostScript format, either as a bitmap
snapshot or as a vectorized high−quality model of linear, triangular and string primitives, as they are
rendered on your display. See

write image

and

write postscript

for details.

3.2.6. How to change the color of the graphics window background

Command color background allows to set any color from those specified in the file icm.clr, for
example

 color background white # or
 color background black # or
 color background aquamarine

Note that numeric values may also be used, for example:

 display string "background\ncolor test" 0.4, 0.9
 ncolor = 127
 for icolor = 1, ncolor, 1
 color background icolor
 display string "color number " + String (icolor)
 delete label 2
 endfor
 delete label
 display string "the end"
 color background black

See also icm.clr file.

3.2.7. How to return a molecule to the center of the graphics window

Use the center command.

3.2.4. How to annotate a molecular image in the graphics window 429

3.2.8. How to color atoms according to their B−factors

Command color can use any real array as a set of individual color numerical specifications. The smallest
number corresponds to the red color, the largest number to the blue one. Function Bfactor(as_) returns
the real array of B−values for each selected atom.

Examples:

 read pdb "1crn"
 color a_1crn.//* Bfactor(a_1crn.//*)

3.2.9. How to color residues according to their hydrophobicities

It is very simple:

 read object "4pti"
 display a_//!h* white
 display surface a_1.1 a_1.1
 s_method = "surface" # s_method = "xstick" or "cpk" is also possible
 # hydrophobic
 color $s_method yellow a_/ala,val,phe,ile,leu,pro,met/!c,n,o,hn
 # polar
 color $s_method pink a_/ser,thr,tyr,cys,asn,gln,his,trp,gly
 # charged (+)
 color $s_method blue a_/lys,arg/nz,hz*,nh*,hh*
 # charged (−)
 color $s_method red a_/asp,glu/oe*,od*
 display string yellow "hydrophobic: yellow" 25, −0.9, 0.9
 display string pink "polar: pink" 25, −0.9, 0.6
 display string blue "charged(−)" 25, −0.9, 0.8
 display string red "charged(+)" 25, −0.9, 0.7

See also How to color atoms according to their charges.

3.2.10. How to color residues according to their accessibilities

Function Area is required.

Example:

 read object "crn"
 show surface area # calculate the surface energy contribution
 # (hence, the accessibilities are also calculated)

 assign sstructure a_/* "_"
 # remove current secondary structure assignment
 # for "tube" representation
 display ribbon
 # calculate smoothed relative accessibilities
 # and color the tube according
 # to the accessibilities of the residues
 color ribbon a_/* Smooth(Area(a_/*)/Area(a_/* type) 5)
 # plot residue accessibility profile
 plot Count(1 Nof(a_/*)) Smooth(Area(a_/*)/Area(a_/* type) 5) display

430 3.2.8. How to color atoms according to their B−factors

3.2.11. How to color atoms according to their charges

Use function Charge . For example:

 read object "crn"
 display surface
 color a_//* Charge(a_//*)

Another example is selected residues coloring:

 display a_*./asp,glu/o?* cpk red
 display a_*./lys,arg/nz,n?* cpk blue

3.3. Structure analysis

3.3.1. How to optimally superimpose two 3D structures

Optimal superposition implies optimization of the
Ca−RMSD upon rigid body superposition of the
equivalent residues/atoms. This set of equivalent
positions can be predefined, or determined by
sequence alignment, or automatically derived from
structure. In the latter case the optimized value is the
RMSD of a trial alignment is corrected by the
alignment length to reward longer alignment with
slightly worse RMSD.

There are several different algorithms which can be
applied:

superimpose by known residue or atom equivalences (see the superimpose command)•
superimpose by sequence alignment which is calculated on the fly:•

superimpose a_1.1 a_2.1 align # the sequences are generated on the fly

This procedure fails if two structures have no significant sequence similarity
align .. command to find global structural alignment (returned by the ali_out variable)
and superimpose accordingly. Here we do not rely on sequence alignement (although it can be

•

3.2.11. How to color atoms according to their charges 431

added to the optimized scoring function with a certain weight).

align a_1.1 a_2.1

Align(.. distance) for local structural alignment•

Use superimpose command. It performs an optimal rotation and translation of one structure onto the
other. If necessary, a sequence alignment may be done prior to superposition by specifying align option
in the command line.

Example:

 read pdb "3znf"
 display a_1.1//n,ca,c magenta
 make sequence a_1.1
 read pdb "1ard"
 display a_2.1//n,ca,c blue
 make sequence a_2.1
 show sequence
 # somewhat different sequences of two Zn−fingers
 # sequence alignment is required
 superimpose a_1. a_2. align

Note, in this particular example, the whole structural similarity is not so high. However, better fit may be
obtained if only portions of the structures are superimposed, for example:

 superimpose a_1.1/16:27/n,ca,c a_2.1/116:127/n,ca,c align

See also: Rmsd() and Srmsd().

3.3.2. How to optimally superimpose without the residue alignment

The core of this procedure is the

align ms_molecule1 ms_molecule2

command. There are two variants: a fast superposition using dynamic programming algorithm align
[distance] ms_1 ms_2 or a more rigorous, but somewhat less stable and slow align heavy ms_1
ms_2 ... command. This first command is well described above and identifies only the best superposition.
The initial superposition is then refined similarly to the find alignment command.

The second algorithm (option heavy) identifies a number of possible superpositions (solutions) based on
the Ca atom coordinates only. The first solution is the best hit. See also load solution command.

Examples:

 read pdb "4fxc"
 read pdb "1ubq"
 display a_*.//ca,c,n
 color molecule a_*.
 align a_1.1 a_2.1
 center

432 3.3.2. How to optimally superimpose without the residue alignment

 color red as_out
 color blue as2_out
 show ali_out

3.3.3. How to make a Ramachandran plot

Use macro plotRama . The macro is invoked by

plotRama rs_selection l_addLabel l_addBoundaries

Important: if a PDB structure is analyzed, convert it first to get a proper ICM−object (true
ICM−molecular object does not require prior preparation for building Ramachandran plot).

Example:

 read pdb "1crn"
 convert a_1. # Note, one more object appeared in addition
 # to the original (PDB) object 1crn
 l_addLabel = yes # add residue labels to the plot
 l_shadedBoundaries = yes # add allowed regions to the plot

 plotRama a_2. l_addLabel l_shadedBoundaries
 quit

3.3.4. How to display hydrogen bonds

A list of hydrogen bonds may be calculated and displayed for an ICM−objects or non−ICM object
with hydrogens. If you are dealing with a PDB structure without hydrogens, convert it first. The
command show hbond prints list of hydrogen bonds in the text window. After that they can be
displayed. (Hydrogen bonds can also be calculated by minimize and show energy commands
provided that the hydrogen bond energy term is switched on.)

The display hbond command allows to show the deviation angle of the hydroben bond from linearity
(see the GRAPHICS.hbondStyle preference).

Examples:

 read object "crn" # already converted
 show energy
 display
 show hbond 2.5 a_/1:15 # list of H−bonds with H−X distance < 2.5 A
 # appears in the text window
 display hbond 1.9 # H−bonds shorter than 1.9 A are shown
 GRAPHICS.hbondStyle = 3
 display hbond

See also: GRAPHICS.hbondStyle

3.3.5. How to identify atoms or residues at the molecular interface

When two or more parts of the polypeptide chain(s) are near each other in space, they are referred to as a
molecular interface. What "interface" is can be defined more specifically in the context of a particular

3.3.3. How to make a Ramachandran plot 433

study, so here only an example is given to illustrate how interface may be identified and displayed. Two
ICM functions are to be used for that, viz. Sphere and Acc . Suppose, you analyze 3D structure of a
complex of two molecules, and would like to see what residues are at the interface. It can be done by the
following:

 read object "complex"
 display a_1,2//!h* # display both molecules
 # without hydrogens

 color a_1 yellow
 color a_2 green

 show area surface a_1//!h* a_1//!h* # calculate surface of
 # the 1st molecule only

 color red Sphere(a_2//* a_1//* 4.) Acc(a_1/*)# interface residue atoms
 # of the 1st molecule
 # in 4 A radius vicinity
 # of the 2nd molecule

 show area surface a_2//!h* a_2//!h* # calculate surface of
 # the 2nd molecule only

 color blue Sphere(a_1//* a_2/* 4.)# interface residue atoms
 # of the 2nd molecule
 # in 4 A radius vicinity
 # of the 1st molecule

If, instead, you need to mark residues, convert the selection of the interface atoms to residues with the Res
() command:

 # same as above.

 resAtInterf = Res(Sphere(a_2//* a_1//* 4.)) Acc(a_1/*)
 display residue label resAtInterf

Note that in the Sphere command it does not matter if you specify the atom selection or a residue selection
as an argument, since the function operates at the atom level anyway. The difference in the specification of
the ICM selection in these two examples (usage of two slashes for atom selection, and one slash for
residue selection):

Sphere(a_1.1/* 4.) versus Sphere(a_1.2//* 4.) and also Acc(a_1.1/*) versus
Acc(a_1.2//*) for specifying residues and atoms, respectively.

Important: when calculating surface, be sure that you properly specify the selection arguments
in the show area surface command.

3.3.6. How to identify torsions at the molecular interface

Identification of the torsions belonging to residues at the molecular interface is a necessary and non−trivial
step in many tasks of the molecular modeling. An example below shows how this identification may be
done in ICM. The same as above ICM−object "complex" is considered.

 read object "complex"

434 3.3.6. How to identify torsions at the molecular interface

 display a_1.1,2//!h* # display both molecules
 # of the complex w/o hydrogens
 color a_1.1 yellow
 color a_1.2 green

 show area surface a_1.1//!h* a_1.1//!h* # calculate surface of
 # the 1st molecule only
 a1=Sphere(a_1.2//* 7.) Acc(a_1.1//*) # define the 1st molecule atoms
 # belonging to the interface
 # of the 1st molecule
 # in 7 A radius vicinity

 v1=V_1.1//S a1 # identify standard geometry
 # torsions of the 1st molecule
 # belonging to the interface

 color red Atom(v1) # color atoms which torsions
 # belong to

 # similar for the 2nd molecule
 show area surface a_1.2//!h* a_1.2//!h*

 a2=Sphere(a_1.1//* 7.) Acc(a_1.2//*)
 v2=V_1.2//S a2
 color blue Atom(v2)

3.3.7. How to calculate packing density

The packing density analysis requires understanding of two types of surfaces: the skin (molecular
surface) and solvent−accessible surface of water probe centers (which is one water radius away from
the skin). The following is an example of how it may be done for a fragment of a protein.

 read object s_icmhome+"crn"
 asel = a_/5:15
 show volume skin asel asel
 rskin = r_out
 vwExpand = 0.
 show volume surface asel asel
 rsurf = r_out
 print "skin volume = ", rskin, "; vw volume = ", rsurf
 print "packing density = ", rskin/rsurf

3.3.8. How to perform a principal component analysis

For a set of objects with given measure of similarity between each two of them, one can easily perform the
principal component analysis or to solve a distance geometry problem by using Disgeo function.
The following example shows how to get a two−dimensional distribution of amino acid sequences of a
series of Zn−fingers given the distance between sequences is defined by Distance(sequence1 sequence2
) function. This distance is essentially a measure of sequence similarity: the distance is 0. for two identical
sequences, it is propotional to percent identity divided by 100. for very similar sequences and goes above
one at about 30% sequence identity, tending to infinity for very small seq. identity numbers.

 read sequences s_icmhome+"zincFing" # read sequences from file,
 list sequences # see them, then ...
 group sequence alZnFing # group them, then ...

3.3.7. How to calculate packing density 435

 align alZnFing # align them, then ...
 a = Distance(alZnFing) # calculate a matrix of pairwise
 # distances among them
 n=Nof(a) # number of points
 b=Disgeo(a) # calculate principal components
 corMat = b[1:n,1:n−1] # coordinate matrix [n,n−1] of n points
 eigenV = b[1:n,n] # vector with n sorted eigenvalues
 xplot = corMat[1:n,1]
 yplot = corMat[1:n,2]
 # plot 2D distribution
 plot xplot yplot CIRCLE display

3.3.9. How to calculate a dihedral angle

Normal dihedral angles like torsion angles describing conformation are directly available through the
Value() function. You need to convert an object into the ICM type if necessary.

Example:

 read pdb "1crn" # read it in
 convert # quickly convert into ICM−object
 show v_//phi,psi # just show all phi,psi's
 show v_/3:17/xi* # show chi angles of residues from 3 to 17
 a = Value(v_//phi,psi) # create a real array of values of spec. torsions

You can calculate a dihedral angle between any two planes defined by three atoms (for example two Phe
rings) with the calcDihedralAngle macro. If this macro is loaded, you can do the following:

 read object "crn"
 as_1 = a_/1/n,ca,c
 as_2 = a_/3/n,ca,c
 display a_//n,ca,c blue
 color as_1 magenta
 color as_2 green
 calcDihedralAngle as_1 as_2
 print "dihedral angle 1(n,ca,c) and 3(n,ca,c) (deg) = ", r_out

Note that the order of atoms in the selections as_1 and as_2 is determined only by the ICM−molecular tree
(will be the same for a_//n,c or a_//c,n). Thus, any changes in the selections as_1 and as_2 not changing
their content has no effect on the resulting dihedral angle:

 as_1 = a_/1/ca,c,n
 as_2 = a_/3/ca,c,n
 calcDihedralAngle as_1 as_2
 print "dihedral angle 1(n,ca,c) and 3(n,ca,c) (deg) = ", r_out

See also: Acos(), Length(), Sum(), Vector().

3.3.10. How to print a table of the torsion angles

The simplest list can be generated by:

 show V_//* # or
 show V_//phi*,psi*,omg* # or

436 3.3.9. How to calculate a dihedral angle

 show V_//xi* # side chain torsions

A nicer formatted output (one line per residue) may be generated with macro printTorsions, for
example:

 read pdb "1crn"
 convert
 printTorsions a_/2:15

Note, that you do not need to convert your molecular object if it is an ICM−object.

3.3.11. How to build a hydrophobicity profile

First, define a hydrophobicity scale, for example that from Kyte and Doolittle, 1982 or use your favorite
one. (Note, there should be 26 entries in the hydrophobicity parameters list hPhobInd corresponding to the
26 letters of the alphabet. Non−participating letters B,J,O,U,X,Z are marked by zero values.)

 # define a hydrophobicity scale
 hPhobInd = { 1.8, 0.0, 2.5, −3.5, −3.5, 2.8, −0.4, \
 −3.2, 4.5, 0.0, −3.9, 3.8, 1.9, −3.5, \
 0.0, −1.6, −3.5, −4.5, −0.8, −0.7, 0.0, \
 4.2, −0.9, 0.0, −1.3, 0.0}

 # make a macro
 macro hPhobProfile seq_ i_windowSize
 if (Type(i_windowSize)=="unknown") then
 i_windowSize = Ask("Enter window size",windowSize)
 endif
 R_window = Rarray(i_windowSize,1./i_windowSize)
 R_hphob = Smooth (Rarray(seq_,hPhobInd), R_window)
 R_ruler = {0.,0.,10.,10.,0.,0.,0.,0.}
 R_ruler[2] = Real(Length(seq_))
 r_tic = 1./Sqrt(Real(i_windowSize))
 r_tic = Integer(r_tic*100.0)/100.
 R_ruler[5] = −7.*r_tic
 R_ruler[6] = 7.*r_tic
 R_ruler[7] = r_tic
 R_ruler[8] = r_tic
 print R_ruler
 s_legend = {"Hydrophobicity plot","Sequence","Hydrophobicity"}
 xplot = Count(1 Length(seq_))
 yplot = R_hphob
 psfilename = "hphob"
 plot xplot yplot R_ruler s_legend grid="xy" display psfilename
 delete R_window R_ruler r_tic
 endmacro
 # now, an example
 read object "crn"
 s = Sequence(a_)
 hPhobProfile s 7

3.3.12. How to display and characterize protein cavities

ICM offers fast, elegant and mathematically accurate way to identify, display, and measure protein cavities.
An example session which displays all cavities with their surroundings, and calculates their volumes and

3.3.11. How to build a hydrophobicity profile 437

surface areas:

Examples:

 read object "crn" # or whatever
 make grob skin "g_skin"
 split g_skin
 nShells = i_out
 display wire residue labels
 for i=1,nShells
 v = Volume(g_skin$i) # actually its surface is returned in r_out
 s = r_out # there is no need to use the explicit Area(g_skin$i)
 if(v > 0.) then # note that cavities have negative volume!
 display transparent smooth g_skin$i
 printf "Shell %d: V=%f A=%f\n", i, v, s
 else
 display reverse smooth yellow g_skin$i
 center g_skin$i
 printf "CAVITY %d: V=%f A=%f R~%f\n", i, −v, s, −3.*v/s
 endif
add pause here for an interactive session
 endfor

3.4. Sequence, searches and alignments

3.4.1. How to search all Prosite patterns in your sequence

Use macro searchSeqProsite. For example:

 read pdb "2dhf"
 make sequence a_1.1 # sequence of a PDB structure
 show sequence
 find prosite 2dhf_a # 2dhf_a is the sequence of the protein

See also find prosite, find pattern and read prosite.

3.4.2. How to find a fragment in the PDB database (obsolete)

First, make sure that you have a library of representative icm−objects. String variable s_qsearchDir
should contain the relative path of this directory with respect to the s_dataDir directory. The library
may be created and updated with the provided _mkQsearchLib script. Use qsearch or iqsearch
macros. Load the object and type qsearch or iqsearch + arguments. You will be prompted for the forgotten
arguments.

To understand the meaning of the arguments, see the find pdb command.

Examples:

 read object s_icmhome+"crn"
 call s_icmhome+"_qsearch"
 # no graphics, just the list of solutions
qsearch a_/2:6,14:18
 # interactive

438 3.4. Sequence, searches and alignments

 iqsearch a_1crn./2:6,14:18 "xxxxx−−−−−−xxxxxx" "*" "*" .7

3.4.3. How to identify binding pockets

There are three algorithms (A, B, and C) with ICM which can identify pockets:

option target macro
A closed pockets icmCavityFinder
B almost closed pockets make map potential , etc., see below
C pockets with good ligand−binding potentialicmPocketFinder

For the areas of space attracting ligands (option C), use two macros:

Example:

 read pdb "1a28"
 delete a_!1,2
 convert
 delete a_2
 icmPocketFinder a_ 3.

In the following example we find an almost closed pocket which can not be identified with
icmCavityFinder .

 read pdb "1fm6" # read the 'a' chain of RXR
 delete a_!1,9 # keep the RXR and its ligand only
 make map potential a_1 Box(a_ 1.) 1. # grid size 1.5 A
 make grob m_atoms exact 0.1 solid
 split g_atoms
 cool a_
 display g_atoms2 reverse

3.4.3. How to identify binding pockets 439

If you have problems with identifying pockets, change the grid size, the threshold level for make grop
m_atoms , or try to convert object to the ICM type (the conversion will add hydrogens and make the
object more dense).

3.4.4. How to find a similar fold or topological motif in the PDB database

Use macro searchObjSegment, for example:

 read object s_icmhome+"crn"
 searchObjSegment a_1.1 30 3.
or
 read pdb "1pxt"
 delete a_!1
 convert
 searchObjSegment a_1.1 24 6.

You may need to adjust the seed fragment length and the RMSD parameters for a cleaner list.

The database foldbank.seg is provided and may be recompiled, customized and updated by the
supplied _mkSegmentLib script.

See also segment, find segment, write segment, foldbank.seg, How to extract a diverse set
of PDB entries How to compile a database of protein secondary structures and their folds .

3.4.5. How to generate a non−redundant list of PDB sequences

The following script is a skeleton of the provided script _mkUniqPdbSeqs which is somewhat more
automated.

 l_commands=no
 errorAction="none" # if something goes wrong do not
 # interrupt the loop
 read sarray s_pdbDir+"/derived_data/index/source.idx"
 # you need a list of all pdb−entries
 # (4 char. code per line will do)
 source = Tolower(Trim(Field(source,1)))
 n=Nof(source)
 for i=1,n
 read pdb sequence resolution source[i]
 # append resolution to the chain name (like 9lyz_a19)
 endfor
 group sequence "*" uniqSeqs unique 0.1
 # cutoff inter−sequence
 # distance 0.1 (dissimilar by more than 10%)
#
Other possibilities
#
group sequence uniqSeqs unique 5 # if two seqs differ by more
than 5 mutations
group sequence uniqSeqs unique # throw away only identical
sequences
#
 delete sequences # get rid of sequences not
 # included in uniqSeqs

440 3.4.4. How to find a similar fold or topological motif in the PDB database

 write sequence s_inxDir + "/pdb1.seq"
 # actual sequences for searches
 write Name(uniqSeqs) "chainList"
 # list of protein chains if you need it
 quit

3.4.6. How to merge several pdb files

The simplest way to merge two pdb files is to read them as separate objects and the use the move a_1.
a_2. command. Example:

 read pdb "1crn"
 read pdb "1d48"
 move a_2. a_1. # merges objects
 write pdb a_1. "both" # saves both files in pdb format
 write object a_1. # saves merged object in compact binary form

Before or after merging, the objects can also be edited, translated to a new position, rename chains,
change residue numbers etc. Example:

 read pdb "1d48"
 delete a_w*
 delete a_2 # delete the second chain
 read pdb "1crn"
 delete a_/33:99 # delete a C−term. part of crambin
 move a_1. a_2. # merge the remains
 write object a_

If you want to re−engineer a polypeptide chain of a protein, using two pdb−files, e.g. to transplant one part
of a protein to another and restore the bonding connectivity, you may use the modify command:

 read pdb "1crn" # one pdb
 read pdb "1cbn" # similar protein
 modify a_1./20:25 a_2./20:25
 # translants a loop from 2nd object to the 1st one
 write pdb a_1. "combo"

3.4.7. How to compile a database of protein secondary structures and their
folds

The following script uses the previously compiled list of unique pdb chains and creates two files:
foldbank.db containing sequences, resolutions, the deposited and the automatically assigned secondary
structures of the nonredundant set and foldbank.seg containing quantitative topology descriptions of
the folds. The GAP (which stands for Gly−Ala−Pro) library allows to build only the backbones necessary
for the secondary structure prediction algorithm and speeds up the PDB−>ICM conversion. The
foldbank.db is in the ICM database format, so that you can create an ICM table shell−object.
This allows to sort entries and perform searches to create subsets.

 l_commands =no
 l_info =no
 l_confirm =no
 errorAction="none"
 segMinLength =3
 mncalls =300

3.4.6. How to merge several pdb files 441

 s_icmhome ="./"
 s_reslib ="icmGAP" # Gly−Ala−Pro residue library
 read library
 # ...getting the representative list of chains...
 read sequences s_pdbDir+"/derived_data/pdb_seqres.txt"
 #make sure to have _mkUniqPdbSeqs executed recently
 li=Name(sequence)
 delete sequences
 #...you may modify the method or create your own list...
 if (Error) quit

 unix mv foldbank.db foldbank.db.OLD
 unix mv foldbank.seg foldbank.seg.OLD
 for i=1,Nof(li)
 lii=Tolower(li[i])
 read pdb lii[1:4]+"."+lii[6]+"/"
 delete !Mol(a_*/A) # delete HET−molecules
 convert
 er=r_out
 rz=Resolution(a_1.)
 if(rz < 0.01)rz=9.99
 sx=Sstructure(a_*)
 assign sstructure
 # uncomment the following line, if you'd like
 # to save GAP objects. requires GAP subdirectory
 # write object "GAP/"+lii[1:4]+lii[6]
 sprintf "# %d\nNA %s.%s\nRZ %.2f\nER %.3f\nSE %s\nSX %s\nSS %s\n" \
 i lii[1:4] lii[6] rz er String(Sequence(a_*)) sx Sstructure(a_*)
 write append s_out "foldbank.db"
 assign sstructure segment
 rename a_2. lii[1:4] # restore the original pdb−name
 write append segment "foldbank.seg"
 delete a_*.
 endfor
 quit

3.4.8. How to search headers of the PDB entries

There is an PDB.tab file which contains one line header descriptions of all the entries. Now you have three
ways of doing it:

In unix:•

grep −i kinase PDB.tab

From ICM: you have more possibilities:•

read table s_icmhome+"PDB.tab"
show PDB.head ~ "kinase" # or
show PDB.head ~ "*kinase*" # or
show PDB.comp ~ "kinase*" # regular expressions
You can also
a=PDB.head~"kinase"
for i=1,Nof(a)
 nice PDB.ID
 pause
 delete a_*.

442 3.4.8. How to search headers of the PDB entries

endfor

Use the gui (Find.In PDB.By Keyword..)•

3.5. Energetics and electrostatics

3.5.1. How to plot the distance dependence of a van der Waals interaction

The following script will plot three energy−interatomic distance plots for three possible van der Waals
terms defined by the vwMethod preference ("exact"−black,"soft"−blue and "old soft"−red). Simply mark
and paste the following lines into your ICM session:

 buildpep "one;one" # two oxygens
 set term "vw" only
 set a_2//o Sum(Xyz(a_1//o))+{.0 .0001 .0}
 n=200
 a=Rarray(n)
 b=a
 c=a
 r=Rarray(n .03 3.)
 vwSoftMaxEnergy = 14.5
 for i=1,n
 translate a_2 add {0.03 0. 0.}
#
 vwMethod="exact"
 r[i]=Distance(a_2//o a_1//o) # use Sum(Distance(..)) for the old version
 show ey mute
 a[i]=Energy("vw")
#
 vwMethod="old soft"
 show ey mute
 b[i]=Energy("vw")

 vwMethod="soft"
 show ey mute
 c[i]=Energy("vw")
 endfor
 s=Sarray(3*n)
 s[n+1]="_red line"
 s[2*n+1]="_blue line"
 plot ds r//r//r a//b//c s {0. 6.01 1. 1. ,−1. 17. 1. 1.}

3.5.2. How to calculate the electrostatic free energy by the REBEL−method

This short script solves the Poisson equation by the "Rapid−Exact− Boundary ELement (REBEL) method
for crambin.

Examples:

 electroMethod="boundary element"
 read object "crn"
 delete a_w* # get rid of water molecules
 show energy "el"
 show Energy("el")−r_out, r_out # Coulomb and solvation components

3.5. Energetics and electrostatics 443

3.5.3. How to evaluate the pK shift

Suppose we mutate a surface Asp into Ala and want to evaluate how the pK of the neighboring His is
changed. The pK shift may be evaluated as the difference of potential at Nd1 His and Ne2 His nitrogens
due to the mutation. Since Ala may be considered as uncharged, the shift is simply the potential at the
nitrogens due to the Asp charge.

Example (pKshift of His34 from Asp22):

 read object "rinsr" # load insulin
 # we assume that the positive charge is
 # equally distributed between the two nitrogens
 make boundary
 pKshift=Sum({0.5, 0.5}*Potential(a_/his/nd1,ne2 a_/22/*))/ \
 (Boltzmann*300.*Log(10.))

3.5.4. How to evaluate the binding energy

There are many different approaches to the evaluation of binding energy. One of the reasonable
approximations has the following features:

van der Waals/hydrogen bonding interaction is excluded since it has close magnitudes for
protein−protein and for protein−solvent interactions;

•

electrostatic free energy change is calculated by the REBEL method (see also the section "How to
calculate the electrostatic free energy ... ") above);

•

side−chain entropy change is calculated by standard ICM entropic term based on exposed
surface area of flexible side−chains;

•

hydrophobic energy change is calculated using surface term with constant surface tension of
20. cal/Angstrom.

•

Example:

 electroMethod="boundary element"
 surfaceMethod="constant tension"
 surfaceTension=0.020
 dielConst = 12.7
 set terms "sf,el,en"
 read object s_icmhome+"2ptc"
 show energy a_1 a_1 mute
 e1 =Energy("el,sf,en")
 show energy a_2 a_2 mute
 e2 =Energy("el,sf,en")
 show energy mute
 e12 =Energy("el,sf,en")
 print "Binding energy = ", e12 − e1 − e2

3.5.5. How to calculate an ensemble average

The following is an example of calculating the average of an interatomic distance over a set of
conformations collected in the conformational stack. This calculation is written as a macro. Feel free to
change it. You may also use movie and load frame instead of stack and load conf, respectively.

444 3.5.3. How to evaluate the pK shift

 # first, define the macro
 macro ensembleAverage r_temperature
 l_commands = no
 l_info = no

 load conf 0 # extract the lowest energy
 e0 = Energy("func")

 ansAver = 0. # the statistical sum initialization
 statsum = 0.
 r_temperature = r_temperature * Boltzmann

 for i = 1,Nof(conf) # loop through all the stack
 # conformations
 load conf i
 prob = Exp((e0−Energy("func"))/r_temperature)

 # averaging distance between two ca
 # is just an example
 ansAver = ansAver + Distance(a_/2/ca a_/4/ca)*prob
 statsum = statsum+ prob
 endfor
 r_out = ansAver/statsum
 print " Ensemble average is: ", r_out
 endmacro
 # Now you can calculate your average

 read object "my_peptide"
 read stack # stack file is assumed to have
 # the same name
 ensembleAverage 600. # sometimes you may use the elevated
 # temperature to account for relaxation

3.5.6. How to evaluate helicity of a peptide from the BPMC simulation

Run the _folding script first. Make sure the procedure converges by running several
simulations (say _f1 _f2 _f3) from different random starting conformations. E.g.:

1.

cp $ICMHOME/_folding _f1 # adjust the script
icm _f1 > f1.ou cp _f1 _f2
icm _f2 > f2.ou cp _f2 _f3
icm _f3 > f3.ou

You can evaluate helicity for each simulation. If they converge the result will be about the same.2.

Helicity is just the ensemble average of the parameter which can be calculated as the relative
number of the helical residues. Therefore you need to assign secondary structure for a particular
movie frame or stack conformation and count number of helical residues. See macro _helicity
averaging helicity over the movie frames.

3.

macro helicity s_movieName r_temperature
attention: 'temperature' is extremely important.
You may use elevated temperature to account for relaxation.
 l_commands=no
 l_info=no
 read conf 0 s_movieName

3.5.6. How to evaluate helicity of a peptide from the BPMC simulation 445

 e0=Energy("func") # the lowest energy
 av=0.
 ssum = 0.
 r_temperature = r_temperature * Boltzmann
 res = Real(Nof(a_/*))
 read movie s_movieName
 for i=1,Nof(frame)
 load frame i s_movieName
 assign sstructure
 prob = Exp((e0−Energy("func"))/r_temperature)
 av = av + prob*Nof(Sstructure(a_1/*),"H")/res
 ssum= ssum+prob
 endfor
 print " The best E=", e0, " Helicity= " av*100./ssum
endmacro

3.5.7. How to merge and compress several conformational stacks

You may run several montecarlo simulations and accumulate several conformational stacks (*.cnf
files). To unite them it is essential that they have been created with the same energy function, because the
compression algorithm takes the energy into account to decide which structure is more valuable. If it is not
the case, you can always recalculate energies for the stack conformations by the following procedure:

 read object "f"
 read stack "f1"
 read stack "f2" append # the second stack will be appended
 for i=1,Nof(conf)
 load conf i
 show energy s_correctTerms # say, "vw,14,to,el,sf,en"
 store conf i
 endfor

Now, to unite all the stacks and compress them you may do the following (just the idea):

 read object "f"
 delete stack
 read stack "f1" # first simulation
 read stack "f2" append # second simulation
 read stack "f3" append # third simulation
 show stack # look at what you have now
 compare v_//phi,psi # use the comparison criterion from the simulation script
 # compose a new one, see also the compare command
 vicinity = 40. # you may redefine the vicinity parameter
 compress stack
 show stack # look at the compressed stack
 write stack "f4" # save the result

3.6. Manipulations with molecules

3.6.1. How to build new object from a sequence

The easiest way to build an object with one of several peptides is to use the buildpep macro. There you
can use a one letter code (upper case characters) or three−letter code and separate sequences of different
chains by a semicolon. Examples:

446 3.5.7. How to merge and compress several conformational stacks

 buildpep "AAAAA" # penta−alanine
 buildpep "ASFHGD;EQWR" # two chains

To create a DNA duplex or a compound, use GUI.

For a more flexible building procedure, follow the following steps:

Create the ICM sequence file either manually or using IcmSequence function, e.g.:1.

 write IcmSequence("FAASVRES", "nh3+", "coo−") "file.se"

 read sequence "memb.seq" # creates the ICM sequence memb
 write IcmSequence(memb , "nh3+", "coo−") "myseq.se"
 build "myseq"

You can also build sequence directly without creating a file with the build string. See the
build command and IcmSequence() function.

Change the default conformation using the available information. Possibilities:
You have a template pdb file with all the coordinates. Use regul macro.♦
Set particular dihedral angles with the set vs_variableSelection R_arrayOfValues or♦

set vs_variableSelection r_theValue command.

you can use minimize, montecarlo and ssearch commands to find a low−energy
conformation.

♦

2.

Examples:

 build string "se nh3+ ala his leu trp coo−"
 set v_/3/xi1 −60.
 minimize

3.6.2. How to quickly convert a pdb file into an ICM−object

Sometimes it is necessary to have a PDB file in the form of an ICM molecular object. For example, it's a
convenient way to list and/or to change a torsion angle (or a series of them). All what you need is to use
convert command. One more ICM−format object will be created (use show object command to see
the list of currently loaded molecular objects). The above method is good only for a limited set of tasks
mostly related to structure analysis. If you want to perform further conformational sampling by energy
optimization it is better to regularize the pdb−object (see the next section) See also strip.

3.6.3. How to prepare a PDB structure for energy calculations
(regularization)

Regularization is a sophisticated multi−step procedure. It consists of the following six steps.

Preparation of a file with the amino acid sequence.•
Creating full−atom ICM−model (geometrical approximation).•
Rotational positioning of methyl groups.•
Iterative optimization of geometry and energy of the whole structure.•

3.6.2. How to quickly convert a pdb file into an ICM−object 447

Adjustment of polar hydrogen positions.•
Free minimization to check the consistency of the resulting structure.•

See macro regul .

3.6.4. How to create a new molecule or a residue for the ICM residue library

Let us assume that your input is a pdb file with a new small organic molecule and you want to create a
proper ICM object from this molecule. What is currently missing in the description may be the following:

proper chemical bond types (single, double, triple, aromatic). To see them press Ctrl−W to
switch to wireStyle="chemistry".

•

hydrogen atoms (you need proper bond types to add hydrogens)•
proper atom types•
partial atomic charges•
directed graph (ICM−tree) imposed on all the atoms. This graph defines torsion angles and will be
built by the write library command. In an ICM object the graph can be displayed if
wireStyle="tree".

•

Identify the molecule or residue you would like to transform into the ICM−residue entry. To build all the
above descriptions, perform the following procedures:

read pdb "ligand" # molecule has no hydrogens•

display

set bond type 1 a_//* # initialize all bond types by 1, the default is 0•

0 type means that the convert command will try to guess the type

set bond type 2 a_//o2 a_//p1 # type 'set bond type 2' and Ctrl−rightClick two atoms•

set all other non single bonds: 1−single, 2−double, 3−triple, 4 aromatic.

set bond type 4 a_//c1,c2,c3,c4,c5,c6 # an example of setting aromatic type for a ring•
build hydrogen # use 'delete hydrogen as_' if things go wrong•

set type mmff•
set charge mmff write library command to save the residue entry file or append it to the
icm.res or create you own library file.

•

3.6.5. How to modify an ICM−object

Methylation, hydroxylation, glycosylation, sulfation, amidation,
phosphorylation, disulfide bond formation, peptide cyclization/bond,

ICM allows to perform most of the common chemical modifications of peptides and other biological
molecules. It is easy to build a linear chain of amino acids and add N− and C− termini. D−amino acids can
be introduced by adding capital D in front of the residue name (i.e. Dala). To make further modifications

448 3.6.4. How to create a new molecule or a residue for the ICM residue library

we will use the modify and the make [disulfide | peptide] bond commands. Let us consider
the main categories, using the nh3−DCSTVYHCK−coo peptide as an example. Start you session with

 build string "se nh3+ asp cys ser thr val tyr his cys lys gly coo−"

Now, if you like to see the results of your operations, display the molecule and do the following:

type modify in the command window;•
Ctrl−RightClick on the atom of interest (the selection will appear in the command window);•
and, finally, enter the quoted chemical group name and press Enter.•

The popular modifications:

Methylation:•

...−NH−... + CH3 −>...−N−CH3 + H

 modify a_/val/hn "ch3"

Hydroxylation:•

...R−CH2... + OH −>...R−CHOH... + H

where R belongs to side−chain of Lys or Pro.

Examples:

 # 5−hydroxylysine (Hyl) in collagen
 modify a_/lys/hd2 "oh"
 # 4−hydroxyproline (Hyp) in collagen
 modify a_/pro/hg2 "oh"

Glycosylation:•

1. O−glycosylation:

...−R−OH + O−CH− Carb −>...−R−O−CH− Carb + OH

where R is a side−chain radical of Ser or Thr and Carb is an O−capped carbohydrate. Groups
available for O−glycosylation are "acgl", "xyl", "agal", "bgal". You can further modify these
groups.

Examples:

 modify a_/ser/og "acgl" # beta−D−N−acetylglucosaminide
 modify a_/thr/og1 "xyl" # xylose

2. N−glycosylation:

...−R−NH2 + O−CH− Carb −>...−R−NH−CH− Carb + OH

3.6.4. How to create a new molecule or a residue for the ICM residue library 449

where R is a side−chain radical of Asn. Carb is an O−capped carbohydrate (see O−glycosylation
above). The following example illustrates an alternative way of modification when a part of the
attached group is disregarded.

 # It is assumed that the modified object (a_1.) is already built.
 # Now build the second object including only one aclg residues.
 build string "se acgl" "modgroup"
 display a_ red
 set object a_1.
 modify a_/asn/hd21 a_2.1/1/c1 # o1 atom of the acgl is disregarded, and
 # asn's Nd and acgl's c1 is directly connected.
 delete a_2. # Remove obsolete second object

If glycosylation follows hydroxylation, you explicitly do the same by N−glycosylation:

 modify a_/lys/hd2 "oh"
 modify a_/lys/o_a "bgal" # o_a is the new unique name for the oxygen

Alternatively (and preferably) replace hydrogen directly:

 modify a_/lys/hd2 "bgal"

Sulfation:•

...−R−OH + SO4 −>...−R−O−SO3 + OH where R belongs to Tyr.

 modify a_/tyr/oh "sul" # tyrosine−O−sulfate in fibrinogen

Amidation of the C−terminal glycine:•

Build the peptide with the last gly replaced by the conh C−terminal residue. Tether it to the
previous object and minimize tethers.

Phosphorylation:•

...−R−OH + O−PO2−OH −>...−R−O−PO2−OH + OH where R belongs to Ser, Thr, Tyr

or

...−R−H + O−PO2−OH −>...−R−O−PO2−OH + H where R belongs to Lys, His

or

...−R−O + O−PO2−OH −>...−R−O−PO2−OH + O where R belongs to Asp.

 modify a_/ser/og "pho" # skip if you have already modified this residue
 modify a_/thr/og1 "pho"
 modify a_/tyr/oh "pho"
 modify a_/lys/hz2 "pho"
 modify a_/his/hd1 "pho"
 modify a_/asp/od2 "pho"

450 3.6.4. How to create a new molecule or a residue for the ICM residue library

Disulfide bond formation:•

...(cys)−S−H + H−S−(cys)... −>...(cyss)−S−S−(cyss)... + H2

(note that names of the residues are changed upon bond formation (see disulfide bond).

 #ds extended ICM model of the sequence
 display
 # set only one SS−bond, disregard all previous
 make disulfide bond a_/3 a_/9 only
 # MC search for plausible conformations
 montecarlo

Peptide cyclization and peptide bond:•

...COO + NH3... −>...−CO−NH−... + H2O

 build string "se nh3+ gly gly gly gly his coo−"
 display
 make peptide bond a_/nh3*/n a_/his/c # form a cyclic peptide
 display drestraint
 minimize "ss"
 minimize "vw,14,hb,el,to,ss"

The following example shows how to build a cyclic peptide cyclosporin A:

read pdb "1csa"
make bond a_1csa.m/1/n a_1csa.m/11/c
write library "cs" a_/1
display grey
 build string "se thr thr gly leu val leu ala Dala leu leu val"
 modify a_/2/og1 a_/2/hb
 modify a_/3/hn "ch3"
 modify a_/4/hn "ch3"
 modify a_/6/hn "ch3"
 modify a_/9/hn "ch3"
 modify a_/10/hn "ch3"
 modify a_/11/hn "ch3"
 rename a_/1 "bmt" # actually, the residue BMT is more complex
 rename a_/2 "aba"
 rename a_/3 "sar"
 rename a_/4 "mle"
 rename a_/6 "mle"
 rename a_/9 "mle"
 rename a_/10 "mle"
 rename a_/11 "mva"
 display
 make peptide bond a_/11/c a_/1/n
 minimize "vw,14,to,hb,el,ss"
 montecarlo "vw,14,to,hb,el,ss"

3.6.6. How to merge two ICM−objects

(the move command). It may be necessary to merge two or several ICM−objects or molecules to one, For
example, if you are dealing with a docking problem and have prepared two molecular objects separately.

3.6.6. How to merge two ICM−objects 451

The ICM command move allows you to do that. Technically, it rearranges virtual connections in the
ICM molecular tree responsible for the description of the molecules in one ICM−object or in several ones.

 read object "complex" # load a two−molecule ICM−object
 display virtual a_//!h* # display molecules with virtual bonds
 color molecule
 show object # one ICM−object loaded

 read object "crn" # load one more ICM−object
 display virtual
 color a_2. magenta
 show object # two ICM−objects loaded
 move a_2.* a_1. # merge two ICM−objects to one
 # with virtuals connected to the origin

 show object # now two loaded ICM−objects becomes one

 connect a_1.3 # you can move newly incorporated molecule
 # w/respect to the original complex.
 # do not forget to press ESC key in the
 # graphics window to complete the command

 # and / or you can save the new
 # three−molecule object to a new file
 write object "super_complex"

(See connect to learn more about the command.)

If, on the contrary, you would like to have one or several molecules from an ICM−object as an independent
ICM−object, you should simply delete unnecessary molecules and to save the remaining one(s) as a new
ICM object, for example:

 read obj "super_complex" # suppose you saved "supercomplex"
 # from above example, then...

 delete a_1.1 # all what you need is a_1.2 and a_1.3,
 show molecule # right?
 write object "remains_of_super"
 # new ICM−object file "remains_of_super.ob"
 # contains the 2nd and the 3rd molecules

3.6.7. How to make a hybrid model from several pdb files

To swap parts between several pdb files, read all of them to icm, and rename the chain which are you going
to graft into the template, so that the template and the graft have the same name. Sometimes the two
structures need to be superimposed. So, what is important for 'graftability' is

the graft has the same chain name (see rename)1.
the graft has residue numbers consistent with the template (see align number)2.
the graft has consistent coordinates (see superimpose)3.

Example:

 read pdb "1crn"
 read pdb "1cbn"

452 3.6.7. How to make a hybrid model from several pdb files

 rename a_2.1 "m"
 # or rename a_2.1 Name(a_1.1)[1] to do it automatically
 superimpose a_1.1 a_2.1 align # see more specific

The second concern is residue numbers. They need to be unique. This can be performed with the align
number command, e.g.

 align number a_2.1/21:28 22 # renumber the loop starting from 22

Now you can write the pieces to a file and after you read it back the pieces will become one molecule.

 write pdb a_1.1/1:20 "hyb"
 write pdb a_2.1/21:28 "hyb" append
 write pdb a_1.1/29:99 "hyb" append

 read pdb "hyb" # read the hybrid in
 cool a_ # display it

These operations are combined in the mergePdb macro, e.g.:

 mergePdb a_2./20:25 a_1./300:308 # creates hybrid.pdb file

3.6.8. How to generate a series of intermediates between the two given
structures

The following procedure will solve the problem:

 read pdb "bj1bb" # first structure
 read pdb "bj2bb" # second structure
 strt = Xyz(a_1.//*) # matrix (3, N_of_atoms) of the first ...
 fnsh = Xyz(a_2.//*) # ... and of the second
 display a_1. red # to see what is going on if you need it
 display a_2. blue
 nn = 300 # to generate 300 intermediate conformations
 x = 1./nn
 for i = 1, nn
 set a_1.//* strt*(1.−x*i) + fnsh*x*i
 write pdb a_1. "x"+i
 # uncomment the above line if you need
 # to save intermediates in x1.pdb, x2.pdb, etc.
 endfor
 quit

3.6.9. How to reconstruct a structure from a published stereo picture

Follow these steps:

Scan the picture and create arrays of arbitrarily scaled coordinates xLeft xRight and Y for the Ca
atoms.

•

When you have the coordinates in your ICM session call the makePdbFromStereo macro.•
mark the PDB−formatted lines and paste it after the read pdb unix cat command.•
inspect the results, possibly return to step 1 and correct the coordinates or use stereoAngle = −6.•
to build all−atom model, create sequence file and use the macro regul .•

3.6.8. How to generate a series of intermediates between the two given structures 453

Example:

 read column "xxy" # 3 numbers in each line + a header: #> xl xr y
 makePdbFromStereo xl xr y 6.
 read pdb unix cat
 ATOM
 ATOM
 # Ctrl−D
 display

3.7. Animation

3.7.1. How to rotate and zoom in a script

The simplest script will use the View(v1,v2,r) function to interpolate between views with different
rotation and zoom. Example:

 buildpep "ACDF" # tetrapeptide
 # zoom out and create a small remote view
 v1=View() # the 1st view
 # zoom in and rotate
 v2=View() # the last view
 for i=1,100
 set view View(v1,v2,i*0.01) # interpolation
 endfor

Now you can add a specific display (cpk,skin or anything else) and add the write image command
after −− set view.

The following script and macro make a .mov file for a specified molecule.

makemovie −f qt −o tamox.mov −c qt_anim −r 15 `ls −tr ../f*.tif`
 print "DO NOT FORGET icmt −24; set view 10 10 640 480"
 macro molkino i_tZoom (20) i_tRotate (20) l_preview (yes) R_startView R_endView s_Files ("/icmdata/movies/tamox/f")
 GRAPHICS.ballQuality = 15
 nfr=30
 for i=0,i_tZoom*nfr
 set view View(R_startView ,R_endView, 0.5−0.5*Cos(180.*i/Real(i_tZoom*nfr)))
 if(!l_preview) write image s_Files + i
 endfor
 B = 0.
 for i=0,i_tRotate*nfr
 A = 360./Real(nfr*i_tRotate) * i
 A = 180. − 180.*Cos(A/2.)
 rotate view Rot({0. 1. 0.} A−B)
 B = A
 if(!l_preview) write image s_Files + (i_tZoom*nfr+ i)
 endfor
 endmacro
#read object "tamoxifen"
 read object "propecia.ob"
 set window 10 10 640 480
 GRAPHICS.ballRadius=0.4
 display xstick
 color a_//c* green
 color a_//h* white

454 3.7. Animation

 read rarray "v0"
 read rarray "v1"
 set view v0

3.7.2. How to make a molecular movie from a Monte Carlo trajectory

We assume that you have a Monte Carlo trajectory saved as an ICM movie file. Displaying this
movie interactively on your graphical screen is the simplest form of animation. You just load the object, the
ICM movie and run the display movie command. Adjust your window and view and the allowed types
of representation. This method will not work in two situations.

First, skin and surface are not automatically recalculated and redisplayed upon the
conformational change.

•

Second, if you would like to display computationally heavy forms of graphical representation the
interactive movie may become too slow.

•

In these two situations you may resort to external tools generating movie from individual image files.

In this case, the process of making a molecular movie animating the trajectory can be split into two steps.

The first step is a preparation of a series of images stored as separate disk files. Watch the ICM movie by
the display movie command and select a range of frames you are going to include to the movie. There
are two ways how a series of the molecular graphics images can be saved as tif or rgb formatted files.

Image collection (type I)

The following molecular representations are allowed in this case: wire, cpk, ball, stick, xstick
and ribbon . The image option of the ICM display movie command is required. An example:

 build "alpha"
 read movie "alpha"
 display ribbon
 color ribbon a_/1:9 magenta
 color ribbon a_/10:18 green
 print "Adjust the view, press ENTER to continue"
 pause # Pause to adjust a view of the molecule
 # start of the collection of the image disk files
 # (note, tif files are to be saved)
 nframe = Nof(frame)
 print "Total number of frames = ", nframe
 # specify the range you need, for example:
 ifrom = 10
 ito = 20
 # otherwise, for all frames:
ifrom = 1
ito = nframe

 display movie ifrom ito image

Computationally more expensive skin and surface molecular representations (or a combination of any
of these two with those mentioned above) require an ICM script, as in the following example.

3.7.2. How to make a molecular movie from a Monte Carlo trajectory 455

Image collection (type II)

 build "alpha"
 read movie "alpha"
 display xstick a_//n,ca,c
 set window 600 30 640 480 # good to convert it later into NTSC format
change 640 480 to appropriate dimensions for PAL
 lineWidth = 3.
 print "Adjust the view, press ENTER to continue"
 pause

 nframe = Nof(frame)
 print "Total number of frames = ", nframe
 ifrom = 10
 ito = 20
 icount = 0
 l_confirm = no
 IMAGE.compress = yes
 for iframe = ifrom, ito
 load frame iframe
 icount = icount + 1
 imgname = s_tempDir + "alpha_" + String(icount−1)
 display xstick a_//n,ca,c green
 display surface a_/7:12/!n,ca,c a_/7:12/!n,ca,c magenta
 write image imgname
 undisplay surface # should be removed and redisplayed at the next step
 endfor

Whatever protocol you make use of, a series of files should appear in the s_tempDir directory. List their
names in a file, for example, alpha.lst:

/usr/tmp/alpha_0.tif
/usr/tmp/alpha_1.tif
/usr/tmp/alpha_2.tif
/usr/tmp/alpha_3.tif
/usr/tmp/alpha_4.tif
/usr/tmp/alpha_5.tif
/usr/tmp/alpha_6.tif
/usr/tmp/alpha_7.tif
/usr/tmp/alpha_8.tif
/usr/tmp/alpha_9.tif

(Note, image numbers are started from zero, and "_" (underscore) is inserted before the current frame
number.) Now, you can put these image files into a movie file. We suggest to use the makemovie
command for Silicon Graphics machines. The following is a sample UNIX−shell command line which
should be entered to make a non−interlaced MPEG−formatted movie with the frame size 640 by 480 saved
in the Apple QuickTime movie file alpha.qt:

makemovie −f qt −o alpha.qt −c qt_anim −s 640,480 −r 30 ` cat alpha.lst`

Upon completion, use the movieplayer IRIX command to see the movie. UNIX man on−line help should
allow you to learn more about these (and other) helpful commands. And let us give you several helpful
hints:

456 3.7.2. How to make a molecular movie from a Monte Carlo trajectory

While the collection of the image disk files is in progress, do not hide any portion or the whole
area of the graphics window by opening another window which can cover the first one, and do not
move the mouse cursor through the graphics window area. This procedure typically requires quite
a time, so be ready to be off your terminal/workstation for the whole time required for the image
collection to complete.

•

Do not forget to deactivate your screen saver before you start!•
Make sure you have enough disk storage. All images are assumed to be stored in the directory
specified by s_tempDir string variable. The easiest way to estimate the required disk storage is
to store the content of a single image by the write image command, and multiply the size of
the resulting tif or rgb file by the number of frames. You could do it without leaving your
ICM−session. For example, if you have a molecular image in the graphics window, then:

•

 write image "testsize"
 unix ls −l testsize.tif | awk '{print $5}' > testsize.rar
 read rarray "testsize.rar"
 sizeValue = testsize[1]
 nFrame = 0
 nFrame = Ask("Number of frames?", nFrame)
 printf "Required storage for %d frames is %8.3f Mbytes\n", \
 nFrame, Real(nFrame)*sizeValue/1048576.
 unix rm testsize.tif testsize.rar
 delete sizeValue testsize nFrames

(Note that in the above example the file is stored in the current directory, not in that defined by the
s_tempDir variable).

3.8. Transformations and symmetry
This section describes geometrical transformations of molecular objects and manipulations with
crystallographic symmetry.

3.8.1. Main concepts and functions

Molecular objects and 3D density maps may contain symmetry information. This information allows to
generate symmetry related parts of the density or molecular objects.

An elementary space transformation is defined by a rarray where values {a1,a2,...,a12} define 3x3
rotation matrix and translation vector {a4,a8,a12}. The complete augmented affine 4x4 transformation
matrix in direct space can be presented as:

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 −−−−−−−−−−−−+−−−−
 0. 0. 0. | 1.

The related commands and functions (transformation vector will be referred to as R_tv):

command/function description

Axis (R_tv) calculates the rotation axis R_3 of the transformation. Rotation angle is
returned in r_out .

3.8. Transformations and symmetry 457

Augment (R_tv) converts 12−membered transformation vector into the augmented
transformation matrix 4x4.

Cell (os_) returns {a,b,c,alpha,beta,gamma} of the unit cell
Rmsd (as_1 as_2 [exact
]) returns R_tv in R_out

Rot (R_tv) extracts the 3x3 rotation matrix
superimpose as_1 as_2
... returns R_tv in R_out

Symgroup (
i_spaceGroupNumber)

returns a chain (R_[1:12*n]) of all n transformation vectors composing the
specified space group.

Symgroup (s_groupName)returns the i_spaceGroupNumber from which the transformations can be
determined.

transform ms_ R_tv applies transformation to an object.
Trans (R_tv) extracts the translation 3−vector which is applied after rotation

3.8.2. How to generate symmetry related molecules

There are three steps:

define symmetry•
find elementary transformation•
apply the transformation with the transform command.•

Objects read with the read pdb or read csd commands grab the symmetry information from the files.
Otherwise assign the symmetry with the set symmetry os_ s_spaceGroupName R_6cell
i_NofMolecules command. This way you may define your own set of symmetry transformations.
Finally, loop through all the transformations and aplly the transform command.

Example: see example in the transform command or paste the following lines into your ICM session:

 read csd "qfuran"
 for i=2,Nof(Symgroup(Symgroup(a_)))/12 * 2 # 2 elem.cells will be filled
 copy a_1. "a"+i
 transform a_a$i. i−1
 display
 center
 endfor
 color ml a_*.
 gcell=Grob("cell",Cell())
 obl=Augment(Cell()) # this will work also for any oblique matrix
 g1 = gcell + (−1)*obl[1:3,2] # shift cell by a−vector
 g2 = g1 + obl[1:3,3]
 display gcell g1 g2
 print " cell=" Cell() "\n Symgroup=" Symgroup(a_) \
 "Nof.sym.=" Nof(Symgroup(Symgroup(a_)))/12

3.8.3. How to find and display rotation/screw transformation axis

Steps:

458 3.8.2. How to generate symmetry related molecules

find the transformation with the Rmsd(as_sub1 as_sub2exact) function. It returns the
transformation vector in the R_out system variable.

•

find the axis with the Axis(R_out) function. This function also return the a point at the axis in
R_out and the rotation angle in r_out

•

display the axis with the Grob("arrow", R_6) function.•

Examples:

 read obj "crn" # let us display an axis of the alpha helix 7:17
 ds a_/7:17
 R1=Mean(Xyz(a_/7:17/ca)) # this point will be projected onto the axis
 show Rmsd(a_/7:16/ca a_/8:17/ca exact) # find the transformation
 vv=R_out
 aa=Axis(vv)
 print "The rotation angle is ",r_out
 gg=Grob("arrow",aa)*10.+ Sum((R1−R_out)*aa)*aa+R_out # projection of R1 on aa
 display gg
 center
 pause

#Symmetry of an extended fragment
 delete object
 build string "se ala ala ala ala ala ala ala ala ala ala ala ala"
 R1=Mean(Xyz(a_/*/ca)) # this point will be projected onto the axis
 show Rmsd(a_/2:12/ca a_/1:11/ca exact)
 vv=R_out
 aa=Axis(vv)
 print "The rotation angle is ",r_out
 gg=Grob("arrow",aa)*10.+ Sum((R1−R_out)*aa)*aa+R_out # projection of R1 on aa
 display gg
 center

3.8.4. How to combine several transformations

To combine several transformations simply multiply their augmented matrices.

Examples:

 tv = Symgroup(19) # 12*4 vector of the P212121 symmetry group
 tv1 = tv[13:24] # grab the second transformation of the symmetry group
 # the first is the identity transformation
 tv2 = tv[37:48] # grab the last transformation of the symmetry group
 tvComb = Vector(Augment(tv1)*Augment(tv2)) # self−explanatory
 show tvComb # you can apply it now with the transform command

3.8.5. How to build a helix from the two contacting monomers

Two steps:

find the transformation from the two coordinate sets•
apply the transformation as many times as you need•

The transformation may be helical or (a degenerate case) a rotational.

3.8.4. How to combine several transformations 459

Example:

 read pdb s_icmhome + "chq" # download two molecules related by a rot. symmetry
 display a_*.
 R1=Mean(Xyz(a_/*/ca)) # this point will be projected onto the axis
 show Rmsd(a_2 a_1 exact) # we assume that molecules are the same
 tv = R_out # this is the transformation 12−vector
 ha = r_out # rotation angle (just FYI)
 delete a_2 # we will regenerate the 2nd molecule anyway
 rename a_1. "s1"
 for i=1,4 # build a helix with 4 new elements
 j=i+1
 copy a_s$i. "s"+j # names for a new subunits: s2,s3,s4,s5,s6
 transform a_s$j. tv # apply tv to the last copied object
 endfor
 aa=Axis(tv)
 print "The rotation angle is ",r_out
 g_ax=Grob("arrow",aa)*10.+ Sum((R1−R_out)*aa)*aa+R_out
 # projection of R1 on aa
 display a_*. g_ax
 color a_*. Count(Nof(a_*.))

3.9. Maps and factors

3.9.1. How to manipulate with structure factors

The basic description of structure factors is given in the Glossary.

3.9.2. How to calculate phases of reflections given a 3D model and a cell

Basic steps:

define crystallographic cell, map gridstep, and resolution (i.e. max h,k and l)•
build electron density map with the specified parameters•
calculate structure factors•

Example:

 read pdb "1igd" # use your PDB name here
 myCell = Cell(a_1.)
 gridstep = 0.5
 # map dimensions
 maxHKL = Iarray(0.45 * myCell[1:3]/gridstep)
 defSymGroup = 19 # P212121 group
 make map gridstep
 make factor maxHKL "mySF"
 fcalc = Sqrt(mySF.ac * mySF.ac + mySF.bc * mySF.bc)
 phase = Atan2(mySF.bc , mySF.ac)
 group table mySF phase
 show mySF

In order to compare calculated phases I would recommend using the same factor table when calculating the
second set of phases. Then "ac" and "bc" columns will be simply replaced by the new calculated data,
and new "phase2" column would be right next to the "phase" column, relating to the original object. In

460 3.9. Maps and factors

addition to the previous script:

 read pdb "1igd" # use your PDB name here
 myCell = Cell(a_1.)
 gridstep = 0.5
 maxHKL = Iarray(0.45 * myCell[1:3]/gridstep)
 defSymGroup = 19 # Symgroup("P 21 21 21")
 make map "myMap" gridstep
 make factor maxHKL "mySF"
 phase = Atan2(mySF.bc , mySF.ac)
 # ... now the 2nd object ...
 read pdb "1crn" # the second PDB, not 1crn, of course
 superimpose a_1. a_2.
 # you may need an alignment, see superimpose
 make map "myMap" gridstep myCell # to have the same cell!
 make factor maxHKL "mySF"
 phase2 = Atan2(mySF.bc , mySF.ac)
 delta = Remainder(phase2−phase , 360.0)
 group table mySF phase phase2 delta # maybe something else
 show mySF

3.9.3. How to automatically place a fragment into density

This section needs to be written. Make maps, set GRID.margin to about the size of the ligand and run
montecarlo.

3.10. How to plot

3.10.1. How to make a simple plot y=F(x)

If your function is determined on an uneven set of abscissa values, stored in array x, then use:

 plot display x y

If your function is determined on a regular 1D−grid of values varying from x0 to x1, and is stored in the
array y, use:

 plot display Rarray(Nof(y), x0, x1) y

Use on−line help:

 help plot

or to see the concise list of arguments

 help command plot

3.10.2. How to plot a histogram

Function Histogram returns the 2*N matrix which may be used on the fly with a command like

 plot display BAR red Histogram(a 50)

3.9.3. How to automatically place a fragment into density 461

More examples:

 a=Random(0. 100. 10000)
 b=.04*(Count(1 50)*Count(1 50))
 annot = {"Histogram with quadratic ruler" "Random value" "N"}
 plot display BAR red Histogram(a b) annot

 b=Sqrt(100.*Count(1 100))
 annot = {"Histogram with square root ruler" "Random value" "N"}
 plot display green BAR Histogram(a b) annot

3.10.3. How to make a 3D−surface plot of a 2D−function

In the most common case you may have a matrix N*M my_matrix representing a two−dimensional function
of x and yreal arrays. First create a graphics object, then display it and save as a picture if you
wish:

 read matrix "ram"
 # let's try a "wire" representation first
 x=Rarray(Nof(ram),−180.,180.) #this scale may be nonlinear
 y=x
 make grob "matwire" ram x y # scales for x,y. Def. z−scale=1.
 display matwire
 # now let's have a look at a solid surface
 make grob solid "matsolid" ram x y 0.9 # scales for x,y and z
 display matsolid solid
 # adjust the view by rotating/translating
connect matsolid # you may move them with respect to each other
 # and save image
 write image rgb "img_matsolid"

3.10.4. How to create a new graphics object of a specific shape

First, use one of the provided graphics objects, stored in *.gro files to try these kind of ICM
non−molecular objects. You can scale graphics objects (by multiplicating them by a real number) and/or
adjust their positions either by translate or rotate commands or by connecting to the selected
grob and dragging/rotating them with the mouse in the graphics window, for example:

 read grob "icos"
 my_icos = g_icos*0.2
 display my_icos g_icos
 translate add my_icos {5. 15. 0.}

You may also create a new or edit an existing graphics objects (see provided *.gro files to learn about
format).

3.10.5. Flexible peptide docking

Let us consider a problem of flexible peptide docking to a receptor. The peptide may be completely free or
constrained (e.g. have a helical fragment in the middle), and the receptor will be assumed to have a fixed
conformation. We will be going through a series of interactive or non−interactive steps. Feel free to put the
commands below into several scripts and run them sequentially.

462 3.10.3. How to make a 3D−surface plot of a 2D−function

We will follow a particular example through all the steps. In this example we will be docking a constrained
11−residue alpha−helical peptide to a Bcl−XL molecule. It is a good idea to create a separate directory for
the project, say, projectX , to keep all the files in one place.

Preparing the receptor binding surface for peptide docking.

First, we need to get the receptor model as an ICM object. It may come from several sources. The most
common one is a pdb−structure converted with the convertObject macro, or the build model
command which builds a model by homology, followed by regularization and refinement with the
refineModel macro.

We will create two objects:

a_1. the original pdb object with receptor with some other peptide
a_2. converted receptor (without the peptide)
Example:

% cd projectX
% icmgl −G
 nice "1g5j" # an open form of the receptor
 delete a_w* # delete waters but keep bound peptide
 copy a_ "rec"
 delete a_rec.2 # keep only the main chain
 undisplay window
 convertObject a_rec. yes yes yes no # also optimizes hydrogens
#
 display box Box(a_1.2 4.) # display a box around the peptide

Now you may rotate the scene and adjust the box size by pulling a box corner with the leftMouseClick. The
box needs to cover the receptor surface you need to include in the simulation, but needs to be minimized to
reduce the computational burden and memory use.

Sometimes the orientation of the box with respect to the receptor surface is not favorable. In that case, use
connect a_*. and rotate the objects with the respect to the origin (use axisLength = 15. and
display origin to to see the axis in addition to seeing the box). If you change the absolute position of
the receptor model, you may want to save the new orientation of the pdb object (e.g. write pdb a_1.
"template")

The result
Now we have two objects: (i) a pdb object in which we deleted the unnecessary molecules, but kept the
peptide for comparison and convenience in the box definition; and (ii) an ICM−object with a receptor for
which we will be calculating the grid maps.

Create grid potential maps

Now calculate five grid potentials with the make map command:

 make map potential "gc,gh,ge,gs,gb" Box() 0.5

This command uses all molecules in the current object as a source for the map calculations. The Box()
function will return the box you see on your screen. Alternatively you can just provide the 6 numbers

3.10.5. Flexible peptide docking 463

defining that box.

0.5 is the grid size. Even though the ICM grid potential is extremely fast compared to other programs, for
large boxes you may need to increase the grid cell size. We do not advise to go beyond 0.7A, however.

The result of this step is five grid maps around the docking surface of interest.

Building the peptide

The peptide of interest can be build with the following simple command:

 buildpep "ECLKRIGDELD" # peptide sequence from Bax
 rename a_ "pep"
 set a_/* "HHHHHHHHHHH"
 superimpose a_1.2/310:320/ca a_/1:11/ca align

Saving the results

Let us now save both the objects and the maps for future use.

 write m_gc m_gh m_ge m_gs m_gb # gc.map .. files are created
 write object a_*. "all" # write 3 objects in one multi−object file

Running a simple simulation from one starting conformation

The actual simulation does not need to be run interactively. An ICM script file _dockpep is described
below. Run the script by

% _dockpep >! f1.out # the output file

The file contains the following commands:

 #!/usr/local/bin/icmng
 read libraries
 read object "all" # contains a_
 set object a_pep. # the peptide is the current object
 fix v_/3:10/phi,psi,omg # fix some backbone angles
 nvar = Nof(v_//phi,psi,H,P) # number of essential variables
 # let us choose iteration limits depending on nvar
 mncallsMC = 10000 + Integer(0.008*nvar*nvar*nvar*nvar*nvar)
 mncalls = 170+nvar*3
 print mncallsMC mncalls
 # make sure that these two numbers are not insane
 # or set smaller mncallsMC and mncalls (e.g. 10000 and 100) as a test
 temperature = 600 # optimal temperature for the simulation
 tolGrad = 0.001 # exit minimization when gradient is < 0.001
 mnhighEnergy = 15 + nvar/2 #
 set vrestraints a_/* # load preferred backbone and side−chain angle zones
 #
 vicinity = 2.5
 compare a_pep. static # use sRmsd of the peptide
 set terms "vw,14,hb,el,to,en,gc,gh,ge,gb,gs"
 minimizeMethod = "conjugate"
 #

464 3.10.5. Flexible peptide docking

 # maps
 read map "gc,gh,ge,gb,gs"
 GRID.margin = Distance(a_pep./1/ca a_pep./11/ca)
 #
 # run montecarlo from a single start
 # the reverse option will make more reasonables moves
 #
 # impose tethers ?
 montecarlo reverse movie

 # run montecarlo from multiple starts and merge the stacks
 for i=1,Nof(<starting conditions>)
 montecarlo reverse movie append
 endfor

This simulation created several files:

f1.cnf a stack file with mnconf (or less) best non−redundant conformations
f1.mov a trajectory file with all accepted conformations (if you used the movie option)
f1.ou the file with the text output of the script
The output file f1.ou contains information about every accepted conformation of the simulation, e.g.

...
 __ __ 300 5 asp BPMC db da da −32.42 −23.66 100 1.29 97810
 DY Visi 300 1 phe BPMC fb fb fb −32.42 −32.42 101 0.57 97911
 __ __ 300 4 ser BPMC sa sg sd −32.42 −24.45 88 0.06 97999
 DY Visi 300 5 asp BPMC dmn dmn dmn −32.42 −32.43 49 0.08 98048
...

Analyzing the results of a single simulation

Energy profile: Is the simulation long enough

The energies can be plotted to analyze the progression of the global energy optimization.

plotEnergy "f1.ou" 50.
plotBestEnergy "f1.ou" 50. "display append"

The first macro plots energies of each conformation generated and accepted in the course of the ICM
stochastic global energy optimization. Due to the nature of the procedure, the energy may go up and down.
The second macro plots (and appends the plot to the previously generated def.eps file) only the lowest
energy achieved by a given iteration. This plot shows if and when a better conformation is found.
Naturally, the energy can not be improved after the global minimum is found.

However, having a long flat plateau does not guarantee that the global minimum is found since a new drop
of energy may come after a very long simulation. The time required for finding the global minimum in
general depends on the number of variables, number of atoms (the cost of a single energy calculation) and
complexity of the potential energy surface.

The best empirical way to make sure that the minimum is found is to compare the lowest energies found
from completely different starting conformations (read about multiple start simulations below).

3.10.5. Flexible peptide docking 465

We use a window of 50 kcals/mole from the lowest energy. It helps to avoid the dependence of the scale on
the initial energy which may be quite high.

To analyze the improvements only use plotBestEnergy .

Graphical analysis of the results

You can generate all stack conformations as independent ICM objects with the mkStackConf macro,e.g.:

 read object "all" # three objects, the peptide is the current object
 mkStackConf 1 10 # make ICM objects from 10 best energy structures

The objects will be called a_pep1. , a_pep2. , etc. Now these objects can be displayed
simultaneously or separately and further analyzed, e.g.

 display a_pep*.
 color a_pep?*. Energy(stack) # in case you extracted all confs

You can loop through the conformations interactively either with the original stack, e.g.

create some view you like
for i=1,10 # or Nof(conf)
 load conf i
 pause # rotate and zoom, hit Return
endfor

, or use the objects you created with the mkStackConf macro.

Running a multiple start simulation

You can figure it out yourself :−) .

convergence analysis

The key question we would like to ask is if at least two independent simulations from random starting
conformations identified a nearly identical conformation with a similar energy as the lowest energy
conformation. A low−tech example with just two simulations f1 and f2 :

 read object "all"
 load conf 0 "f1" # 0 is the lowest energy conformaiton.
 load conf 0 "f2"

You can also plot the best energy (see above) and compare the plots, as well as perform graphical analysis
to see if the best conformations are similar.

Analyzing the results of a multiple start simulation

merging stacks

Use the read stack append command to merge all stack conformations together. Now you can
redefine the compare command and the vicinity parameter depending on how you want to further

466 3.10.5. Flexible peptide docking

compare and filter out the accumulated conformations. The compress command performs the
compression.

3.11. How−to: Docking and Virtual Ligand Screening
by Max Totrov and Ruben Abagyan

3.11.1. Docking and virtual ligand screening. Overview.

This section concerns with predictions of interactions of drugs or small biological substrates (less than
about 600−700 dalton) to pockets of larger, more rigid, receptors (typically, protein molecules, DNA or
RNA). There are five major steps in docking and screening.

Where to dock. Building Receptor and Pocket Model

The goal here is to have an adequate three−dimensional model of the receptor pocket you are planning to
dock ligands to. And the pitfalls are that your model is not accurate overall, or does not reflect the induced
fit, or alternative conformations of the receptor binding pocket are missed.

Receptor from PDB

If you have only a single entry with your receptor, convert the protein with convertObject yes yes
no no , after deleting water molecules and irrelevant chains (e.g. delete a_!1), or use menus as in
the ligand docking section.

However, if you have a choice between several templates, take the following into account:

X−ray structure is preferable to an NMR structure•
high resolution X−ray structure (less than 2.1A) is much better than, say 2.5A .•
watch out for high−B−factor regions and avoid them; sometimes crystallographers deposit
fantasy coordinates with high−B−factors. Use:

•

 color a_//* Bfactor(a_//*) # from command line

or Color/B−factor from the Gui−menu .
place polar hydrogens and choose correct form of histidine (convertObject yes yes
no no takes care of that)

•

a bound conformation of the receptor is preferable, however if you use an apo−model, an NMR
structure or a model by homology, the side−chains in a pocket may be incorrect. Frequently they
stick out and prevent a ligand from binding. Those stubborn side−chains can be 'tamed', (i)
manually; (ii) by a side chain simulation with elevated surfaceTension; or (iii) by an explicit
flexible docking calculation with a known ligand.

•

Receptor from homology modeling

A model by homology can be built with the build model command (menu
Homology/Build_Model) followed macro refineModel .

Identifying pockets

3.11. How−to: Docking and Virtual Ligand Screening 467

If a binding pocket is not known in advance, use icmPocketFinder or icmCavityFinder (for
closed pockets) macros. icmPocketFinder can also be accessed from menu Docking/Receptor
Setup , submenu Identify_Binding_Sites

What to dock. Ligand, ligands, a database or a library.

Usually a good start is to try to dock the known ligand(s) to the receptor model. You may also want to dock
a library of compounds in order to identify lead candidates. In this case the main pitfall is that the library is
too restricted, molecules are not chemically feasible or not drug−like.

Ligand from PDB

Then to dock a ligand from pdb, go through the procedure described in the ligand docking
section.

Ligand(s) from a mol/mol2− file, or SMILES strings.

The main prerequisite is that the formal charges and the bond types are correct. If they are not correct, you
need to process each molecule manually as described in the ligand docking section. From a
command line you may use the build smiles or convert2Dto3D macro.

Flexible docking considerations.

After the receptor maps are built, you will start a docking simulation. The goal of the flexible docking
calculation is prediction of correct binding geometry for each binder. ICM stochastic global optimization
algorithm attempts to find the global minimum of the energy function which includes five grid potentials
describing interaction of the flexible ligand with the receptor and internal conformational energy of the
ligand. During this process a stack of alternative low energy conformations is saved (one of the choices in
the Docking menu). Some facts about ICM docking:

an average docking time is 1 − 3 minutes per ligand per processor•
ICM docking is probably the most accurate predictive tool of the binding geometry today.•
the time per ligand was chosen to be the smallest possible to allow screening of very large data
sets. To increase the time spent per ligand, change the Docking_thoroughness parameter
from the Docking.Small Set Docking Batch menu to 3. or 5., or supply this parameter
to the rundock script directly.

•

Pitfalls. Inaccurate receptor model, or incorrectly converted ligands, or insufficient optimization effort may
lead to incorrect predictions.

Scoring

The goal of scoring in virtual ligand screening is to ensure maximal separation between
binders and non−binders , and not to rank a small number of binders according to their binding energies.
The vls module allows you to access a good scoring function.

3.11.2. How−to: Ligand docking simulations.

468 3.11.1. Docking and virtual ligand screening. Overview.

Introduction and pre−requisites

ICM ligand docking procedure performs docking of the fully flexible small−molecule ligand to a known
receptor 3D structure. Before setting up the docking project, ICM object of the receptor has to be created.
In most cases, x−ray structure of the receptor is initially in the PDB format. Thus, it has to be converted to
the ICM format. This process involves addition of the hydrogen atoms, assignment of atom types and
charges from the residue templates (icm.res) and imposition of internal coordinates tree (icm−tree) on the
original pdb coordinates. The easiest way to convert pdb structure into icm object is through GUI as
follows:

load pdb file into icm (menu File/Read Molecule/PDB)1.
convert loaded structure into icm object (menu MolMechanics/ICM−convert/Protein).2.

It is recommended that "optimize hydrogens" option is selected. To accelerate the procedure, disable the
3D graphics window (side menu Clear/No Graphics) When the procedure finishes, converted object
is the 'current' object in icm. You can check the results by displaying the converted structure.

Docking project setup

Start project setup by defining the project name (menu Docking/Set project name). Avoid spaces
and leading digits in the name. All files related to the docking project will be stored under names, which
start from the project name. Most customized parameters will be saved in the table file under the project
name as well:

DOCK1.tab # control table
DOCK1_gb.map # 3D potential grids, or 'maps'
DOCK1_gc.map
DOCK1_ge.map
DOCK1_gh.map
DOCK1_gs.map
DOCK1_rec.ob # receptor object

etc..

The next step is to set up the receptor (menu Docking/Receptor setup). Select the receptor
molecules, in most cases a_* will do − all molecules in the current object will be included. Define binding
site residues, either manually e.g. a_/123,144,152 for selection by residue numbers, or graphically using
lasso tool (don't forget to set selection level to residue). This selection is used solely to define boundaries of
the docking search and the size of the grids and doesn't have to be complete, selecting some 4 residues
delimiting the binding site is sufficient. Receptor setup dialog also lets you run binding site identification
routine to quickly locate putative binding sites on your receptor.

After the receptor setup is complete, the program normally displays the receptor with the selected binding
site residues highlighted in yellow xstick representation. Ligand setup offers a number of ways (submenu
docking/ligand setup) to define the ligand, depending on the source of the ligand structure(s).

3.11.2. How−to: Ligand docking simulations. 469

Converting a chemical from pdb.

The Protein data bank, due to unprecedented ignorance, for the last 15 years has not been storing any
information about covalent bond types and formal charges of the chemical compounds interacting with
proteins! This oversight makes it impossible to automatically convert those molecules to anything sensible
and requires your manual interactive assignment of bond types and formal charges for each compound in a
pdb−entry. Therefore, if you apply the convert command to a pdb−entry with ligands, the ligands will
just become some crippled incomplete molecules which can not be further conformationally optimized.

Follow these steps to convert a chemical properly from a pdb form to an a correct icm object.

display the molecule, set wireStyle=2 (or via top−left gui−menu), and selection type to
GRAPHICS.selectionMode=1 (the first item of the gui−selection−mode menu)

•

invoke MolMechanics.Structure.SetBondType menu item•
graphically select groups of atoms (e.g. a ring) and set appropriate bond type•
invoke the next menu item, MolMechanics.Structure.SetFormalCharge and set
formal charges

•

proceed to the MolMechanics.ICM−Convert.Chemical menu (see below)•

Setting up a ligand or a set of ligands

Let's now consider the situation when icm object of the ligand loaded. ICM object of the ligand can also be
prepared, for instance, by reading structure from SD file (menu File/Read Molecule/Mol/SDF)
and converting it to ICM (menu MolMechanics/ICM−Convert/Chemical).

Once the icm object of the ligand is ready, proceed to docking ligand setup (menu Docking/Ligand
Setup/From Loaded ICM object). The ligand setup procedure will first display the grid box,
allowing you to adjust the box dimensions, and then the 'probe' which defines the initial positioning of the
ligand's center of mass and long/short axis. The probe can be moved/rotated. While its positioning has only
minor influence on the results as long as it remains inside the binding site, it may help the procedure to find
the correct docked orientation more reliably and/or in shorter time.

Ligand setup procedure can be ran repeatedly to change the ligand within the same docking project. Also
box size and probe position can be changed later (menu Review/Adjust ligand/box). At this
point, the project is ready for the calculation of maps (menu docking/Make receptor maps). The
calculations generally take several minutes to prepare the maps. While the dialog allows changing the grid
step, we do not recommend altering the default value of 0.5 which was found optimal for a large number of
test cases. With the map calculations completed, everything is ready to start the actual docking simulation.
A larger set of ligands in a mol file can be considered as a database and indexed with the ICM indexing
tool (menu Docking/Tools/Index Mol,Mol2 Database) for fast access. Ligand structures from
mol/mol2 file can be converted to ICM on the fly and do not require manual preparations necessary in the
case of PDB structures.

Running docking simulations

Use menu docking/Small Set Docking Batch to start docking of one or few ligands in the
background. You can also view the process interactively (menu docking/Interactive Docking)
although it is much slower due to the time spent on drawing the molecules. The results of the batch docking
job are saved in the

470 3.11.2. How−to: Ligand docking simulations.

PROJECTNAME_answers*.ob #icm−object file with best solutions for each ligand
PROJECTNAME_*.cnf # icm conformational stack files with multiple docked conf.
PROJECTNAME_*.ou # output file were various messages are stored.

Multiple conformations accumulated during the docking of the ligand can be visualized and browsed in
ICM (menu Docking/Browse Stack Conformations). Use menu
Docking/Display/Preferences to change default graphic representation of ligand/receptor.

Rundock UNIX shell script

Docking batch jobs can also be started from the UNIX command line using rundock shell script. The
syntax is as follows:

rundock <options> <project name>
 options: −f <ligand entry from>" # if using multiple ligand input file
 −t <ligand entry to>" # range of ligands to dock can be selected
 −l <thoroughness> # change the length of MC docking, default is 1.
 −n <scanName> # change the run name in the output files
 −a # force docking and saving of all compounds
 −s # save stack conformations
 −S # evaluate score for all stack conformations (slow)
 −o # redirect output to <project name>_from−to.ou
 −c <output file> # continue interrupted job with <output file>

Example:

 rundock −f 3 −t 5 −l 3. −s

will thoroughly (3 times longer simulation than default) dock ligands 3 to 5 and save conformational stacks
for each one of them.

Template constrained docking

It is possible to use a template object to tether part of the ligand structure to a preferred position during the
docking simulation. Prepare an object file containing the group of atoms to be tethered to. Edit the .tab
docking setup file, setting the s_templateObj field to the name of the template object file (it is 'none' by
default). The variable l_superByName controls the way correspondence is established between the ligand
and template atoms. If it is 'no', chemical substructure search is performed and tethers imposed according to
the substructure match. If l_superByName is 'yes', simple matching according to atom names is performed.

3.11.3. How−to: Virtual Ligand Screening

Introduction

Virtual Ligand Screening (VLS) in ICM is performed via docking of each ligand in the database to the
receptor structure, with subsequent evaluation of the docked conformation with a binding−score function.

3.11.2. How−to: Ligand docking simulations. 471

Best−scoring ligands are then stored in the multiple icm−object file. The set−up of the VLS is largely
identical to the set−up of the docking simulation (see How−to: Ligand Docking Simulations). In most cases
the ligand input file will be an SDF or MOL2 file. These files need to be indexed by ICM before they can
be used in VLS runs. The index is used to allow fast access to an arbitrary molecular record in a large file.
Use menu Docking/Tools/Index Mol/Mol2 File/Database to generate the index, then set up
the SDF/MOL2 file as a ligand source (menu Docking/Ligand Setup/From Database). As in
docking, rundock UNIX shell script can be used to start simulations.

Score Threshold

An important parameter of the VLS run is the score threshold. Docked conformation for a particular ligand
will only be stored by ICM VLS procedure if its binding−score is below the threshold. Edit the project .tab
file to adjust this value:

#>r DOCK1.r_ScoreThreshold
 −35.

The choice of the threshold can be done in two ways:

based on the scores calculated by docking known ligands. Generally, a value somewhat above
typical score observed for known ligands is a good guess.

1.

if no ligands are known, a pre−simulation can be run using ~1000 compounds from the target
database. Using the resulting statistics for the scores, the threshold should be set to retain ~1% of
the ligands.

2.

Potential of mean force score

Potential of mean force calculation (pmf) provides an independent score of the strength of
ligand−receptor interaction. The pmf−parameters are stored in the icm.pmf file. To enable calculation of
the pmf−score, define the PROJECTNAME.r_mfScoreThreshold threshold paramter to the table:

#>r PROJECTNAME.r_mfScoreThreshold
 999.

Other selection criteria

ICM VLS uses a number of criteria to pre−select compounds before docking. Edit the project .tab file to
change their defaults:

#>i DOCK1.i_maxHdonors
 5
#>i DOCK1.i_maxLigSize
 500
#>i DOCK1.i_maxNO
 10
#>i DOCK1.i_maxTorsion
 10
#>i DOCK1.i_minLigSize

472 3.11.3. How−to: Virtual Ligand Screening

 100

Parallelization

If the database size exceeds several thousand compounds, it is desirable to run a number of VLS jobs in
parallel to speed up calculations. Use −f and −t options of rundock to start multiple jobs on different parts
of the database, e.g.

rundock −f 1 −t 10000 −o
rundock −f 10001 −t 20000 −o
rundock −f 20001 −t 30000 −o
..

Running VLS jobs in PBS UNIX cluster environment

Jobs on the Linux cluster are run through PBS queuing system. Several scripts are provided to facilitate
submission of vls jobs. To submit a single job, use pbs script 'pbsrun', which is a pbs wrapper for rundock

qsub $ICMHOME/pbsrun −v"JOBARGS=−f 1 −t 1000 −o MYPROJECT"

Note that the rundock arguments go in the quotes after JOBARGS= . The qsub command is a part of PBS.

To submit multiple jobs, there is a simple shell script 'pbsscan' which executes multiple qsub's for database
stripes:

$ICMHOME/pbsscan MYPROJECT 1 6000 1000

−submits 6 jobs, 1 to 1000; 1001 to 2000 ... 5001 to 6000. Currently this script only supports default
rundock arguments, copy/edit to change.

The command qstat is a part of PBS and can be used to check the status of the jobs. In addition,
$ICMHOME/scanstat script can be used to monitor the progress of the VLS jobs. It analyses the *.ou
rundock output files.

$ICMHOME/scanstat *.ou

To delete the jobs, use PBS command qdel:

qdel 1234 # delets job number 1234

Where to find the scores of the compounds

Once the compounds are docked, if VLS option is installed, the procedure evaluates the score and stores it
in the 'comment' of the ligand object. When browsing scan answers, the SCORE>... line appears for each
object viewed, containing the value of the score and it's component terms. It can also be extracted from the
icm object in shell using Namex(a_1.) function, and Field() can be used to get particular component or the
total: Field(Namex(a_1.) "Score=" 1). The SCORE lines also appear in the output file and can be

3.11.3. How−to: Virtual Ligand Screening 473

extracted by simple unix grep command grep SCORE *.ou

The MFScore was recently added, it's calculated if r_mfScoreThreshold variable is defined in the
project .tab file. It can be added manually:

#>r PROJECTNAME.r_mfScoreThreshold
 999.

Analysis of the results

The hits found by the screening procedure and stored in *answers*.ob files can be visualized in ICM (menu
Docking/Browse Scan Solutions). If necessary, they can also be exported as SD file using
(menu Docking/Tools/Export scan answers as mol). The score and its components are
stored in the resulting SD file as well. Simple analysis of the score distribution can be performed by making
a histogram (menu Docking/Tools/Scan results histogram).

3.12. Example scripts

3.12.1. How to predict 3D structure of a peptide from its sequence

In the following script you are going to search for the lowest energy conformation using the Biased
Probability Monte Carlo procedure to generate new conformations and full−atom energy plus solvation
electrostatics, surface and entropy contributions. Start 3 or more independent simulations and let them run
to convergence. Two features are indicative of convergence: the plot of the best energy achieved should be
flat for sufficiently long (store the output in f1.ou and run the following macro:

 plotBestEnergy "f1" 100. "append display"

); and the lowest energy conformation in different simulations are close, e.g.:

peptide "pep.se" ; runs: "f1" and "f2"
 build "pep"
 display
 read conf "f1" 0
 show stack
 read conf "f2" 0
 show stack

Watching movies f1.mov and f2.mov may also be useful. (See also How to evaluate helicity of a peptide
from the BPMC simulation and How to calculate an ensemble average). Now, the script:

 # Example folding script. Use as directed.
 read libraries
 build "pep16" # your peptide sequence is in pep16.se file.
 rename a_*. "f2" # specifies current name.
 # Several runs (f2,f3, etc.) are recommended
 nvar = Nof(v_//*) # number of variables

 nProc=4 # if you are using parallel version.

474 3.11.3. How−to: Virtual Ligand Screening

 mncallsMC = nvar*50000 # maximal number of energy evaluations
 mncalls = 170+nvar*3 # maximal n_of minimization calls after
 # each random change
 temperature = 600 # optimal temperature for the simulation
 tolGrad = 0.01 # exit minimization when gradient is < 0.01
 mcBell = 1.0 # the default width of the MC probability distributions
 mnconf = 40 # maximal n_of low−energy conformations saved
 # in the stack (f2.cnf file)
 mnvisits = 25 # if stuck for >= 25 times, push it out
 mnreject = 10
 mnhighEnergy = 30
 l_bpmc = yes # use biased probability
 electroMethod = "MIMEL"
 surfaceMethod = "constant tension"
 set terms "vw,14,hb,el,to,sf,en"
 # ECEPP/2 energy + solvation + entropy (see icm.hdt file)

 fix v_//?vt* # exclude irrelevant virtual variables specifying
 # absolute molecular position
 set vrestraint a_/* # load preferred backbone and side−chain angle zones
 # for the biased probability MC
 randomize v_//!omg 180.0 # create random starting conformation
 vicinity = 15.0
 compare v_//phi,psi # use these variables to compare structure
 montecarlo movie # run it and record a movie.
 # watch the movie later by:
 # read movie "f2"; display ribbon
 # display movie "f2" 4. 8.
 # analyze the best conf. in the stack by:
 # build "pep16"; read stack; show stack all
 # load conf 1
 quit

3.12.2. How to perform local flexible docking of two protein molecules

using the grid potentials

This is a so called "local docking procedure" which docks all orientations of the protein ligand to a certain
orientation of the protein receptor. The "global docking procedure" is somewhat different.

You may follow the menu items in Docking.Protein−protein or run the docking scripts directly. To
illustrate the principal commands and functions we will also consider a series of shell commands to
perform a docking procedure. We will use the following steps from the shell to dock the proteins
chymotrypsin (5cha) and APPI (1aap). The real structure of the complex is known (1ca0), which can help
us to test the validity of the method. This procedure has been recently tested in a dataset of 24 known
protein−protein complexes (Fernández−Recio,Totrov,Abagyan, 2002)

The procedure includes the following steps:

Creating two ICM objects for both proteins with the convertObject macro1.
Specify project parameters in a special table2.
Orient molecules, choose the docking box and make potentials.3.
Dock the protein ligand into the potentials.4.
Refine the solutions.5.

3.12.2. How to perform local flexible docking of two protein molecules 475

3.12.3. How to perform an explicit flexible docking of two simplified protein
molecules

This procedure is relatively old and was used previously to explicitly dock two proteins starting from
simplified objects. The best solutions are refined in all−atom representation. Currently we prefer docking
into grid (see above).

Create ICM−objects of the two proteins you want to dock.1.
Use macro makeSimpleDockObj to create two simplified objects.2.
Combine two simplified objects into one and prepare it for docking simulation using
_makeComplex script. During the execution you will be prompted for orientation of the first
molecule, which should face the second one with the expected epitope.

3.

Run the docking simulation using _dock2mol script. To insure the completeness of the search, run
3−4 simulations in parallel and compare the resulting stacks, the top 5−7 conformations should be
the same except for 1−2. Combine the stacks using "read stack append" command with subsequent
filtering by

4.

 vicinity = 4.
 compare static a_2//ca
 compress stack

Prepare .var files with optimized surface sidechain conformations for individual proteins by
running _surfSideChainOpt script.

5.

Run _makeFullAtom script to create full atom models from the simplified conformations
accumulated in the stack.

6.

Run _refineComplex script on each of the full atom models7.
Complex with the best energy after the optimization is (hopefully) the answer.8.

3.12.4. How to build a model by homology

Have an alignment and a pdb file with the template handy, say "sx.ali" "x.brk". If you have a homology
module key you can use the build model command and refine the model with the refineModel
macro. The build model command builds a complete model and searches for matching loops in all pdb
files. You can run the build model command from the GUI interface (menu Homology)
alignSS is a good macro to make a sequence−structure alignment. It incorporates solvent accessibility
and secondary structure into the alignment procedure. Alternatively, allow the build model command
to perform the alignment on the fly.

In the absence of the Homology module, use the following macros/scripts:

homodel macro: fast interactive model building.•
_homFast for fast model building (substitute nonidentical side−chains, assign the most likely
rotamer).

•

_hom for more rigorous model building for one polypeptide chain: side−chains are optimally
placed loops are automatically recognized and simulated.

•

_homMult the same as the above script, but for a multichain protein molecule, e.g. an
immunoglobulin molecule. Requires a set of separate files for each alignment.

•

476 3.12.3. How to perform an explicit flexible docking of two simplified protein molecules

4. References
4.1. General literature references

Abagyan, R.A., Frishman, D., and Argos, P. (1994). Recognition of distantly related proteins
through energy calculations. Proteins 19, 132−140.

•

Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F., and Weng, J. (1987). Protein Data Bank.
In: Crystallographic databases − Information content, software systems, scientific application eds.
F. H. Allen, G. Bergerhoff, and R. Sievers, Data Commission of the International Union of
Crystallography, Bonn/Cambridge/Chester, 107−132.

•

Allen, F.H., and Kennard O. (1993) 3D search and research using the Cambridge Structural
Database. Chemical Design Automation News 8, pp. 1, 31−37.

•

Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, Jr., E.F., Brice, M.D., Rodgers, J.R.,
Kennard, O., Shimanouchi T., and Tasumi, M. (1994). The Protein Data Bank: A computer−based
archival file for macromolecular structures recognition of distantly related proteins through energy
calculations. J. Mol. Biol 112, 535−542.

•

Connolly, M.L. (1983). Analytical molecular surface calculation. J. Appl. Cryst. 16, 548−558.•

Crippen, G.M. and Havel, T.F. (1988). Distance geometry and molecular conformation. Research
Study Press, Ltd. (Wiley), New York.

•

Eisenberg, D. and McLachlan, A.D. (1986). Solvation energy in protein folding and binding.
Nature 316, 199−203.

•

Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M., Miller, W., (1998) A computer program
for aligning a cDNA sequence with a genomic DNA sequence. Genome Res
8, 967−974.

•

Frishman, D. and Argos, P. Incorporation of non−local interactions in protein secondary structure
prediction form the amino acid sequence. Protein Eng. 9, 133−142.

•

Gonnet, G.H., Cohen, M.A., and Benner, S.A. (1992) Exhaustive matching of the entire protein
sequence database. Science 256, 1433−1445.

•

Hahn, T. (ed.) (1993) International Tables for Crystallography, Vol. A, D. Reidel, Dordrecht.•

Halgren, T.A. (1995) Merck Molecular Force Field. I.−V. J. Comp. Chem. 17, 490−641.•

Halgren, T.A. (1999) MMFF VI. MMFF94s option for energy minimization studies. J. Comp.
Chem. 20, 720−729.

•

Henikoff, S. and Henikoff, J.G. (1992). Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89, 10915−10919.

•

4. References 477

Higgins, D.G., Bleasby, A.J., and Fuchs, R. (1992). CLUSTAL V: improved software for multiple
sequence alignment. CABIOS 8, 189−191.

•

Hutchinson, E.G., and Thornton, J.M. (1994) A revised set of potentials for beta−turn formation in
proteins. Protein Sci. 3, 2207−2215.

•

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition
of hydrogen bonded and geometrical features. Biopolymers 22, 2577−2637.

•

Kleywegt, G.J., and Jones, T.A. (1996). Phi/psi−chology: Ramachandran revisited. Structure 4,
1395−1400.

•

Kyte, J. and Doolittle, R.F. (1982). J. Mol. Biol. 157 105−132.•

McLachlan, A.D. (1979). Gene duplications in the structural evolution of chymotrypsin. J. Mol.
Biol. 128, 49−79.

•

Momany, F.A., McGuire, R.F., Burgess, A.W., and Scheraga, H.A. (1975). Energy parameters in
polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions,
hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino
acids. J. Phys. Chem. 79, 2361−2381.

•

Needleman, S.B. and Wunsch, C.D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443−453.

•

Nemethy, G., Pottle, M.S., and Scheraga, H.A. (1983). Energy parameters in polypeptides. 9.
Updating of geometric parameters, nonbonded interactions and hydrogen bond interactions for the
naturally occurring amino acids. J. Phys. Chem. 87, 1883−1887.

•

Nemethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., and
Scheraga, H.A. (1992). Energy Parameters in Polypeptides. 10. Improved geometric parameters
and nonbonded interactions for use in the ECEPP/3 algorithm, with application to
proline−containing peptides. J. Phys. Chem. 96, 6472−6484.

•

Pearson, W.R., and Lipman, D.J. (1988). Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. USA 85, 2444−2448.

•

Saitou, N. and Nei, M. (1987). The neighbor−joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4, 406−425.

•

Shrake, A. and Rupley, J.A. (1973). Environment and exposure to solvent of protein atoms.
Lysozyme and insulin. J. Mol. Biol. 79, 351−371.

•

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Improved sensitivity of profile
searches through the use of sequence weights and gap excision. CABIOS 10, 19−30.

•

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Clustal W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position−specific gap
penalties and weight matrix choice. Nucleic Acids Res. 22, 4673−4680.

•

478 4. References

Veal, J.M. and Wilson W.D. (1991). Modeling of nucleic acid complexes with cationic ligands: A
specialized molecular mechanics force field and its application. J. Biomol. Struct. Dyn. 8,
1119−1145.

•

Weiner, S.J., Kollman, P.A., Nguyen, D.T., and Case, D.A. (1986). An all atom force field for
simulation of proteins and nucleic acids. J. Comput. Chem. 7, 230−252.

•

Weininger, D. (1988) SMILES 1. Introduction and Encoding Rules J. Chem. Inf. Comput. Sci., 28,
31.

•

Wesson, L. and Eisenberg, D. (1992). Atomic solvation parameters applied to molecular dynamics
of proteins in solution. Protein Sci. 1, 227−235.

•

Wilbur, W.J. and Lipman, D.J. (1984). The context dependent comparison of biological
sequences. SIAM J. Appl. Math. 44, 557−567.

•

Zhang, X, Mesirov, J.P., and Waltz, D.L. Hybrid system for protein secondary structure
prediction. J. Mol. Biol. 225, 1049−1063.

•

4.2. The main description of the ICM method
Abagyan, R.A. and Totrov, M.M. (1994). Biased probability Monte Carlo conformational searches
and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983−1002.

•

Abagyan, R.A., Totrov, M.M., and Kuznetsov, D.N. (1994). ICM − a new method for protein
modeling and design. Applications to docking and structure prediction from the distorted native
conformation. J.Comp.Chem. 15, 488−506.

•

4.3. ICM algorithms
Abagyan, R.A. and Maiorov, V.N. (1988). A simple quantitative representation of polypeptide
chain folds: comparison of protein tertiary structures. J. Biomol. Struct. Dyn. 5, 1267−1279.

•

Abagyan, R.A. and Mazur, A.K. (1989). New methodology for computer−aided modeling of
biomolecular structure and dynamics. 2. Local deformations and cycles. J. Biomol. Struct. Dyn. 6,
833−845.

•

Abagyan, R.A. and Argos, P. (1992). Optimal protocol and trajectory visualization for
conformational searches of peptides and proteins. J. Mol. Biol. 225, 519−532.

•

Borchert, T.V., Abagyan, R.A., Kishan, K.V.R., Zeelen, J.Ph., Wierenga, R.K. (1994). The crystal
structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modeling
of an eight−residue loop. Structure 1, 205−213.

•

Borchert, T.V., Abagyan, R.A., Jaenicke, R., and Wierenga, R.K. (1994). Design, creation, and
characterization of a stable, monomeric triosephosphate isomerase. Proc. Natl. Acad. Sci USA 91,
1515−1518.

•

4.2. The main description of the ICM method 479

Eisenmenger, F., Argos, P., and Abagyan,R.A. (1993). A method to configure protein side−chains
from the main−chain trace in homology modeling. J. Mol. Biol. 231, 849−860.

•

Mazur, A.K. and Abagyan, R.A. (1989). New methodology for computer−aided modeling of
biomolecular structure and dynamics. 1. Non−cyclic structures. J. Biomol. Struct. Dyn. 6,
815−832.

•

Totrov, M.M. and Abagyan, R.A. (1994). Efficient parallelization of the energy, surface and
derivative calculations for internal coordinate mechanics. J. Comp. Chem 15, 1105−1112.

•

Totrov, M.M. and Abagyan, R.A. (1994). Detailed ab initio prediction of lysozyme−antibody
complex with 1.6 A accuracy. Nature Struct. Biol. 1, 259−263.

•

Totrov, M.M., and Abagyan, R.A. (1996). The contour−buildup algorithm to calculate the
analytical molecular surface. J. Struct. Biol. 115, 1−6.

•

Abagyan, R.A., and Batalov, S. (1997) Do aligned sequences share the same fold? J. Mol. Biol.,
273, 1, 355−368.

•

Abagyan, R. and Totrov, M. (1997) Contact Area Difference (CAD): A robust measure to evaluate
accuracy of protein models. J. Mol. Biol. 268, 678−285.

•

Batalov, S. and Abagyan, R.A., (1999) Universal gap penalty for accurate global−local alignment
of biological sequences J. Mol. Biol., Molsoft report.

•

* Fernandez−Recio, J., Totrov, M., and Abagyan, R. (2002) Soft Protein−Protein Docking in
Internal Coordinates. Protein Science, 11.

4.4. ICM applications
Some applications of the ICM program are described in the following publications

Cardozo, T., Totrov, M., and Abagyan, R. (1995) Homology modeling by the ICM method.
Proteins 23, 403−414 .

•

Borchert, T.V., Kishan, K.V.R., Zeelen, J.Ph., Schliebs, W., Thanki, N., Abagyan, R.A., Jaenicke,
R., and Wierenga, R.K. (1995) Three new crystal structures of point mutation variants of
monoTIM: Conformational flexibility of loop−1, loop4 and loop8. Structure 3, 669−679.

•

Strynadka, N.C.J., Eisenstein, M., Katchalski−Katzir, E., Shoichet, B.K., Kuntz, I.D., Abagyan,
R., Totrov, M., Janin, J., Cherfils, J., Zimmerman, F., Olson, A., Duncan, B., Rao, M., Jackson,
R., Sternberg, M., and James, M.N.G. (1996) Molecular docking programs successfully predict the
binding of a beta−lactamase inhibitory protein to TEM−1 beta−lactamase. Nature Struct. Biol. 3,
233−239.

•

Chalikian,T.V., Totrov, M.M., Abagyan, R.A., Breslauer, K.J. (1996) The hydration of globular
proteins as derived from volume and compressibility measurements: cross correlating
thermodynamic and structural data. J. Mol. Biol. 260, 588−603.

•

480 4.4. ICM applications

Thanki, N., Zeelen, J.Ph., Mathieu, M., Jaenicke, R., Abagyan, R.A., Wierenga, R.K., and
W.Schliebs (1997) Protein engineering with monomeric triosephosphate isomerase (monoTIM):
The modeling and structure verification of a seven residue loop. Protein Eng. 10, 159−167.

•

Goodman, A.R., Cardozo, T., Abagyan, R.A., Altmeyer, A., Wisniewski, H.G., and Vilcek, J.
(1996) Long pentraxins: an emerging group of proteins with diverse functions. Cytokine Growth
Factor Rev. 7, 191−202.

•

Maiorov, V.N. and Abagyan, R.A. (1997) A new method for modeling large−scale rearrangements
of protein domains. Proteins 27, 410−424.

•

Yu, J., Abagyan, R., Dong, S., Gilbert, A., Nusenzweig, V., Tomlinson, S. (1997) Mapping of the
Active Site of CD59. J. Expt. Medicine 185, 745−754.

•

Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA,Aronheim A,
Skolnik EY (1998) Identification and analysis of PH domain−containing targets of
phosphatidylinositol 3−kinase using a novel in vivo assay in yeast. EMBO J , 17, 5374−5387.

•

Maiorov, V.N. and Abagyan, R.A. (1998) Energy strain in three−dimensional protein structures
Folding and Design, 3 , 259−269.

•

Patel, I.R., Attur M.G., Patel R.N., Stuchin S.A., Abagyan R.A., Abramson S.B., Amin A.R.
(1998) TNF−alpha convertase enzyme from human arthritis−affected cartilage: isolation of cDNA
by differential display, expression of the active enzyme, and regulation of TNF−alpha. J.
Immunol., 160, 4570−4579.

•

Srivastava S, Osten P, Vilim FS, Khatri L, Inman G, States B, Daly C, DeSouza S,Abagyan R,
Valtschanoff JG, Weinberg RJ, Ziff EB (1998) Novel anchorage of GluR2/3 to the postsynaptic
density by the AMPA receptor−binding protein ABP. Neuron, 21, 581−591.

•

Zhou, Y., and Abagyan, R.A. (1998) How and why phosphotyrosine−containing peptides bind to
the SH2 and PTB domains. Folding and Design, 3, 513−522.

•

Abagyan, R., and Totrov, M. (1999) Ab Initio Folding of Peptides by the Optimal−Bias Monte
Carlo Minimization Procedure J. Comp. Phys., 151, 402−421.

•

Zhang, H.F., Yu, J., Chen, S., Morgan, B.P., Abagyan, R. and Tomlinson, S. (1999) Identification
of the individual residues that determine human CD59 species selective activity. J.Biol.Chem.,
274(16), 10969−74.

•

Zhou, Y., and Abagyan, R.A. (1999) Efficient stochastic global optimization for protein structure
prediction Rigidity Theory and Application, (Thorpe, M., ed.), (in press), .

•

Schapira, M., Totrov, M., and Abagyan, R. (1999) Prediction of the binding energy for small
molecules, peptides and proteins. J. Mol. Recognition, 12, 177−190.

•

Stigler, R.D., Hoffmann, B., Abagyan, R., Schneider−Mergener, J. (1999) Soft docking an L and a
D peptide to an anticholera toxin antibody using internal coordinate mechanics. Structure Fold
Des , 7, 663−670 .

•

4.4. ICM applications 481

Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisen J, Philipson L (2000) Expression of the
adenovirus receptor and its interaction with the fiber knob Exp Cell Res, 255, 47−55.

•

Gates MA, Kim L, Egan ES, Cardozo T, Sirotkin HI, Dougan ST, Lashkari D,Abagyan R, Schier
AF, Talbot WS (1999) A genetic linkage map for zebrafish: comparative analysis and localization
of genes and expressed sequences. Genome Res., 9, 334−347.

•

Li, D., Desai−Yajnik, V., Lo E., Schapira, M., Abagyan, R., Samuels, H.H. (1999) NRIF3 is a
novel coactivator mediating functional specificity of nuclear hormone receptors. Mol Cell Biol 19,
7191−7202.

•

Schapira, M., Raaka, B.M., Samuels, H.H., Abagyan, R. (2000) Rational discovery of novel
nuclear hormone receptor antagonists. Proc Natl Acad Sci U S A 97, 1008−1013.

•

4.5. Credits
Molsoft, L.L.C. has made every effort to supply trademark and copyright information about mentioned
individuals, company names, services and products. All products or services not listed below are the
trademarks, registered trademarks, service marks, or registered service marks of their respective owners.

CSD is copyrighted by Cambridge Crystallographic Data Centre.•
DEC is a registered trademark of Digital Equipment Corp.•
GhostScript (gs) is a trademark of Aladdin Enterprises.•
IRIX is registered by Silicon Graphics, Inc.•
IRIS is a trademark of Silicon Graphics, Inc.•
Java and Java −based marks are trademarks or registered trademarks of Sun Microsystems, Inc in
the United States and other countries.

•

Netscape is a trademark of Netscape Communication Corp.•
PostScript is a registered trademark of Adobe Systems, Inc.•
Prosite is copyrighted by Amos Bairoch, Medical Biochemistry Department, University of
Geneva, Switzerland

•

SD−file and mol −file formats are copyrighted by Molecular Design Limited (MDL Information
Systems, Inc.).

•

Sybyl and mol2 −file format are copyrighted by Tripos, Inc.•
TIFF is a trademark of the Aldus Corp.•
UNIX is a registered trademark of UNIX System Laboratories, Inc.•
Wavefront is a trademark of Wavefront Technologies, Inc.•
Windows 95 and Windows NT are trademarks or registered trademarks of Microsoft Corporation.•

482 4.5. Credits

5. Glossary
5.1. A

add

is used as an option equivalent to append in write command.

alignment

or sequence group. Individual sequences in the group may be just combined and left−justified (no
insertions/deletions, e.g. as an output of group command) or actually aligned (or realigned) with either
pairwise function Align (seq1, seq2) or multiple alignment command align sequence_group Pairwise
sequence alignment is performed with the ZEGA (Zero End−Gap Alignment) algorithm. You can read,
write, list, show, or delete an alignment unless it is linked to a 3D object . In the latter case you
should delete the object first. Flag l_showSstructure allows you to show the secondary structure
string which belong to a participating sequence to be displayed. When you show the alignment, the
consensus string appears on top. The meaning of consensus characters is explained below and the string
can be extracted with the Consensus() function.

A table with relative amino acid numbers for all sequences in the alignment is returned by the Table(ali_
) function.

Coloring 3D models by local alignment strength. Space averaging

See: selectSphereRadius and ribbonColorStyle = "reliability"

Arithmetics:

extracting a domain (i.e. a certain position range) from an alignment alignment[i1:i2] or
alignment[i]

•

extracting an alignment of a group of sequences from a larget alignment Align(aliLarge,
I_seqNumbers)

•

projected alignment: concatenation of two alignments sharing the same sequence. The shared
sequence serves as a ruler for merging the two alignments. The alignments can be of arbitrary size
and number of sequences. In the simplest case of three sequences a, b, c and alignments ab and bc,
the operation ab//bc will create an alignment of three sequences a b c. The function
Align(ab//bc,{1,3}) will extract the, so called, projected alignment of a and c through b. Example:

•

 ali1 // ali2 returns Projected ali.
a VYRWA−W b FK−WG−−KW a VYR−WA−−−W
b −FKWGKW c AKGWAPGKW b −FK−WG−−KW
 c −AKGWAPGKW

projecting a numerical property from a sequence to alignment: Rarray(
R_property,seq_,ali_,r_gapDefault).

•

projecting a numerical property from alignment to a sequence : Rarray(
~R_ali,ali_from,seq_|i_seqNumber)

•

5. Glossary 483

Functions:

function name description

Align pairwise alignment from 2 sequence, or subalignment extracted from another alignment,
or alignment extracted from tethers in an ICM−molecular object.

Consensus() the consensus string
Deletion() residue selection of deleted residues
Distance() pairwise distance matrix between sequences.
Insertion() residue selection of inserted residues
Matrix() distance matrix
Name() string array of names of sequences
Nof() number of sequences
Profile() a profile derived from the alignment
Res() residue selection corresponding to the aligned sequence
Score() sequence identity, similarity or alignment score for a pairwise alignment
String() a multiline string of the alignment (contains '−')
Table() a table with relative sequence numbers (0 for gaps)
Examples:

 read alignment "globins.msf"
 list alignments
 glob_fragment = globins[10:36]
 show glob_fragment
 delete alignments

all

an option used in several commands where whole list of items involved should be invoked (e.g. show
terms).

alpha helix

alpha−helical conformation. Average angles (phi=−63.2,psi=−38.5). Referred to as 'a' in variable
restraint names: e.g. alpha−zone for histidine is called "ha".

See also commands assign sstructure , set vrestraint and file icm.rst .

amber

a force field for simulations of proteins and DNA in the Cartesian coordinate space.

See the reference.

484 all

append

used as option mostly in read and write commands, for example:

 write matrix "fil.mat" append
 read stack "mc12" append

arrays. ICM−shell allows 3 types of arrays:

iarray − integer array,•
rarray − real array,•
sarray − string array•

These arrays are legal elements of the ICM−shell.

iarray−constant looks like this: {2, 4, 67, −4}.

rarray−constant looks like this: {2.0, −4., .67, −4.3433}.

sarray−constant looks like this: {"a−word","b−word","c−word","..."} .

Commas are optional unless you have negative elements in integer or real arrays. Array ICM−shell
variables can be created by direct assignment: (e.g. a={2, 4, 67, −4} or
b={"wow","oops","ouch"}), read (e.g. read iarray "numb.iar"), and written to a file
(e.g. write numb "numb"). You can specify a subset of an integer array (e.g. a[2:15]). Besides,
there all kinds of operations and functions on the ICM arrays. There are many ways to create an
array:

read an array from a file: read rarray "a.dat"•
create by direct assignment: a={1, −2, 3, 14}•
use arithmetic expressions: a=Sin(Cos(a))*b•
use functions Iarray, Rarray, or Sarray, e.g.: a=Rarray(15, 2.)•
concatenate two elements, e.g.: a=2//3•

atom

(Greek): indivisible; the smallest particle of a chemical element that can exist alone or in combination
(cool, isn't it?).

axis

an imaginary straight line passing through a point or a body.

5.2. B

base

Use option base to display cartoon representations of the bases on the DNA/RNA ribbons. In DNA and
RNA ribbons, bases can be displayed/colored separately from the ribbon itself (e.g. color ribbon

append 485

base a_1/* white), the default coloring being A−red, C−cyan, G−blue, T or U−gold.

ball

a solid sphere representing an atom in the graphics window. Its size is defined by the
GRAPHICS.ballRadius ICM−shell variable.

Examples:

 display ball a_//ca # does not make much sense

See also: xstick

beta

an extended conformation ("E" in one−character notation). Referred to as 'b' in variable restraint
names: e.g. beta−zone for alanine is called "ab".

See also: assign sstructure , set vrestraint and file icm.rst .

boundary element

See REBEL . See also: electroMethod, delete boundary, show energy", term "el",
Potential().

BPMC

is an acronym for the Biased Probability Monte Carlo method (Abagyan and Totrov, 1994). The method is
based on a theorem establishing that if the Monte Carlo procedure is used for global optimization, rather
than generation of a Boltzmann ensemble, random moves based on known local probability distributions
(e.g. alpha and beta regions for peptide backbone conformations) maximize the optimization efficiency.
Practically, the procedure randomly choose a group of coupled angles and changes them according to
probabilities defined in the icm.rst file. Do not forget to use the set vrestraint a_/* command
before the montecarlo command to activate the biasing.

5.3. C

486 ball

cavity

is the free space inside a molecule. Here we use a limited definition of a cavity as a fully enclosed space
inside a molecule. See the icmCavityFinder macro which identifies and characterizes cavities.

To generate a cavity an skin is generated and converted into grob. We then split this grob into
individual connected entities.

charge

is an electric charge in electron units. You may redefine charges with the set charge command.

coil

is an irregular conformation ("_" in one−character notation). It is displayed as spaghetti when the ribbon
type of representation is used. To assign a residue fragment to coil, do something like this: assign
sstructure a_/13:40 "_".

column

indicates a layout format of several arrays (iarrays, rarrays, sarrays) with the same number of
elements as side−by−side columns. The column format look like this:

#> a b c
 1. 15 "alpha"
 2. 18 "beta"
 5. 10 "gamma"

It is also useful to show arrays of a table (see also database).

current map

usually is the last map loaded by the read map command or created by the make map command. The
current map may be changed by the set map command. To find out which one is the current, use list
maps.

current object

usually is the last object loaded by the read object command or created by the build command. The
current object may be changed by the set object [os_object] command. To find out which is the
current one, use list object or show object [os_object].

You may refer to the current object as a_

current table

usually is the last table loaded by the read table command or created by the group table
command. The current table may be changed by the set table command. To find out which one is the
current, use list tables.

cavity 487

command

an instruction one can execute in the ICM−shell interactively or from an ICM script file. Typically a
command consists of a verb (like read or delete) and a bunch of arguments. The word order in the
argument list is not important, if arguments have different types. For example:

 display a_//ca,c,n yellow # is as good as ...
 display yellow a_//ca,c,n # ... inverse

There are exceptions,

if two or more arguments are of the same type, e.g.•

write "This line" "filename"

or superimpose as_select1 as_select2 ,

a complex argument consists of two parts: e.g. delete label i_number or grid["x"] in the
plot command. In the latter case if the "x" string is not preceded by grid word, it will not be
considered.

•

comp_matrix

a residue comparison matrix used by the alignment algorithms. The matrix is loaded automatically
together with other library files from the icm.cmp file and can be reloaded later (if you need another
matrix) using the read comp_matrix command. The current matrix can be shown. All elements are
properly reordered and multiplied by a factor such that the sum of occurrence−weighted diagonal elements
(identities) of the matrix is 1.0 and stored in this form. You can increase all the values in the matrix (a
useful operation for low sequence identities) with the set comp_matrix command which has similar
effect to reduction of the gapOpen parameter. The set comp_matrix command also allows to modify
weight for specific residue pairs (e.g. set comp_matrix 4. "CC"). Two matrices are recommended: the
blosum50 with penalties 2.0/0.15 and the Gonnet matrix (the default) with penalties 2.4/0.15. A number of
matrices are provided. You can use your own data file too.

conf

a conformation (actually a set of variables determining the conformation) stored in an ICM stack . You
can add a conformation to the conformational stack or load a conformation from the stack.

Example:

% icm
 buildpep "ala his trp"
 montecarlo
 show stack
 iconf> 1 2 3 4 5 6 7
 ener> −15.1 −14.6 −14.6 −14.2 −13.9 −11.4 −1.7
 rmsd> 0.3 39.2 48.0 44.1 27.4 56.6 39.3
 naft> 1 0 0 1 1 1 0
 nvis> 4 1 1 4 4 4 1
 print Nof(conf)

488 command

 7
 print Iarray(stack) # returns {4 1 1 4 4 4 1}
 t = Table(stack) # more conf parameters
 for i=1,Nof(conf)
 load conf i
 center
 pause # hit return
 endfor

cpk

abbreviation of "Corey−Pauling−Koltun" who introduced space−filling solid models of atoms. In ICM
graphics it means solid representation of van der Waals spheres. Spheres are drawn at van der Waals radii.
See also: display

5.4. D

database

a format for storing entries containing several different types of information. The column format
(multicolumn representation) is the alternative. The database should have the following format:

FieldName1 Number|String
FieldName2 Number|String
FieldName3 Number|String

FieldName1 Number|String
FieldName2 Number|String
FieldName3 Number|String
...

Fields can contain integers, reals and multiline strings.

Example:

id jur1
iq 24
addr LA
addr California

id jur2
iq 17
addr LA

Depth−cueing, or fog

cpk 489

a visual effect which makes objects disappear in a fog

according to the screen Z−coordinate. Press

Ctrl−D

to invoke the effect and move the back clipping closer with
MidMB to make the effect more dramatic. Also more the front
clipping plane with Ctrl−MidMB to make the front brighter.

If you use gui adjust the front and back clipping planes using the buttons in the graphics tool bar and
vertical movements with the left−mouse−button

Two parameters influence the fog effect:

fogStart determines the relative Z−position at which the linear fog effect starts (the distance
between the front and the back planes is 1.)

•

color volume color command allows to color fog differently from the background (by
default they are the same).

•

distance

a measure of proximity in three−dimensional or multidimensional space for all kinds of objects, including
sequences and real arrays. See function Distance ().

distance geometry

is often used to calculate a set of Cartesian coordinates of a series of objects given all (or even a subset of)
the inter−object distances (Crippen and Havel, 1988). ICM function Disgeo() allows to solve this sort of
problems. See also Distance().

disulfide bond

(or SS−bond) a covalent bond between sulfur atoms of two cystein residues. In the PDB objects loaded by
the read pdb command these bonds are automatically imposed on the basis of SSBOND records. Upon
conversion of a PDB structure into the ICM−object with the convert command, the disulfide bonds are
inherited. Important: commands make disulfide bond and delete disulfide bond are
valid for ICM−type molecular objects only (and have no effect on, say, PDB structures). Both commands
change the covalent structure of the modeled molecular object and expel/add hydrogens. In addition,
SS−bonded cys residues are renamed to cyss. Therefore, to count the number of disulfide bonds you may
simply count the cyss residues: show Nof(a_/cyss)/2 . Distance restraints imposed to form such a
bond are defined in the file icm.cnt .

490 distance

drestraint

a distance restraint (sometimes abbreviated as cn) which imposes a penalty function on the distance
between two atoms of the same object (in contrast, tether imposes a restraint to an atom in another
object) . Distance restraints may have different characteristics and types. A drestraint is a basin with flat
bottom between the upper and lower bounds (Du and DL) and bi−quadratic walls:

P(d) = 0.25*(d2 − Du
2)2 /Du

2 if d>Du (upper wall)
P(d) = 0 if DL<d<D,,u (flat bottom)
P(d) = 0.25*(d2 − DL

2)2 /DL
2 if d<DL (lower wall)

drestraints are mostly used in structure determination using the NMR NOE data.

Drestraints may be read, written, made, setn, shown, and displayed. The parameters of drestraints are
written in *.cn files. See also: icm.cnt file description.

To activate the drestaint penalty term, use the set terms "cn" command.

drestraint type

a type of distance restraint(s). It describes well depth, lower and upper boundaries and has two
forms: global and local. Local restraints become weaker and vanish as the distance between the
corresponding atoms grows (similar to the van der Waals forces), while global restraints become stronger
as you deviate further from the required distance range. Local type has an additional characteristic:
sharpness. The types are given in *.cnt files.

The main list of types consists of general user−defined global and local types as well as a number of fixed
named types used to impose disulfide bonds or peptide bonds. Drestraint types may be read,
written, set, and shown.

See also: *.cn file description.

5.5. E−H

ecepp

a force field used in the ICM program. The latest version is called ECEPP/3 reported in Nemethy et al.
(1992). See also the following references: Momany et al. (1975), Nemethy et al. (1983)

fasta

program FASTA (Pearson and Lipman, 1988) is used for search sequence databases, evaluate similarity
scores and identify sequence similarities on the basis of local sequence similarity. The program is well
suited for rapid database searches, because it does not handle insertions/deletions. In ICM, fasta also
specifies one of the several allowed formats of sequence data storage and representation.

drestraint 491

5.6. S

site

ICM sequences and objects may contain specific information about local sequence features, such as
location of binding sites, disulfide bonds etc. These information is stored in the feature table (FT) section of
the Swissprot protein sequence entries or after the SITE fields of pdb files. The sites in the feature table
may look like this:

FT ACT_SITE 15 15 ACTIVE SiTE HIS
FT TRANSMEM 309 332 PROBABLE
FT DOMAIN 333 362 CYTOPLASMIC TAIL.
FT DISULFID 125 188 BY SIMILARITY.

We use one letter code (the second column) to specify the site type. The first column shows the priority
value which is used by the set site command.

Priority CharSWISSPROT def.Description
4 A ACT_SITE Amino acid(s) involved in the Activity of an enzyme.
2 B BINDING Binding site for any chem.group(co−enzyme,prosthetic group...)
5 C CA_BIND Extent of a Calcium−binding region.
5 D DNA_BIND Extent of a DNA−binding region.
4 F SITE Any other Feature on the sequence (i.e. SITE records in PDB).
2 G CARBOHYD Glycosylation site.
7 I INIT_MET The sequence is known to start with an initiator methionine.
2 L LIPID Covalent binding of a Lipidic moiety
2 M METAL Binding site for a Metal ion.
5 N NP_BIND Extent of a Nucleotide phosphate binding region.
6 O PROPEP Extent of a prOpeptide.
6 P PEPTIDE Extent of a released active Peptide.
5 R REPEAT Extent of an internal sequence Repetition.
6 S SIGNAL Extent of a Signal sequence (prepeptide).
5 T TRANSMEM Extent of a Transmembrane region.
1 V VARIANT Authors report that sequence Variants exist.
1 X CONFLICT Different papers report differing sequences.
5 Z ZN_FING Extent of a Zinc finger region.
6 c CHAIN Extent of a polypeptide Chain in the mature protein.
5 d DOMAIN Extent of a Domain of interest on the sequence.
3 e THIOLEST ThiolEster bond.
1 m MUTAGEN Site which has been experimentally altered.
2 p MOD_RES Post−translational modification of a residue.
3 s DISULFID DiSulfide bond.
3 t THIOETH Thioether bond.

492 5.6. S

1 v VARSPLIC Sequence Variants produced by alternative splicing.
6 z TRANSIT Transit peptide(mitochondrial,chloroplastic,cyanelle,microbody)
5 ~ SIMILAR Extent of a similarity with another protein sequence.
4 − NON_CONS Non consecutive residues.
7 + NON_TER The residue at an extremity of seq.is not the terminal res.
4 ? UNSURE Uncertainties in the sequence
The sites can be

read from a swissprot entry with the read sequence swiss command•
set to a sequence or a molecular object with the•

set site [seq_from [ali_] {seq_|ms_} [only]

command

a new site can be set with the•

set site s_siteString {seq_|ms_} [only]

command (e.g. set site a_1.1 "FT SITE 15 15 important residue") .

and delete with the•

delete site {seq_|ms_} i_siteNumber

command (e.g. delete site a_mol1 1) .

To show sequence sites use the show sequence swiss command, and in objects: show
site {seq_|ms_}

•

command.

Sites assigned to molecular objects can be selected (and thereby visualized) with the a_/ F
SiteString selection

•

Sites will be written to an object and restored upon reading under the OBJECT.site or
OBJECT.auto preference.

•

The ICM−shell variable l_showSites toggles the appearance of the site information in the show
sequence command.

Example:

 read pdb "1hla" # this object Ca atoms of 2 molecules
 make bond a_//ca # link them into a chain
 rinx SWISS #rinx is an alias to read index "...."
 read seq swiss SWISS.ID=="1A02_HUMAN"
 read seq swiss SWISS.ID=="B2MG_HUMAN"
 read seq swiss SWISS.ID=="1A68_HUMAN"
 set site a_1 1A02_HUMAN

5.6. S 493

 set site a_1 1A68_HUMAN append
 set site a_2 B2MG_HUMAN
 show site B2MG_HUMAN
 cool a_
 ds cpk magenta a_/FV # display variants
 ds cpk yellow a_/Fs # display disulfides

grob

an abbreviation for a general GRaphics OBject, which contains dots, and/or lines and/or solid surfaces; it
can be a geometrical body, a contoured electron density, 3D plot, an arrow, etc. If the graphics object
contains triangles, it can be represented by solid surfaces. The order of points in the triangles defines the
direction of the normals which in turn defines which of the two sides are lit. Grob−file format is
straightforward and editable.

To merge two or several grobs, use the write grob append command.

Example:

 read grob "icos" # several example graphics objects
 read grob "cube" # are read in ...
 read grob "oblate"
 read grob "prolate"

 display g_cube red # ... and displayed
 display solid g_icos blue
 display g_oblate green
 display g_prolate magenta
 center

hbond− hydrogen bonds

are calculated according to ECEPP/3 potential. The can be displayed. Related commands are show
hbond, display hbond, color, and undisplay .

svariablei, or ICM−shell variable

a named object stored in the program memory of one of the following types: integer (i), real (r),
string (s), logical (l), preference (p), iarray (I), rarray (R), sarray (S), matrix (M),
sequence (seq), profile (prf). alignments (ali), maps (m), graphics objects (grob) (g) . They can be
created by direct assignment to a constant (e.g. a={1 4 3 8} , to a function (e.g. a=Iarray(4)) or
read from a disk file (e.g. read iarray "a") Most of ICM−shell variables can also be written to
a disk file, and shown. They can take part in the arithmetic and logical expressions. For some of the
variable types, subsets are defined (e.g. a[2:4]).

integer

numbers may exist in the ICM−shell as a named variable or a constant (e.g. 123,2,−45).
There are several dozen predefined integer variables. Integers may be mentioned in
arithmetic expressions, commands and functions.

494 grob

Examples:

 born = 1957 + 5 # she is 5 years younger
 now = 1996 # lets pretend we live in 1996
 if (now − born > 28) print "no, you are not 28, you are 27!"

label

usually a string displayed in the ICM graphics window. Types of labels:

atom label # toggled by LeftMB clicking•
residue label # toggled by LeftMB double clicking•
variable label•
free string label # drag it with the Middle mouse button.•

To display the free text label, type:

display "Below lies a black abyss"

To delete it delete label i_labelNumber e.g. delete label 2

To show:

 show labels

logical

may exist in ICM−shell as a named variable or a constant (only two possibilities: yes and no)
You can use exclamation mark for negation (!) and two operations: and (&) and or (|) There is a number
of predefined logical variables. Logicals can be used in arithmetic expressions,
most frequently in if (logical) ... expressions.

Examples:

 l_nowIamDoingAStupidThing = yes yes

 l_Polite = no # another logical variable
 if (Error !l_Polite) print "And what do you think you are doing?"

macro

a group of ICM commands in a separate named function. See description macro in the command section.

map

a real function defined on a three−dimensional grid. Usually it is an electron density map or grid potential.
See also: icm.map This ICM−shell object contains a descriptor (or header) with the following
information:

cell type (space group number) and parameters {a, b, c, alpha, beta, gamma};•

label 495

lattice and sublattice specifications (sizes and offsets for columns, rows and sections);•
characteristics of the density values: the mean value, standard deviation, the minimum and the
maximum values.

•

correspondence between X,Y,Z and sections, rows and columns•

The map itself contains a stream of real density values for each node of the sublattice.

Maps can be read, calculated from structure factors, and created as a result of map arithmetics.
Maps of 5 types of grid potentials can also be calculated with the make map potential command.
The last map loaded or created becomes the current map. The current map is a convenient default for
commands requiring map as an argument.

The following arithmetic operations between maps of compatible sizes are allowed: map+map, map+i,
map+r, i+map, r+map map−map, map−i, map−r, i−map, r−map map*r, map*i, i*map, r*map, map*map
map/r, map/i.

Map functions:

Box(map) returns R_6box defining the map boundary
Bracket same as Trim
Cell(map) returns R_6 crystallographic cell parameters of the map
Map(map I_3_or_6 [simple])a submap
Min(map) minimal value
Max(map) maximal value
Nof(map) total number of grid points
Rarray(map) returns all values from 3D−grid points as a linear real array
Smooth(map [expand]) space−average the map values
Symgroup(map) string with the symmetry group name
Trim(map,vMin vMax) trim by values outside the range
Trim(map,R_6box) set values outside the box to zero
Simple arithmetic operations are allowed with the maps (map1 and map2 must have the same dimensions):

plus (map1 + map2, map + r),•
minus (map1 − map2, map − r),•
multiply (map1 * map2, map*r, r*map),•
divide (map1 / map2, map/r),•

One can also use expressions, e.g.

 m = Smooth(m_ge)*2. − 1. + m_gc # does not make much sense

matrix

a set of real numbers organized in rows and columns. The ICM−shell allows arbitrary size matrices [n,m],
access to its elements (M[i,j]), rows (M[i]), columns (M[1:i,j]) or any submatrix (M[i1:i2,j1:j2]). Basic
matrix operations such as

496 matrix

plus (M1 + M2),•
minus (M1 − M2),•
multiply (M1 * M2),•
concatenate rows (M1 // M2),•
equal (M1 == M2),•
not equal (M1 != M2),•
Transpose(M), and•
inverse (Power(M,−1))•

allow powerful matrix arithmetics. You can create a new matrix in the ICM−shell by reading (read
matrix "a"), assignment (M_new=Transpose(M_old)) or function Matrix (e.g.
M=Matrix(4,8)). Matrix−related functions are the following:

determinant of square matrix (Det(M))•
principal components or "distance geometry" (Disgeo (M)) function, i.e. if a given
square matrix M[1:n,1:n] contains distances between n points find coordinates in (n−1)
dimensional space and sort the space dimensions according to their contribution to the variation. If
distances are 3−dimensional Euclidean distances, the first three coordinates will give you x,y,z.

•

Eigen (M) function returns a matrix of eigenvectors; eigenvalues are stored in R_out•
Distance(alignment) − returns matrix of pairwise distances between sequences in an
alignment.

•

Max , Min , Mean and Sum functions return a row (actually a real array) with maximal,
minimal, mean, or total values in each column, respectively

•

Nof(M) and Length(M) − return n and m, respectively for matrix M[1:n,1:m] .•
Power(M, i_exponent) calculates different integer powers of a matrix, including matrix inverse (
inmat=Power(M,−1)),

•

Random(d1,d2,n,m) creates a matrix and fills it with random numbers,•
Rmsd(M) returns root−mean−square deviation,•
Trace(M) returns the trace of a square matrix,•
Xyz(as_select) returns a matrix of xyz coordinates of selected atoms.•
Distance(matrix) returns a matrix of pairwise distances between the row−vectors of the matrix.•

Matrix assignments

Examples:

 a=Matrix(4,5) # create a matrix, simple assignment
 a[1,1]=9. # a single matrix element
 a[2,?]={1. 2. 3. 4. 5.} # assign only the 2−nd row
 a[?,3]={1. 2. 3. 4.} # assign only the 3−nd column
 a[2:3,1:2]=Random(−1.,1.,2,2) # assign only the 2x2 submatrix

By simple arithmetic operations with matrices you can

solve a system of linear equations (x=Power(A,−1)*B),•
find best set of parameters x[1:m] which fits your model A[1:n,1:m] (n > m) to data vector B[1:n].
Minimum of (A*x−B) is found by 3 steps:

•

 M1=Transpose(A)*A
 M2=Power(M1,−1)
 x =(M2*Transpose(A))*B

matrix 497

MIMEL

an abbreviation of Modified IMage ELectrostatics algorithm (Abagyan and Totrov, 1994) developed for
fast evaluation of both internal Coulomb and electrostatic polarization free energy for large molecules. This
term has no analytical derivatives and has no effect on local energy minimization. It can be a part of the
energy function in global optimization such as montecarlo or ssearch . Three components of MIMEL
can be shown using the show energy command. They are:

Coulomb interactions of explicit atomic charges (note that it is divided by the dielConst
ICM−shell parameter)

•

"Self energy" (or interaction of explicit charges with their own images)•
"Cross energy" (or interaction of explicit charges with other charges' images)•

The last two components together represent the electrostatic polarization energy which is returned in the
r_out variable. REBEL gives a more accurate evaluation of the electrostatic solvation. For small
molecules use mimelDepth = 0.3. For proteins the error in the solvation energy evaluation (returned in the
r_out variable) is estimated as 15 − 20%.

mmff .

This word refers to the Merck molecular force field described in a series of 1994 and 1999 publications by
Thomas Halgren. ICM can assign MMFF atom types using local chemical environment, formal charges and
3D topology. ICM also allows to calculate the mmff94 energy and minimize it both in the cartesian
space with free covalent geometry and in the internal coordinate space with fixed covalent
geometry or user−defined geometrical constraints.

See also:

ffMethod − defines which force field to use•
read library mmff − sets the parameters set type mmff − identifies the atom types
from the covalent geometry, formal charges, and bond types

•

minimize•

mol

This word refers to the MDL Information Systems, Inc. SD−file format for small molecules (see
trademarks). ICM can read and write molecules in this format. They may look like this:

name
jscorina 12209406473DS
LongName
 7 6
 −0.0187 1.5258 0.0104 C 0 0 0 0 0
 0.0021 −0.0041 0.0020 C 0 0 0 0 0
 1.6831 2.1537 −0.0024 S 0 0 0 0 0
 −1.4333 −0.5336 0.0129 C 0 0 0 0 0
 2.0692 1.9811 −1.7665 C 0 0 0 0 0
 −1.4126 −2.0635 0.0045 C 0 0 0 0 0
 1.4620 3.1542 −2.5386 C 0 0 0 0 0
 2 1 1 0 0 0
 3 1 1 0 0 0

498 MIMEL

 4 2 1 0 0 0
 5 3 1 0 0 0
 6 4 1 0 0 0
 7 5 1 0 0 0

> <NSC>
19

> <CAS_RN>
638−46−0

$$$$

mol2

This word refers to the Tripos file format for small molecules (see trademarks). ICM can read and write
molecules in this format. The default extension for this type of file is .ml2. They may look like this:

@<TRIPOS> MOLECULE
a1
 3 2
SMALL
USER_CHARGES

@<TRIPOS>ATOM
 1 ho1 −2.0000 0.0000 −1.0000 H 1 hoh 0.3280
 2 o −2.4944 0.0000 −1.8229 O 1 hoh −0.6550
 3 ho2 −3.4149 0.0000 −1.5503 H 1 hoh 0.3280

@<TRIPOS>BOND
 1 1 2 1
 2 2 3 1

more

an internal ICM−viewer, a little brother of the UNIX browser with the same name. Displays ICM output
one screenful at a time. Control:

spacebar: next page•
Return: scroll by one line•
/string: find string•
n find next•
q: quit•

movie

a series of molecular conformations representing a Monte Carlo trajectory and saved in an
ICM−formatted .mov binary file can be simply displayed or used for animated.

The icm .mov files are not quicktime movies, or series of images. Instead, they contain a compressed
series of geometrical parameters determining object geometry for each accepted montecarlo iteration.

mol2 499

The frames of the trajectory/movie file can be separately analyzed and further filtered with an ICM script.
For example, one can generate a shorter movie by retaining only the frames with lower energies.

See also: display movie, load frame

mute

an option in a number of commands (e.g. find pattern, find prosite, show tether, show
energy, show area, show volume, etc). It is usually used in scripts when one wants to suppresses
unnecessary output. In macro declaration, this option suppresses prompting for missing macro arguments.

only

frequent option in commands which means disregard or delete the previous status. Without only
commands usually add or append to the current settings.

Examples:

 display only g_icos # undisplay everything which is in the
 # graphics window (if any)
 # and display icosahedron

pattern

a sequence consensus pattern like this, "[AG]?[!P]W", or this "C?G?\{2,3\}C". A pattern can be extracted
from an alignment and searched against a sequence database. See also:

find pattern − find a pattern in a single sequence,•
find database pattern − efficient parallel pattern search in a BLAST−formatted sequence
databank.

•

Pattern(s_consensus) − create a regular pattern expression from a consensus,•
Pattern(alignment) − create a regular pattern expression from an alignment,•
regular expressions and pattern matching•
prosite − a collection of sequence patterns•

png

graphics image format. Stands for Portable Network Graphics and was designed to replace the GIF format
and, to some extent, the much more complex TIFF format. While GIF allows for only 256 palette colors,
PNG can handle a variety of color schemes like TIF (1,3,8, 24, etc. bit colors). Furthermore, PNG is free,
while GIF is subject to licensing fees. PNG also supports alpha−channel. Since 1998 most browsers
correctly display PNG images. See also: rgb, tif .

Pattern matching and regular expressions. Use the following metacharacters to construct regular
expressions (try guess what string is used in the examples!)

* matches any string including an empty string (e.g. "*see*")•
? matches any single character (e.g. "???ee M")•

500 mute

[string] matches any one of the enclosed characters. Two characters separated by dash represent a
range of characters.

•

Examples: [A−Z], [a−Z], [a−z], [0−9] (e.g. "[A−Z] see [A−Z]"

[!string] negation. matches any but the enclosed characters (e.g. "I see [!K]")•
single−character multiplication: character\{m,n\} (e.g. "I?\{3,6\}M" − repeat any character, ?,
from 3 to 6 times)

•

The example string was "I see M". Regular expressions may be used in selections (a_*.//c?,n,c
), and in list, group, delete commands. Note that for the latter three commands the pattern must be
quoted.

pdb or Protein Data Bank

a repository of macromolecular structures solved by crystallography or NMR (occasional theoretical
models are frowned upon). It used to be at the Brookhaven National Laboratory, Now it is shared between
UCSD and Rutgers University. The old citations: Bernstein et al., 1977; Abola et al., 1987). The new
citations can be found at http://www.rcsb.org/pdb/ . On November 20th, 2001 it contained 16596
entries.

An example ATOM record:

ATOM 52 N HIS D 18 53.555 24.250 49.573 1.00 32.59

peptide bond

a covalent bond between C=O and N−H groups, which is imposed in ICM−objects as an extra set of
distance restraints. These groups may belong to the terminal groups as to the amino acid side
chains. Important: commands make peptide bond and delete peptide bond are valid for
ICM−type molecular objects only (and have no effect on, say, PDB structures). Both commands change the
covalent structure of the modeled molecular object and expel/add hydrogens. Distance restraints
imposed to form such a bond are defined in icm.cnt file.

profile

a table of residue preferences for each residue type at each position on a protein fold or a sequence. The
preferences may be derived from a multiple sequence alignment of from a 3D structure. Profile also
contains gap opening and gap extension values for each sequence position. Profile provides a good way of
representing a consensus sequence pattern of a protein family. One can search a new sequence against a
library of profiles, or search a profile against a data base of protein sequences (see Abagyan, Frishman, and
Argos, 1994). One can add two profiles (prf1 + prf2), multiply them (prf1 * prf2), concatenate two
profiles (prf1//prf2), and extract a part of a profile (prf[15:67]). Profile can be read from a .prf file and
calculated from an alignment with the Profile() function. See also: Sequence() Consensus()
Align().

pdb or Protein Data Bank 501

prosite

a dictionary of protein sites and patterns, (Copyright by Amos Bairoch, Medical Biochemistry Department,
University of Geneva, Switzerland). ICM converts prosite patterns to standard string patterns
containing regular expressions, like "C?\{4,5\}CCS??G?CG????[FYW]C".

The old releases of prosite can be found at
ftp://ftp.expasy.org/databases/swiss−prot/sw_old_releases/

See also:

read prosite,•
s_prositeDat,•
find prosite − find all prosite patterns in a single sequence,•
find profile − find all prosite profiles in a single sequence•

REBEL

a method to solve the Poisson equation
for a molecule. REBEL is a new powerful
implementation of the boundary element
method with analytical molecular surface
as dielectric boundary. This method is fast
(takes seconds for a protein) and accurate.
REBEL stands for Rapid
Exact−Boundary ELectrostatics. The
energy calculated by this method consists
of the Coulomb energy and the solvation
energy which is returned in the r_out
system variable.

Related parameters and steps:

electroMethod = "boundary element";•
dielConst (the default is usually OK);•
dielConstExtern (the default is usually OK);•
set charge as_ r_Charge (modify charges if you like);•

502 prosite

make boundary (if you want to make several evaluations of energy or Potential() with the
same boundary. The "boundary" parameters depend only on conformation and do NOT depend on
charges. You can redefine charges afterwards and get a corrects energy evaluation);

•

delete boundary (if you do not need it);•
show energy (make sure the "el" term is on);•
Potential (as_targets as_charges) (if the boundary exists, returns potentials from charges at
the target atoms);

•

color grob potential (create graphics object, say, with make grob skin actually
it can be any grob and color it by the REBEL potential);

•

The polarization charges can be returned by the Rarray(as_) function after the equation is solved, e.g.:

electroMethod = 4

show energy "el"

Rarray(a_//*)

real

number may exist in the ICM−shell as a named variable or a constant (e.g. 12.3, 2.0,
−4.501). There are a number of predefined real variables. Reals may be mentioned in
arithmetic expressions, commands and functions.

Examples:

 a = −1.2
 b = Abs(Sin(2.3 * a − 3.0 / a))

regularization

procedure for fitting a protein model with the ideal covalent geometry of residues (as represented in the
icm.res residue library) to the atom positions of a target PDB structure (usually provided by X−ray
crystallography or NMR). Regularization is required because the experimentally determined
PDB−structures often lack hydrogen atoms and positional errors may result in the unrealistic van der Waals
energy even if these structures were energetically refined (since the refinement of the crystallographic
structures typically ignores hydrogen atoms and employs different force fields). The following steps are
required to create the regularized and energy refined ICM−model of an experimental structure:

an extended all−atom model of a particular protein is generated with regular geometry
characteristics (see the build command and the IcmSequence function);

•

the non−hydrogen atoms in the model are assigned to the equivalent atoms in the model (see set
tether);

•

the regularized structure is built starting from the N−terminus by adding atoms one−by−one (see
minimize tether);

•

methyl groups are rotated to reduce van−der−Waals clashes;•
combined geometry and energy function is optimized;•
polar hydrogen positions are adjusted;•

real 503

optionally the model may be additionally minimized, now without tethers to observe a "stability"
of the model in the local energy minimum.

•

See macro regul .

residue

a chemical building block or complete chemical compound, usually an amino−acid residue. The ICM
hierarchy: atom −> residue −> molecule −> object. Individual small molecules may contain only one
residue. Residues are described in the icm.res file. You may create your own residues with the write
library command. Residues can be selected with the ICM−selection expression (e.g. a_/ala,
a_/15, a_/15:20, a_/"RDGE" etc.), labeled with the display residue label rs_
command, by double clicking with the right mouse button, via a pop−up menu, or from the GUI menu.

rgb

red−green−blue. It is of interest, that the combination of these three can produce any other color. In
addition, this is the name of the SGI image format used in the ICM commands write image and
display movie . ICM also generates the fourth channel on top of the RGB information. This fourth
number is called alpha−channel and generates the opacity index for each pixel of the image. This
information is interpreted by a number of applications, i.e. the IRIX showcase and dmconvert (the SGI
moviemaker). See also tif, targa, postscript.

ribbon

a graphical representation of a polypeptide chain backbone by a smooth solid ribbon.
DNA and RNA can be also displayed in a ribbon style.

There are three types of elements of the ribbon display depending on the
secondary structure assigned to a given residue.

Residues marked as alpha−helices ('H') will be shown by a flat ribbon, those marked as beta−sheets ('E')
will be flat ribbon with an arrow−head, and the rest will be shown by a cylindrical "worm". The ICM−shell
parameter GRAPHICS.wormRadius defines its radius. Default ribbon colors are defined in the
icm.clr file. Note that minor secondary structure elements like 3/10 helix ('G'), Pi−helix ('I') and 'Y' are
colored by the "alphaRibbon" color, 'L','P' and 'B' (isolated beta−residue) residues are colored by the
"betaRibbon" color. DNA and RNA ribbons are colored according to the base type: A−red, C−cyan,
G−blue, T or U − gold. Preference ribbonStyle allows to display a simplified segment representation
of the secondary structure elements instead of (or together with) the ribbon.

The DNA/RNA ribbons consists of two parts the backbone ribbon and the bases shown with the sticks and
balls. To selectively display and undisplay the bases, you can do the following:

Example:

504 residue

 read pdb "1dnk" # contains 2 dna mol.
 display ribbon a_1.2,3 # both bases and backbone
 undisplay ribbon base a_1.2 # bases disappear
 display ribbon base only a_1.2 # only bases
 display ribbon a_1.2,3 yellow # both bases and backbone
 color ribbon a_1.3 magenta # the second chain backbone
 color ribbon a_1.2,3 bases # default by base type
 cool a_ # cool is a rich macro. View the whole thing

script

(or ICM script) means a collection of ICM commands stored in a file which can be called from
ICM−shell.

Example:

 call _demo_fold # find demo_fold file and start the script

sequence

an ICM−shell object containing an amino−acid or DNA sequence. The ICM−shell is tuned to work with
very large sets sets of millions of genomic sequences at once. To work with the sets larger than 2 Gigabytes
in size use the 64−bit binary executable (it is standard on Cray and Dec, unavailable on Windows and
optional on SGI). One can read a sequence from a sequence file in different formats, create it with
the Sequence() function, make sequence command, or by assignment (e.g., aseq = bseq [2:18], new
sequence aseq is a 2:18 fragment of sequence bseq). A valid amino−acid sequence contains an uppercase
string of one−characters amino−acid names. Please distinguish this ICM−shell object from the "sequence"
in the ICM−sequence file which contains detailed 3 (or 4)−character notations of residues from the icm
residue library. One can concatenate two sequences (seq1 // seq2) and extract a part of it (seq[15:67]).
Sequence object may contain the secondary structure string (e.g. EEE___HHH_) of the same length as the
sequence. It is automatically created by the make sequence command and the Sequence() function
or can be directly set with the set sstructure command. If logical l_showSstructure is set to
yes, the secondary structure string will be shown in alignments.

Examples:

 aseq=Sequence("ASSAARTYIP")
 read sequences "aa.seq"
 aseq[3:4]="WW"

 read object "crn"
 crn_seq = Sequence(a_/*)

Resetting sequence type

ICM is trying to guess sequence type. To set sequence type explicitly, use the set type [protein|nucleotide]
command. E.g.

 a=Sequence("AAAATAAAA")
 set type a protein # or if you change your mind
 set type a nucleotide

script 505

Properties of a sequence can be projected to an alignment in which the sequence participates with the
Rarray(R_property,seq_,ali_,r_gapDefault) function. The opposite action, i.e. projecting from
alignment to a particular sequence can be achieved with another form of the Rarray function: Rarray(
R_ali,ali_from,seq_|i_seqNumber)

segment

an element of the simplified representation of a protein topology in terms of its secondary structure
elements (Abagyan and Maiorov, 1988). One element (referred to as a segment) is a vector of the best axis
of the element. Loop segments are represented by a straight line between the end of the previous segment
and the beginning of the next one. This representation can be used for a fold search through a library of
precalculated segment descriptions of the protein topologies (foldbank.seg). See also ribbonStyle.

(ICM)−shell

user−friendly, high−level command interpreter combined with a collection of tools allowing you to interact
conveniently with the kernel of the ICM software.

skin

a solid graphical representation of the molecular surface, also referred to as the Connolly surface. It is a
smooth envelope touching the van der Waals surface of atoms as the solvent probe of the waterRadius
size rolls over the molecule. "Skin" is important for analysis of recognition, electrostatics, energetics,
ligand binding and protein cavities. The surface is calculated with a new fast analytical
contour−buildup algorithm (Totrov and Abagyan, 1996) and can be generated as a general graphics
object with the make grob skin command. 'Skin' consists of three types of elements: convex
spherical elements, concave spherical elements, and torus−shaped elements. ICM allows the calculation of
the volume confined by the 'skin' and its surface area. In a general case skin is defined by two
atom−selections:

atoms the skin is calculated for1.
atoms surrounding the atoms from the previous selection2.

One can calculate/display only a patch within a context of the rest (as_part a_*), or skin around one
molecule as the rest does not exist (as_part as_part):

 read object "complex"
 display a_//ca,c,n
 pocket = a_1//!h* Sphere(a_2//!h*)
 display skin pocket a_1//!h* # 5A sphere around the second subunit
 set plane 2 # or F2 : to avoid deletion of the previous patch
 display skin a_2//!h* a_2//!h* green # ignore everything but the second molecule

Colored molecular surface can be saved as:

bitmap image (tif, targa, gif, postscript bitmap) (write image "file")•
vectorized postscript containing triangles, not pixels (write postscript "file")•
the skin can be converted into a uniform color grob (make grob skin)•
the skin can be colored by potential and ((color grob potential try also: show
dsRebel)

•

506 segment

Warning: make grob image does not generate correct normals because of a feature in
OpenGL, however, this command works fine for molecular representations such as cpk ,
ribbon , xstick , etc.

•

ICM can also generate smooth gaussian surfaces with the following commands:

 make map potential Box(a_ 3.) # build gaussian map
 make grob m_atoms solid exact 0.5 # contour it
 display g_atoms # display the envelope grob

smiles

Simplified Molecular Input Line Entry Specification. The acronym introduced by David Weininger to
represent chemical valence model by a string (e.g. CC=O). It can also be used as an exchange format for
chemical data. The algorithm was published in 1988 and is described in detail at the WWW site of Daylight
Chemical Information Systems, Inc.

See also the Smiles function and the build smiles command.

sln

Sybyl line notation, a string representation of molecular structure similar to Smiles. The sln string is
returned by the String(as_ sln) function.

stack

a set of conformations of a particular object. The stack can be just a place to store (with the store
conf command) a number of complete descriptions of different conformations regardless of the way they
have been created. The maximal number of stack conformations is determined by the mnconf parameter.
The stack conformations can be created manually in the course of interactive procedure, or created
automatically as a result of a montecarlo run. The energies of stack conformations can be shown with
the show stack [all] command. The stack can be saved into a .cnf file, and you can also read
stack. Stack in Biased Probability Monte Carlo procedure represents best energy representatives of
different conformational families (see Abagyan and Argos, 1992). Measure of difference (or distance) is
defined by the compare command and vicinity parameter. Stack can influence the search via the
following variables: mnvisits, mnhighEnergy, mnreject, visitsAction,
highEnergyAction and rejectAction .

See also:

conf (has good examples),•
Table(stack) stack conformation parameters•
Iarray(stack) (the number of visits to each stack conformation).•
Nof (conf)•
load conf i•

smiles 507

stick

graphical representation of a covalent bond as a solid cylinder. Its radius is defined by the
GRAPHICS.stickRadius ICM−shell variable.

string

may exist in the ICM−shell as a named variable or a constant (e.g. "1crn", "A b\n c").
There is a number of predefined string variables in the ICM−shell. You can concatenate
strings ("aaa" +"bbb" or "aaa" //"bbb" −> "aaabbb"), sum a string and a number ("aaa"+4.5 −> "aaa4.5"
), compare them (if (s_pdbDir == "/data/pdb/", or if (s1 > s2)). Strings may be used in arithmetic
expressions, commands and functions.

Examples:

 s = "1crn"
 s1 = s1 + ".brk"
 if (s != "2ins") print "wrong protein"

structure factor (factor)

a named ICM−shell table containing information about reflections. A structure factor table header may
contain maximal absolute values of h k and l.

#>I igd.HKL
 31 36 37

It will be calculated on the fly if absent and is important for Fourier transformation. You may also have any
number of additional members in the header section for your convenience. For example, real values for the
minimal and maximal resolution, etc.

The "column" part of a table contains mandatory integer arrays of h,k and l. Some of the other arrays with
fixed names may be necessary for specific operations. They are:

fo : real array of observed amplitudes (used by the "xr" term)•

fc : real array of calculated amplitudes. They are added and updated automatically by the
"xr" term calculations.

•

ac and bc : real array of Real and Imaginary components of calculated structure factors. ac
and bc may be read from a file, calculated in the ICM−session, and/or added and updated
automatically by the "xr" term calculations. These two arrays are used as the input
arrays for the make map factor command.

•

w : real array of weights of individual reflections which are used if defined in the "xr"
term calculations. Note, that multiplicity will be automatically taken into account, do not
multiply your weights by it to avoid double counting.

•

free : integer array of 0 and non−zeros to mark reflections for R−free calculations.
Reflections marked with non−zeros will not be used in the "xr" term calculations. They

•

508 stick

will be used instead by the Rfree(T_factor) function.

One can add any number of additional arrays to the factor−table. Of course, the table can be read,
written, sorted, shown, etc. You may also use powerful table arithmetics and expressions to generate
new columns and specify subsets.

Examples:

 # new columns
 group table append F Sqrt(F.ac*F.ac+F.bc*F.bc) \
 "fc" Atan2(F.bc,F.ac) "ph_calc"

 F.ac = (2*F.fo−F.fc)*Cos(F.ph_calc)
 F.bc = (2*F.fo−F.fc)*Sin(F.ph_calc)
 make map factor F # 2Fo − Fc map is ready

 F1= F.fc > 1. # another table of strong reflections
 F2= F.h < 20 F.k < 30 F.l < 20 # another subset

See also: How to manipulate with structure factors

The command word "factor" serves to read/write the XPLOR formatted structure−factor−files.

surface area

in the ICM−shell means a solvent−accessible surface (center of water−sphere). Important: Do not confuse
this surface with the molecular or Connolly surface which is referred to as skin . (see also Acc function,
Area function, display skin,display surface, show area surface,show area
skin, show volume surface "sf" term).

Important: There are two ways to calculate the surface area: via the show area surface or the show
energy "sf" commands. In both cases individual atomic accessibilities are calculated and assigned to
individual atoms. These accessibilities can be shown with the show as_ command, or can be accessed
with the Area(as_) function. However, the two commands use different atomic radii:

show area surface
uses van der Waals radii as defined in the icm.vwt file♦
calculates areas for all atoms including hydrogens♦

•

show energy "sf"
uses special radii designed for calculations of the solvation energy. The radii are defined
in the icm.hdt file ;

♦

employs a united atom model, in which hydrogens are ignored and radii increased
accordingly;

♦

calculates areas only for non−hydrogen atoms, ignores hydrogens.♦

•

Examples:

 # dipeptide
 build string "se nter ala his cooh"
 # fill out individual accessibilities
 # (incl. hydrogens)
 show area surface # takes all atoms w. vdWaals radii into account

surface area 509

 show a_//* # look at the accessibilities
 show Area(a_//n*) # extract atomic accessibilities for all nitrogens
#
 show energy "sf" # only heavy atom accessibilities used in energy calc.
 show a_//* # look at these new accessibilities
 show Area(a_//n*) # "energy" accessibilities for nitrogens

5.7. T

table

an ICM object which unite several other ICM−objects. It consists of two parts:

a header which is a set of any ICM−objects and•
a spreadsheet composed of iarrays, rarrays, or sarrays of the same length.•

Tables can be read, written, and shown. Tables can also be created by

group table obj1 obj2 ...

command and returned by some functions such as:

Energy(stack) returns a table with energy values for the stack conformations•
Table(s_out) interprets an output of an HTML form.•
Find performs search in all entries and returns the matching entries•

Pairwise table expressions:

!(Table selection) negation•
T.I_ ? i_ (? is one of: ==, !=, <=, >=, <, >)•
T.R_ ? r_ (? is one of: ==, !=, <=, >=, <, >)•
T.S_ ? s_ (? is one of: ==, !=, ~, !~, i.e. exact of fuzzy comparisons)•
T.S_ ? S_ (? is one of: ==, ~, equivalent to T.S_ ? S_[1] | T.S_ ? S_[2] | ...)•
T.S_ ? S_ (? is one of: !=, !~, a complement to what is returned by the T.S_ == S_ or T.S_ ~ S_
comparison, respectively, equivalent to T.S_ ? S_[1] T.S_ S_[2] ...)

•

The result of the pairwise expression is a subset of the table involved. The pairwise expressions can be
further combined with the & (AND) or | (OR) operations. A full expression can be assigned to a new table
or used on the fly in a number of commands and functions. String comparison can use patterns (e.g.
t.NA=="*_MOUSE"). The pattern may contain more sophisticated \{n,m\} expressions, if the first
symbol is '*' or '^'.

Example:

 group table t {"a","b","c"} "s" {1 2 3} "i" # arrays t.s, t.i
 show t
 show t.s == {"c","a"} # shows the 1st and the 3rd lines
 show t.s ~ "a*" | t.i < 3 # shows the 1st and the 2nd lines

510 5.7. T

table subsets:

Table subsets can also be defined explicitly through the three types of index expressions:

T[i_element], e.g. t[3]•
T[i_from:i_to], e.g. t[3:15]•
T[I_indexArray], e.g. t[{3,14,18}]•

Index arrays are returned by some commands or the Iarray(T_) function.

Look at this example of operations with tables. We read a database of secondary structures foldbank.db
dump arrays into a table, add sequence length to a table, extract entries of interest, sort them and save the
result.

 read database "foldbank.db" # load information into arrays
 LE=Length(SS) # create iarray with sequence lengths
 group table t $s_out LE # create table t with all info + lengths
 show t # press 'q' otherwise computer will explode
 show t.NA == {"1gec.i","5pad*"} # find these entries
 a=t.RZ < 2.2 t.ER < 1. t.LE > 35 # select entries with resolution < 2.5,
 # converted with ER < 1. and longer
 # than 35 residues
 sort a.LE a.RZ # resort entries according to
 # lengths/resolution
 write database a "SUBSET"

tether

a harmonic restraint pulling an atom in the current object to a static point in space. This point is represented
by an atom in another object. Typically, it is used to relate the geometry of an ICM molecular object with
that of, say, an X−ray structure whose geometry is considered as a target (see also delete tether,
minimize tether, show tether, set tether).

The restraint can also pull an atom to a z−plane (rather than to a point), if you specify
tzMethod="z_only"

Atom specific weights can be imposed with tzMethod="weighted" via bfactors.

Two other types of restraints are drestraint (distance restraints), and vrestraint (multidimensional
variable restraints).

tif files

Tag(ged) Image File Format, used by default in the ICM commands write image and display
movie. See also: rgb, png, targa .

transformation vector

an elementary space transformation is defined by a rarray where values {a1,a2,...,a12} define 3x3
rotation matrix and translation vector {a4,a8,a12}. The complete augmented affine 4x4 transformation
matrix in direct space can be presented as:

table subsets: 511

 a1 a2 a3 | a4
 a5 a6 a7 | a8
 a9 a10 a11 | a12
 −−−−−−−−−−−−+−−−−
 0. 0. 0. | 1.

The commands and functions related to transformation vector (referred to as R_tv):

transform ms_ R_tv applies transformation to an object;•

Symgroup(i_spaceGroupNumber) returns a chain (R_[1:12*n]) of all n transformation vectors
composing the specified space group;

•

Augment(R_tv) converts 12−membered transformation vector into the augmented transformation
matrix 4x4;

•

Vector(M_4x4) converts a 4 by 4 transformation matrix into 12−membered transformation
vector

•

superimpose as_1 as_2 ... returns R_tv in R_out;•
Rmsd(as_1 as_2 [exact]) returns R_tv in R_out;•
Axis(R_tv) calculates the rotation axis R_3 of the transformation. Rotation angle is returned in
r_out;

•

Rot(R_tv) extracts the 3x3 rotation matrix;•
Trans(R_tv) extracts the translation 3−vector which is applied after rotation.•

5.8. U−Z

unique

an option of the group sequence command used to exclude from the group identical sequences (which
may result from, e.g., from a set of PBD structures with the same sequence, but somewhat different
conformation).

virtual atoms and variables

Additional immaterial geometrical points (referred to as "virtual atoms") attached to each molecule for
technical reasons, and internal coordinates ("virtual bonds, angles, torsions and phases") associated with
them. These points help to have a standard yet flexible treatment of parameters defining absolute position
(translation and rotation) of each molecule with respect to the coordinate frame. Each molecule is
connected to the origin via two virtual atoms attached to it. This part of the ICM−molecular tree is built in
the following way:

o2, o1, o three points with coordinates {1,0,1}, {0,0,1} and {0,0,0}, respectively. They
are the same for all molecules

•

vt1 the first virtual atom of a molecule. It is attached to the origin (o) via virtual bond length
bvt1, planar angle avt1 (o1−o−vt1) and a dihedral angle. The dihedral angle is a torsion angle tvt1
(o2−o1−o−vt1) for the first molecule in the tree, but it is a phase angle fvt1 (a difference between
dihedrals o2−o1−o−vt1(current−molecule) and o2−o1−o−vt1(1st−molecule)) for all molecules
but the first one.

•

512 5.8. U−Z

vt2 the second virtual atom attached to vt1 via virtual bond length bvt2 (usually fixed), planar
angle avt2 (o−vt1−vt2) and a a torsion angle tvt2 (o1−o−vt1−vt2).

•

the first real atom of a molecule. Torsion angle leading to it is called tvt3.•

The absolute position of the first molecule as a rigid body is defined by six virtual variables:

 Name StdValue Type Definition
1. tvt1 180. torsion **o2−o1−o−vt1
2. avt1 90. angle **o1−o−vt1
3. bvt1 1. bond **o−vt1
4. tvt2 180. torsion **o1−o−vt1−vt2
5. avt2 90. angle **o−vt1−vt2
6. tvt3 180. torsion **o−vt1−vt2−1stAtom

The

 set a_1//vt1

command sets the first virtual atom to the center of mass of the corresponding molecule. After that you can
control the distance to the origin by vt1. To understand it better, try the following short session (just paste
it line by line):

 build string "se ala\nml a\nse his" # two molecules
 display virtual
 varLabelStyle = "name"
 display variable labels
 display virtual atom labels a_//vt*
 connect a_1 # move the 1st molecule with the mouse
 connect a_2 # move the 2nd molecule with the mouse
 set a_1//vt1
 set a_2//vt1
 set v_1//bvt1 2.

volume

measured in cubic Angstroms. One can calculate the van der Waals volume (see Volume function), the
volume confined by solvent−accessible surface (see show volume surface) , or by molecular
surface referred to as skin (see show volume skin) .

vrestraint

a multidimensional variable restraint (often abbreviated as rs) which restrains one or several geometrical
variables (usually torsions) to certain ellipsoidal zones, described by Abagyan, Totrov and Kuznetsov
(1994). Variable restraints may have different characteristics and types. The vrestraints are
marked either for energy calculations or for description of probability distributions (fields 'rse' and 'rs',
respectively). See also: icm.rs and icm.rst files.

vrestraint type

a type of multidimensional variable restraint. Each type specifies to which variables this type may be
assigned, the average values and standard deviations (or well dimensions), and the well depth. The types

volume 513

are described in *.rst files. There are two kinds of vrestraint types depending on what they will be used
for: energy kind marked with the 'rse' field and the probability type marked with the 'rs' field. The first kind
will be used as an "rs" penalty term, while the second kind will be used for the BPMC random step.

wire

a default representation of a molecule, fast and simple. Bonds are shown by lines or arrows according to the
wireStyle preference. Double bonds in the wireStyle "chemistry" mode are shown according to the
wireBondSeparation parameter. Isolated atoms are shown according to the atomSingleStyle
preference (usually by a small tetrahedron); line thinkness is controlled by the lineWidth parameter.

Examples:

 display a__1crn./n,ca,c # displays a wire model of crambin.
 # (note, display command can also
 # read in the 3D coordinates
 # if double "_" used)

You would need to mention "wire" explicitly to undisplay it when other types of graphical representation
are also present.

Examples:

 display # wire is the default
 display cpk a_/1:5 # adds CPK
 undisplay wire # remove wires, leave only CPK

xstick

a combination of ball and stick representations of atoms and bonds.

ZEGA

a pairwise alignment method based on the Needleman and Wunsch algorithm modified to use zero gap
end penalties. This type of alignment was first described by Michael Waterman, who called it the "fit"
alignment. The paper of Abagyan and Batalov, 1997 describes the statistics of the structural significance of
the alignment score and optimization of the alignment parameters for the best recognition of structurally
related proteins. This statistics is used in database search (see the find database command) to
evaluate the significance of hits. This pairwise alignment algorithm is used in the Align function, align
command, and database searching.

514 wire

Index
54 alignment editor 35, 160

14 term 61 alignment extraction 293
3D plots intro 22 alignment options 273
3D smoothing 477 alignment projection 480
= 51 alignment score 457
aba92 479 alignment sequence reordering 293
abb97 479 alignment structural 125, 293
abbreviations 25 alignment to sequence transfer 350
abm88 479 alignment to text conversion 480
abm89 479 alignment transitions 51
abo87 477 alignment weighted 293
Abs 291 alignment.gapExtension 74
Acc 292 alignment.gapOpen 74
accessible surface 492 alignment.transitional 56
accFunction 119 alignMethod 94
Acos 293 alignMinCoverage 71
Acosh 293 alignMinMethod 71
add 483 alignOldStatWeight 71
addBfactor 71 all 477
advanced operations 56 all torsions table 436
af 61 all93 477
afa94 477 alpha 483
alias 122 alpha channel 110
align 123 amber 483
Align 293 amidation 448
align 3D heavy 127 and 54
align 3D how to 479 Angle 297
align fragments 124 animation 480
align number 123 append 483
align sequences 123 Area 297
aligned residues 438 arithmetic operations 51
alignment 273 arithmetics 51
alignment block length 70 array appending 51
alignment cleaning 438 array concatentation 51

 Index 515

array derivative 477 binding energy 480
array.subset 37 binding pocket finding 439
as2_out 122 blast files 284
Asin 299 bok95 480
Asinh 299 Boltzmann 438
Ask 300 bond angle bending 410
assign 128 bond stretching 410
assign sstructure 128 bonded atoms 482
assign sstructure segment 70 bor93 479
assignment 51 bor94 479
as_graph 45, 105 boundary element 485
as_out 121 Box 438
Atan 300 BPMC 485
Atan2 482 Bracket 438
Atanh 482 break 130
ato94 479 bs 61
Atom 482 build 130
atom 483 build from sequence 130
atom code file 410 build from string 136
atom type 380 build helix 459
atom user field 482 build how to 446
atomLabelStyle 93 build hydrogen 136
atoms.alternative position 240 build loop 134
atoms.selecting 45 build model 131, 279
atoms.translate 237 build smiles 134
atomSingleStyle 94 build string 136
Augment 427 buildpep 446
autoSavePeriod 65 Cad 479, 480
Axis 477 cad97 479
axis 483 calcBindingEnergy 480
axisLength 72 calcDihedral4atoms 480
baa99 479 calcDihedralAngle 480
background.color 140 calcEnsembleAver 480
ball 485 calcMaps 457
base 485 calcPepHelicity 457
ber77 477 calcProtUnfoldingEnergy 460
beta 485 calcRmsd 460
Bfactor 477 calcSeqContent 460

516 Index

calculate phases 460 color by charge 477
call 136 color by electrostatic potential66
call ICM script 136 color by hydrophobicity 430
car95 480 color cursor 140
cavity 486 color file 479
cavity analysis 437 color grob 140

cd 241 color grob by electrostatic
potential 140

Ceil 480 color grob by map 140
Cell 480 color grob unique 140
center 137 color grob vertices 140
cha96 480 color label 142
change atom position 237 color map 142
change unix directory 241 color molecule 143
Charge 457 color ribbon 143
charge 486 color volume 143
charge.change 239 column 486
chemical clustering 460 combine transformations 459
chemical formula 460 command 486
chemical keys 195 command line editing 31
chemical matching 172 command line help 183
chemical modification 203 command line options 31
chemical substructure 172 command word list 427
chemical substructure mask195 compare 68, 69, 144
chemical superposition 61 compare by atoms 144
clear 137 compare by contact surface 144
clear screen 137 compare by variables 144
Cluster 457 comparison operations 55
cn 61 compress stack 145
cnWeight 73 comp_matrix 241, 261, 486
coil 486 con83 477
color 137, 138 concatenation 51
Color 460 conf 477, 486
color background 140 conf data 477
color background example429 configuration 479
color by accessibility 430 configure.memory usage 67
color by bfactor 430 conformational generator 201

 Index 517

conformational stack 486 crystal symmetry
transformation 458

conformational stack file 477 crystallographic occupancy 477

connect 146 crystallographic symmetry
intro 17

Connolly surface 492 current 486
Consensus 460 current icm−process number66
consensus.selecting residues by43 current map 486
conservation selection 43 current object 486
constants 36 customization 482
continue 147 database 489
contouring density 194 dc 61
convert 147, 468 dcMethod 94
convert and reroot 150 dcWeight 73
convert comparison 148 debugging shell scripts 211
convert ICM object to PDB 272 defCell 119
convert object macro 460 define axis 458
convert pdb 447 defSymGroup 66
convert to icm−object 147 delete 151
converting a chemical 149 delete alias 151
converting a pdb−chemical 468 delete atom 152
converting alignment to table 477 delete bond 153
cool 400 delete boundary 154
coordinate frame 72, 160 delete conf 154
copy 150 delete disulfide bond 155
copy object 150 delete drestraint 154
Corr 310 delete hydrogen 152
correlation matrix 438 delete label 154
Cos 310 delete molecule 153
Cosh 482 delete object 152
Count 482 delete peptide bond 155
covalent neighbors 482 delete selection 152
cpk 486 delete sequence 154
create a covalent bond 189 delete shell object 151
credits 482 delete site 155
cri88 477 delete sstructure 155
crypt 150 delete stack 156

518 Index

delete table 156 display tethers 167
delete term 156 display window 167
delete tether 156 Distance 477
Deletion 482 distance 489
density correlation 73, 477 Distance alignment 438
density fitting 94 Distance as_ 477
densityCutoff 73 Distance as_ rarray 477
depth cueing 143, 489 distance contact−based 479
depth−cueing 74 Distance Dayhoff 438
Det 427 distance geometry 489
dielConst 73 Distance iarray 477
dielConstExtern 73 Distance matrix 477
dielectric constant 73 Distance rarray 477
dihedral angle calculation 436 distance restraint 489
Disgeo 427 distance restraint file 477
display 156 distance restraint term 61
display box 160 distance restraint type file 477
display clash 161 distance restraints 241
display cursor 160 Distance tether 438
display drestraint 162 Distance two alignments 479
display from script 159 distribution and support 12
display gradient 162 distribution comparison 457
display grob 162 disulfide bond 448
display hbond 163 disulfide bond formation 448
display label 163 DNA alignment 124
display map 164 DNA Representation 14

display model 156 dna to protein sequence
translation 457

display movie 164 doc94 479
display new 159 docking result viewing 480
display off−screen 159 docking simple models 476
display origin 160 drestraint 261, 489

display ribbon 166 drestraint generate from
structure 191

display site 166 drestraint global weight 73
display skin 166 drestraint set 241
display string 166 drestraint type 489
display surface 166 drop 73

 Index 519

ds3D 457 en 61
dsCell 482 endfor 168
dsCellBox 482 endif 168
dsCharge 427 endmacro 168
dsChem 427 endwhile 168
dsConsensus 427 energetics 479
dsCustom 427 Energy 446
dsCustomFull 477 energy terms 61
dsDistance 477 energy.electrostatic 61
dsEnergyStrain 438 energy.hydrophobic 61
dsEnergyStrain1 479 energy.side−chain entropy loss 61
dsPropertySkin 477 energy.torsion 61
dsPrositePdb 446 ensemble average 480
dsRebel 66, 446 entry atom 150
dsSeqPdbOutput 480 Error 480
dsSkinLabel 480 error ignoring 91
dsSkinPocket 480 errorAction 96
dsStackConf 480 EST−alignment 124
dsVarLabels 480 et vrestraint vs_var 251
dsWorm 457 evolutionary tree intro 21
dsXyz 457 example scripts 480
ecepp 491 Exist 457
edit 168 Existenv 460
Eigen 479 exit 169
eis86 477 exit action 102
eis93 479 Exp 460
el 61 expressions.arithmetics 51
electroMethod 95 expressions.assignment 51
electron density fitting 61 expressions.comparison 55
electron density map
generation 71 expressions.logical 54

electrostatic isopotential
surfaces 194 Extension 460

electrostatic solvation 479 factor 492
electrostatics intro 18 fast Fourier transform 196
ellipsoid 438 fasta 491
elseif 167 ffMethod 96

520 Index

Field 320, 482 FTP.createFile 104
File 482 FTP.keepFile 104
file exists 457 FTP.proxy 104
files 408 functions.selecting in objects 50
FILTER 104 fuzzy comparison 55
FILTER.gz 104 gap expansion 438
FILTER.uue 104 gapExtension 74
FILTER.Z 104 gapFunction 119
Find 427 gapOpen 74
find alignment 169 gat99 480
find database 71, 170 gb 61
find family of commands 169 gc 61
find pattern 174 ge 61
find pdb 173 genomics clustering 178
find prosite 174 genomics intro 19
find segment 175 geometry optimization 201
findFuncMin 460 Getenv 477
findFuncZero 400 getting started 26
fit to density 94 gh 61
fix 176 glossary 483
flattening 3D molecule 427 glycosylation 448
flo98 477 goc96 480
Floor 477 gon92 477
fog 143, 489 goto 177
fogStart 74 Gradient 477
fold search 175, 492 graphical box 160
foldbank.db 409 GRAPHICS 105
foldbank.seg 409 graphics 427
folding procedure 480 graphics controls 32, 479, 489
font size 479 graphics exists 457
for 176 graphics intro 13, 15
fork 176 graphics learning 427
formatdb 284 graphics.attributes 72
fprintf 177 GRAPHICS.ballRadius 105
fri96 477 GRAPHICS.dnaBallRadius 105
fta02 479 GRAPHICS.dnaRibbonRatio 105
FTP 104 GRAPHICS.dnaRibbonWidth 105

 Index 521

GRAPHICS.dnaRibbonWorm 105 group table 180
GRAPHICS.dnaStickRadius 105 gs 61
graphics.fogStart 74 GUI 109
GRAPHICS.quality 105 gui 181
GRAPHICS.rainbowBarStyle 105 gui exists 457
GRAPHICS.resLabelDrag 105 gui programming 181
GRAPHICS.ribbonRatio 105 GUI.workspaceTabStyle 109
GRAPHICS.ribbonWidth 105 hah93 477
GRAPHICS.ribbonWorm 105 hal95 477
GRAPHICS.selectionLevel 105 hal99 477
GRAPHICS.selectionStyle 105 haze 74
GRAPHICS.stickRadius 105 hb 61, 74
graphics.view vector 251 hbCutoff 74
GRAPHICS.wormRadius 105 hbond 492
GRID 108 hbond.show 263
grid potentials 197 hbonds how to 479
GRID.gcghExteriorPenalty 108 heat 102
GRID.margin 108 hei92 477
GRID.maxEl 108 helix content calculation 482
GRID.maxVw 108 help 183
GRID.minEl 108 help commands 183
GROB 109 help functions 183
grob 438 help.getting 482
Grob 438 hidden display 159
grob 492 hig92 477
grob color 438 highEnergyAction 98
grob files 479 Histogram 446
grob inside−out flip 244 history 184
grob normal directions 244 history of ICM 12
grob vertex selection 438 homodel 400
GROB.arrowRadius 109 homology modeling 131, 476
GROB.relArrowHead 109 homology modeling intro 16
GROB.relArrowSize 109 hut94 477
grob.translate 274 hydration parameters 479
group 177 hydrogen bonding 61
group replacement 203 hydrogen bonding parameters 479
group sequence 177 hydrogen bonding.cutoff 74
group sequence unique 178 hydrophobicity profile 437

522 Index

hydroxylation 448 icm.hdt 479
iarray 480 icm.htm 479
Iarray 480 icm.iar 479
Iarray reverse 480 icm.map 480
iarray.constant 36 icm.mat 479
icm algorithms 479 icm.mov 480
icm application refs 480 icm.ob 482
icm binary 477 icm.prf 479
icm branching 58 icm.rar 480
icm commands 122 icm.res 482
icm controls 57 icm.rs 417
icm flags 31 icm.rst 416
icm functions 291 icm.sar 479
icm jumps 59 icm.se 420
icm learning 426 icm.seq 420
icm loops 57 icm.tab 418
icm macros 446 icm.tot 418
ICM modules 22 icm.var 416
icm molecules 60 icm.vwt 419
icm object file 482 icm94 479
icm table 104 icmCavityFinder 390
ICM−shell 482, 492 icmPmfProfile 479
ICM−shell intro 26 IcmSequence 480
icm−shell objects 26 if 184
icm.ali 477 IMAGE 110
icm.all 477 image 429
icm.bbt 410 image annotation 429
icm.bst 410 image center 429
icm.cfg 479 image high quality 428
icm.clr 479 IMAGE.color 110
icm.cmp 479 IMAGE.compress 110
icm.cn 477 IMAGE.gammaCorrection 110
icm.cnf 477 IMAGE.generateAlpha 110
icm.cnt 477 IMAGE.lineWidth 110
icm.cod 410 IMAGE.orientation 110
icm.col 418 IMAGE.paperSize 110
icm.gro 479 IMAGE.previewer 110
icm.hbt 479 IMAGE.previewResolution 110

 Index 523

IMAGE.printerDPI 110 kly96 477
IMAGE.quality 110 kyt82 477
IMAGE.rgb2bw 110 label 166
IMAGE.scale 110 Label 427
IMAGE.stereoAngle 110 label 492
IMAGE.stereoBase 110 Length 477
IMAGE.stereoText 110 LIBRARY 113
increment charge 239 lid00 480
Index 457 ligand binding 480
index expressions 37 ligand docking 467, 468
Indexx 460 ligand docking intro 17
Insertion 330 ligand setting 468
Integer 482 limits 479
integer 492 LinearFit 477
integer array constants 36 lineWidth 75
integer constant 36 Link 438

integer conversion 56 link internal variables of
molecular object 184

integer shell variables 65 link sequences to 3D
objects 185

Integral 482 link to alignment 185
interface residues 479 link variable 184
interface torsions 480 list 185
interface view 480 list database 186
internal coordinate file 416 literature 477
internal coordinates 47 load 186
Interrupt 427 load conf 186
interruptAction 98 load frame 187
Introduction 1 load solution 187
inverting array order 350, 480 Log 438
iProc 66 logarithm 438
isa98 480 logical 492
i_out 66 logical constant 36
I_out 120 logical operations 54
J−coupling 61 logical variables 81
jcp99 480 long axes 438
kab83 477 loop database rebuilding286
keep 184 loop modeling intro 16
key mapping 479 l_antiAlias 81

524 Index

l_autoLink 81 make disulfide bond 190
l_bpmc 82 make drestraint 191
l_breakRibbon 82 make factor 191
l_bufferedOutput 82 make grob image 193
l_bug 82 make grob map 192
l_caseSensitivity 82 make grob matrix 193
l_commands 82 make grob potential 194
l_confirm 83 make grob skin 194
l_easyRotate 83 make key 195
l_info 83 make map 196
l_minRedraw 83 make map factor 196
l_neutralAcids 83 make map potential 197
l_out 84 make peptide bond 198
l_print 84 make sequence 199
l_readMolArom 84 make tree 199
l_showAccessibility 84 make unique 200
l_showMC 85 makeIndexChemDb 400
l_showMinSteps 85 makeIndexSwiss 477
l_showSites 85 makePdbFromStereo 477
l_showSpecialChar 85 makeSimpleDockObj 407
l_showSstructure 85 makeSimpleModel 407
l_showTerms 85 making Swissprot index 284
l_showWater 85 manual style 24
l_warn 86 Map 479
l_wrapLine 86 map 492
l_writeStartObjMC 86 map averaging 438
l_xrUseHydrogen 86 map calculation 196
maa89 479 map file 480
macro 188, 492 map fitting 94
mai97 480 map transformations 438
mai98 480 map.contouring 194
main concepts 457 mapping properties to sequence482
main ICM references 479 maps and factors 460
make 189 mapSigmaLevel 75
make bond 189 Mass 479
make bond chain 189 Matrix 479
make boundary 190 matrix 492

 Index 525

Max 446 mncallsMC 68
maxColorPotential 66 mnconf 68
MaxHKL 480 mnhighEnergy 68
maxMemory 67 mnreject 68
mcBell 75 mnSolutions 67
mcJump 75 mnvisits 69
mcl79 477 Mod 457
mcShake 75 model reliability 479
mcStep 76 modify 203
Mean 480 modify as_ 204
menu 202 modify as_ library 203
menu script 426 modify rs_ 203
merge arrays to table 180 mol 255
merge objects 210 Mol 460
merge pdb 477 mol to icm 149
merge sarray into string 482 mol2 492
merge stacks 446 molecular manipulations 446
Method 97 molecular modifications 448
methylation 448 molecular surface 492
mf 61 molecular views 13
mfMethod 98 molecule create 448
mfWeight 76 molecule intermediate 479
mimel 492 molecule properties 243
mimelDepth 76 molecule rotation 428
mimelMolDensity 76 molecule.create 29
Min 480 molecules intro 39
minimize 67, 200 molecules sort/reorder 269
minimize cartesian 201 molecules.attributes 255
minimize loop 202 molecules.selecting 42
minimize tether 67, 202 mom75 477
minimize.drop 73 Money 457
minimizeMethod 98 montecarlo 68, 69
minTetherWindow 67 montecarlo command 205
mkUniqPdbSequences 477 montecarlo fast 205
mmff 492 montecarlo local 69
mmff type 380 montecarlo trajectory 164
mmff.show atom types 259 more 492
mncalls 67 mouse controls 32

526 Index

move 210 OBJECT 113
move atoms 237 object properties 243
move ms_molecule 210 object.assign comment 240
move os_ 210 object.attributes 255
movie 187, 492 object.copy 150
movie file 480 object.translate 274
movie molecular simulation 482 objects merge 477
movie smoothing 164 objects sort/reorder 269
movie zooming 480 objects.selecting 41
multiple alignment 123 Occupancy 477
multiple sequence alignment
intro 20 on−line help 183

mutate DNA or RNA 203 only 492
mutate residue 203 or 54
mute 492 out−of plane energy 61
m_ga 61 output 66
M_out 120 packing density 482
Name 460 parallelization 66, 69
Namex 340 pat98 480
nee70 477 Path 477
nem83 477 Pattern 438
nem92 477 pattern matching 55, 492
Newick tree format 480 pattern search 170
Next 340, 482 pause 211
nice 400 pdb 492
nLocalDeformVar 69 pdb files 419
NOE 61 pdb merge 477
Nof 482 pdb sequence generation 440
non−redundant 440 pdb waters by number 42
Norm 427 pdbDirStyle 99
normal distribution 460 pea88 477
notational conventions 24 peptide 448
nProc 69 peptide cyclization 448
nSsearchStep 69 peptide docking 479
number of elements 482 peptide folding intro 16
number of occurencies 482 personal gui controls 482
nvis 480 personal setup 482
Obj 477 phosphorylation 448

 Index 527

Pi 438 pocket 480
pK shift 480 Potential 438
PLOT 114 pov−ray 290
plot 211 Power 479
plot 3D 2Dfunction 479 predictSeq 479
plot 3D shape 479 preference 93
plot area 213 prepSwiss 480
plot histogram 477 previous atom 482
plot how to 477 principal axes 438
plot simple 477 principal component analysis482
PLOT.box 114 print 215
PLOT.color 114 print image 216
PLOT.font 114 print to string 271
PLOT.fontSize 114 printf 215
PLOT.labelFont 114 printFast 480
PLOT.lineWidth 114 printMatrix 480
PLOT.logo 114 printPostScript 480
PLOT.markSize 114 printTorsions 480
PLOT.numberOffset 114 Probability 479
PLOT.orientation 114 Profile 457
PLOT.rainbowStyle 114 profile 492
PLOT.seriesLabels 114 program overview 13
PLOT.Yratio 114 projected alignment 56
plot2DSeq 477 property 246
plotBestEnergies 479 prosite 492
plotCluster 479 prosite pattern 492
plotFlexibility 479 protein docking intro 17
plotMatrix 479 protein grid docking 482
plotOldEnergy 479 Putenv 457
plotRama 479 quit 216
plotRose 479 radii.electrostatic 457
plotSeqDotMatrix 477 radii.van der Waals 457
plotSeqDotMatrix2 477 Radius 457
plotSeqProperty 479 ramachandran how to 479
plotting van der Waals 479 random 102
pmf 61, 98 Random 460
pmf residue profile 479 random array 460
png 492 randomize 69, 216

528 Index

randomize atoms 217 read mol 83, 226
randomize in range 216 read mol2 227
randomize molecules 217 read movie 227
randomize torsions 216 read movie write 227
randomSeed 69 read object 228
Rarray 460 read pdb 228
rarray 350 read pdb sequence 230
Rarray reverse 350 read profile 231
Rarray sequence projection 350 read prosite 231
Rarray.alignment projection 482 read rarray 231
Rarray.property assignment 482 read sarray 231
rdBlastOutput 482 read segment 231
rdSeqTab 482 read sequence 232
read 217 read sequence database 232
read alignment 221 read stack 232
read all 218 read string 232
read color 222 read table 233
read column 233 read unix 220
read comp_matrix 222 read unix cat 221
read conf 222 read variable 233
read csd 222 read view 233
read database 223 read vrestraint 233
read drestraint 223 read vrestraint type 233
read drestraint type 223 readMolNames 121
read factor 223 readPdbList 482
read FILTER 218 Real 482
read from file 217 real 36
read from string 218 real array constants 36
read ftp 220 real constant 36
read grob 224 real shell variables 71
read http 220 real space refinement 61
read iarray 224 rebel 66
read index 224 REBEL 479
read index table 219 rebel 492
read library 225 Reference Guide 31
read library mmff 225 references 477
read map 225 refineModel 480
read matrix 226 refresh view 159

 Index 529

regul 482 reverse complement 482
regular expressions 492 reversing order 480
regularization 67, 492 Rfactor 479
regularization procedure 447 Rfree 479
rejectAction 99 rgb 492
relational database 438 ribbon 492
release notes 1 ribbonColorStyle 100
Remainder 427 ribbonStyle 100
remarkObj 482 Rmsd 479
rename 234 Rot 446
rename.atom 235 rotate 235
rename.molecule 235 rotate grob 236
rename.residue 235 rotate object 236
reorder alignment sequences278 rotate view 236
Replace 477 rounding a real 480
reproducible randomness 69 rs 61
reroot 150 rsWeight 77
Res 438 run script 136
reserved names 119 r_2out 77
residue 492 r_out 76
residue contact areas 298 R_out 120
residue cursor 140 s−s bond 448
residue field 243 sai87 477
residue library file 482 Sarray 480
residue property averaging 477 Sarray reverse 480
residue ranges 50 sarray reverse 480
residue renumbering 123 save print 429
residue selection as string 460 sch00 480
residue selection function 438 sch99 480
residue user field 482 Score 457
residues.selecting 43 script 492
resLabelShift 77 script.image generation 159
resLabelStyle 99 search pdb headers 479
Resolution 479 search prosite 438
restraints 61 search protein fragment 438
restraints.torsion 251 search protein topology 440
return 235 search sstructure database 477
reverse 480 search.sequence pattern 174

530 Index

searches and alignments 438 selection.displayed atoms 45
searchObjSegment 406 selection.functions 50
searchPatternDb 482 selection.molecules 42
searchPatternPdb 406 selection.objects 41
searchSeqDb 406 selection.output 122
searchSeqFullPdb 406 selection.residues 43
searchSeqPdb 406 selection.torsions 47
searchSeqProsite 407 selection.variables 47
searchSeqSwiss 407 selection.waters 42
second moments 438 selections in molecular objects39
secondary structure derivation
from 3D 128 selectMinGrad 77

segment 492 selectSphereRadius 77
segMinLength 70 Sequence 360
Select 460 sequence 492
selected atoms 45 sequence alignment intro 20
selecting by b−factor 460 sequence analysis intro 19
selecting by x y z 460 sequence assembly 178
selection by tether 45 sequence dotplot 19
selection by tether destination45 sequence from pdb 199
selection level 39, 380 sequence pattern 492
selection multiplication 56 sequence positional weights 237
selection precedence 56 sequence redundancy removal178
selection transfer 460 sequence search 170
selection type 39 sequence to alignment transfer482
selection variable 121 sequence type 492
selection.atoms 45 Sequence(dna reverse) 482
selection.atoms by code 45 sequence−alignment mapping480
selection.atoms by gradient 45 sequence.output format 70
selection.atoms with
alternatives 45 sequenceBlock 70

selection.by alignment
consensus 43 sequenceLine 70

selection.by residues feature43 sequences 438
selection.by site type 43 set 236

 Index 531

set area 237 set type sequence 250
set atom 237 set variable grid 253
set bfactor 238 set view 251
set bond type 238 set vrestraint 251
set charge 239 set vw radii 250
set charge formal 239 set window 254
set charge mmff 240 setResLabel 407
set comment 240 sf 61
set comment sequence 241 shell 482
set comp_matrix 241 shell warning message 479
set current map 245 shineStyle 101
set current object 245 shininess 78
set directory 241 show 254, 266
set drestraint 241 show aliases 256
set drestraint type 242 show alignment 257
set electrostatic radii 250 show area 257
set field 243 show atom type 259
set font 243 show atoms 258
set grob coordinates 244 show clash 260
set key 244 show color 260
set label 245 show column 261
set label distance 245 show comp_matrix 261
set molecular variables 253 show drestraint 261
set occupancy 246 show drestraint type 262
set plane 246 show energy 262
set property 246 show gradient 262
set site 242 show hbond 263
set site residue 243 show hbond exact 263
set sstructure backbone 246 show html 263
set sstructure to sequence 247 show iarray 263
set stack energy 248 show integer 264
set symmetry group 248 show key 255
set symmetry to a torsion 248 show label 264
set table 248 show library 264
set terms 249 show link 264
set tether 249 show logical 264
set type 250 show map 255
set type mmff 250 show mol 265

532 Index

show mol2 265 skin intro 13
show molecule 265 sln 492
show molecules 255 SLN notation 460
show object 265 Smiles 427
show pdb 265 smiles 492
show preferences 265 Smooth 71, 427, 477
show residue 266 solvent accessible area 70
show residue type 266 sort 269
show segment 266 sort arrays 269
show sequence 266 sort molecules 269
show shell variable 254 sort objects 269
show site 254 sort stack 269
show stack 267 sort table 269
show table 267 sortSeq 407
show table as database 261 Sphere 479
show term 267 split 270
show tethers 267 Split 446
show version 267 split object 271
show volume 268 split table 270
show volume map 268 splitting selection 50
show vrestraint type 268 sprintf 271
show vrestraints 268 Sql 438
shr73 477 Sqrt 479
Sign 482 sri98 480
sim4 124 Srmsd 446
simulations intro 16 ss 61
Sin 482 ssearch 69, 272
Sinh 427 ssearchStep 78
SITE 116 ssign sstructure segment 129
Site 427 ssThreshold 78
site 492 Sstructure 370
SITE.defSelect 116 ssWeight 78

SITE.labelOffset 116 stack 68, 69, 102, 271,
477, 480, 486

SITE.labelStyle 116 stack bin size 144
SITE.labelWrap 116 stackjump 102
site.selecting residues by 43 stacks merge 446
SITE.showSeqSkip 116 stereo reconstruction 479
skin 492 sti99 480

 Index 533

stick 492 svariable 492
store conf 271 swapping protein fragments 479
store torsion type 271 swissFields 120
str96 480 Symgroup 427
strain 45 symmetry group 66
String 460, 480 system.reserved selections 122
string 56 s_blastdbDir 86
string addition 56 s_editor 87
string array constants 36 s_entryDelimiter 87
string comparisons 55 s_errorFormat 87
string constant 36 s_fieldDelimiter 87
string filtering 460 s_helpEngine 88
string inversion 480 s_icmhome 88
string variables 86 s_icmPrompt 88
string+number 56 s_imageViewer 89
String.chemical formula 460 s_inxDir 88
strip 272 s_labelHeader 89
structural alignment 125 s_lib 89
structural alignment
optimization 169 s_logDir 89

structural superposition 61, 125 s_out 90
structure analysis 477 S_out 120
structure comparison 480 s_pdbDir 90
structure structure 460 s_printCommand 90
subalignment to selection 438 s_projectDir 90
substring 480 s_prositeDat 91
substructure search 172 s_psViewer 91
sulfation 448 s_reslib 91
Sum 482 s_skipMessages 91
superimpose 273 s_tempDir 92
superimpose how to 477 s_translateString 92
surface 492 s_userDir 92
surface area 492 s_usrlib 92
surface point selection 479 s_webEntrezLink 92
surface tension 61 s_webViewer 92
surfaceAccuracy 70 s_xpdbDir 93
surfaceMethod 101 tab94 479
surfaceTension 78 table 246

534 Index

Table 427 terms.tethers 61
table 510 terms.torsion 61
table creation 180 terms.van der Waals (vw) 61
table expression 510 terms.variable restraints 61
table subset 510 tether 279, 510
Table(alignment) 477 tethers 61
Table(stack) 477 tha97 480
table.show html 277 then 273
Tan 438 thg94 477
Tanh 438 tho94 477
temperature 79 tif 511
Temperature 479 Time 446
tempLocal 78 to 61
Tensor 438 toa96 479
tensor product of two vectors479 tolGrad 79
terminal font 479 Tolower 446
terminal window 181 tom00 480
terms 61 topology files 409
terms drestraints 61 topology search 175
terms.bond stretching 61 Torsion 446
terms.density correlation 61 torsion restraints 61
terms.disulfide bonds 61 Toupper 480
terms.electrostatic 61 Tr123 480
terms.entropy 61 Tr321 480
terms.grid electrostatic
potential 61 Trace 457

terms.grid h−bonding 61 Trans 457
terms.grid hydrophobic energy61 transform 274
terms.grid small probe vw
energy 61 transformation 511

terms.grid vw energy 61 transformations and
symmetry 457

terms.hydrogen bonding 61, 74 translate 274
terms.local vw interactions
(14) 61 transparent grob 162

terms.mean−force potential 61 Transpose 460
terms.phase angle bending 61 Trim 460
terms.R−factor 61 Turn 380
terms.surface energy 61 Type 380

 Index 535

tz 61 Volume 477
tzMethod 101 volume 512
tzWeight 79 vrestraint 512
unclip 159 vrestraint file 417
undisplay 275 vrestraint type 512
undsCharge 407 vrestraint type file 416
unfix 275 vs_out 122
unique 512 vw 61
unique atomic order 200 vwCutoff 80
unique coloring 143 vwExpand 80
unique smiles 200 vwMethod 102
unix 276 vwSoftMaxEnergy 80
Unix 482 wait 276
updates 1 Warning 479
url string parsing 427 warning message 479
user−defined properties 243 warning suppression 86
users guide 482 water.dielectric constant 73
user_startup.icm 482 waterRadius 80
Value 427 wavefront format 193
van der Waals 1−4 61 Wavefront format 224
variable restraint 251 web 276
variable selection 47 web table 277
varLabelStyle 102 WEBAUTOLINK 118
vea91 477 webEntrezOption 103
Vector 427 WEBLINK 117
vector product 427 wei86 477
Vector.symmetry
transformation 427 wei88 477

Version 427 wes92 477
vicinity 79 while 277
View 438 wil84 477
virtual 512 window averaging 477
virtual ligand screening 467, 468, 477 window width and height 438
virtual ligand screening intro18 windowSize 71
visitsAction 102 wire 512
vls 467, 468, 477 wireBondSeparation 81
vls scoring 61 wireStyle 103

536 Index

write 278 xrMethod 103
write alignment 278 xrWeight 81
write as table 279 xstick 512
write blast 284 Xyz 479
write column 279 yuj97 480
write database 279 zega 512
write drestraint 281 ZEGA intro 21
write drestraint type 282 zha92 477
write factor 282 zha99 480
write grob 282 zho98 480
write html 282 zho99 480
write iarray 279 _macro.icm file 408
write image 282 _startCheck 408
write index 284 _startup.icm 408
write library 285 | 54
write map 285
write matrix 279
write model 286
write mol 286
write mol2 287
write movie 164
write object 287
write object simple 288
write pdb 288
write postscript 288
write pov 290
write povray 290
write rarray 279
write sarray 279
write segment 290
write sequence 290
write session 290
write several array 279
write stack 291
write table 279
write tethers 279
write vs_var 291
xr 61

 Index 537

538 Index

	Table of Contents
	1. Introduction
	1.1. Release notes
	1.2. Brief history of ICM
	1.3. ICM distribution and support
	1.4. What can you do with ICM? (a program overview)
	1.4.1. Graphics
	1.4.2. Simulations
	1.4.3. Sequence analysis
	1.4.4. Modules of ICM

	1.5. Notational conventions
	1.6. Common abbreviations
	1.7. Getting started
	1.7.1. ICM-shell
	1.7.2. The first steps

	2. Reference Guide
	2.1. ICM command line options
	2.2. Command line editing
	2.3. Graphics controls
	2.4. Editing pairwise sequence-structure alignments
	2.5. Constants
	2.6. Subsets and index expressions
	2.7. Molecule intro
	2.8. Selections
	Selection Types
	 Selection levels
	Examples
	Select by number, range, name or pattern
	2.8.1. Object selection
	2.8.2. Molecule selection
	2.8.3. Residue selection
	2.8.4. Atom selection
	2.8.5. Free and all variables (v_ and V_)
	2.8.6. Functions returning selections
	2.8.7. Finding contiguous residue ranges with the String function

	2.9. Arithmetics
	2.9.1. Assignment
	2.9.2. Arithmetic operations
	2.9.3. Logical operations
	2.9.4. Comparison operators
	2.9.5. Advanced operations and some comments

	2.10. Flow control
	2.10.1. Loops
	2.10.2. Conditional branching
	2.10.3. Jumps

	2.11. ICM molecular objects
	2.12. Energy and Penalty Terms
	2.13. Integer shell parameters.
	2.13.1. autoSavePeriod
	2.13.2. defSymGroup
	2.13.3. i_out
	2.13.4. iProc
	2.13.5. maxColorPotential
	2.13.6. maxMemory
	2.13.7. minTetherWindow
	2.13.8. mnSolutions
	2.13.9. mncalls
	2.13.10. mncallsMC
	2.13.11. mnconf
	2.13.12. mnhighEnergy
	2.13.13. mnreject
	2.13.14. mnvisits
	2.13.15. nLocalDeformVar
	2.13.16. nSsearchStep
	2.13.17. nProc
	2.13.18. randomSeed
	2.13.19. segMinLength
	2.13.20. sequenceBlock
	2.13.21. sequenceLine
	2.13.22. surfaceAccuracy
	2.13.23. windowSize

	2.14. Real shell variables
	2.14.1. addBfactor
	2.14.2. alignMinCoverage
	2.14.3. alignOldStatWeight
	2.14.4. axisLength
	2.14.5. cnWeight
	2.14.6. dcWeight
	2.14.7. densityCutoff
	2.14.8. dielConst
	2.14.9. dielConstExtern
	2.14.10. drop
	2.14.11. fogStart
	2.14.12. gapExtension
	2.14.13. gapOpen
	2.14.14. hbCutoff
	2.14.15. lineWidth
	2.14.16. mapSigmaLevel
	2.14.17. mcBell
	2.14.18. mcJump
	2.14.19. mcShake
	2.14.20. mcStep
	2.14.21. mfWeight
	2.14.22. mimelDepth
	2.14.23. mimelMolDensity
	2.14.24. r_out
	2.14.25. r_2out
	2.14.26. resLabelShift
	2.14.27. rsWeight
	2.14.28. selectMinGrad
	2.14.29. selectSphereRadius
	2.14.30. shininess
	2.14.31. ssThreshold
	2.14.32. ssWeight
	2.14.33. ssearchStep
	2.14.34. surfaceTension
	2.14.35. tempLocal
	2.14.36. temperature
	2.14.37. tolGrad
	2.14.38. tzWeight
	2.14.39. vicinity
	2.14.40. vwCutoff
	2.14.41. vwExpand
	2.14.42. vwSoftMaxEnergy
	2.14.43. waterRadius
	2.14.44. wireBondSeparation
	2.14.45. xrWeight

	2.15. Logical variables
	2.15.1. l_antiAlias
	2.15.2. l_autoLink
	2.15.3. l_bpmc
	2.15.4. l_breakRibbon
	2.15.5. l_bufferedOutput
	2.15.6. l_bug
	2.15.7. l_caseSensitivity
	2.15.8. l_commands
	2.15.9. l_confirm
	2.15.10. l_easyRotate
	2.15.11. l_info
	2.15.12. l_minRedraw
	2.15.13. l_neutralAcids
	2.15.14. l_out
	2.15.15. l_print
	2.15.16. l_readMolArom
	2.15.17. l_showAccessibility
	2.15.18. l_showMC
	2.15.19. l_showMinSteps
	2.15.20. l_showSpecialChar
	2.15.21. l_showSites
	2.15.22. l_showSstructure
	2.15.23. l_showWater
	2.15.24. l_showTerms
	2.15.25. l_warn
	2.15.26. l_wrapLine
	2.15.27. l_writeStartObjMC
	2.15.28. l_xrUseHydrogen

	2.16. String variables
	2.16.1. s_blastdbDir
	2.16.2. s_editor
	2.16.3. s_entryDelimiter
	2.16.4. s_errorFormat
	2.16.5. s_fieldDelimiter
	2.16.6. s_helpEngine
	2.16.7. s_icmhome
	2.16.8. s_inxDir
	2.16.9. s_icmPrompt
	2.16.10. s_imageViewer
	2.16.11. s_labelHeader
	2.16.12. s_lib
	2.16.13. s_logDir
	2.16.14. s_out
	2.16.15. s_pdbDir
	2.16.16. s_projectDir
	2.16.17. s_printCommand
	2.16.18. s_prositeDat
	2.16.19. s_psViewer
	2.16.20. s_reslib
	2.16.21. s_skipMessages : ignore specific error messages
	2.16.22. s_tempDir
	2.16.23. s_translateString
	2.16.24. s_userDir
	2.16.25. s_usrlib (obsolete)
	2.16.26. s_webEntrezLink
	2.16.27. s_webViewer
	2.16.28. s_xpdbDir

	2.17. Preferences
	2.17.1. atomLabelStyle
	2.17.2. alignMethod
	2.17.3. atomSingleStyle
	2.17.4. dcMethod
	2.17.5. electroMethod
	2.17.6. errorAction
	2.17.7. ffMethod
	2.17.8. gcMethod
	2.17.9. highEnergyAction
	2.17.10. interruptAction
	2.17.11. mfMethod
	2.17.12. minimizeMethod
	2.17.13. pdbDirStyle
	2.17.14. rejectAction
	2.17.15. resLabelStyle
	2.17.16. ribbonColorStyle
	2.17.17. ribbonStyle
	2.17.18. shineStyle
	2.17.19. surfaceMethod
	2.17.20. tzMethod
	2.17.21. varLabelStyle
	2.17.22. visitsAction
	2.17.23. vwMethod
	2.17.24. webEntrezOption
	2.17.25. wireStyle
	2.17.26. xrMethod

	2.18. Tables (structures)
	2.18.1. FILTER
	2.18.2. FTP
	2.18.3. GRAPHICS
	2.18.4. GRID
	2.18.5. GROB
	2.18.6. GUI
	2.18.7. IMAGE
	2.18.8. LIBRARY
	2.18.9. OBJECT
	2.18.10. PLOT
	2.18.11. SITE
	2.18.12. WEBLINK
	2.18.13. WEBAUTOLINK

	2.19. Other shell variables
	2.19.1. defCell
	2.19.2. accFunction
	2.19.3. gapFunction
	2.19.4. I_out
	2.19.5. M_out
	2.19.6. R_out
	2.19.7. S_out
	2.19.8. swissFields
	2.19.9. readMolNames
	2.19.10. Named Atom/Residue/Molecule/Object Selections
	2.19.11. as_out
	2.19.12. as2_out
	2.19.13. Named Selections of Internal Variables (Dihedrals, Angles and Bonds)
	2.19.14. vs_out

	2.20. Commands
	2.20.1. alias
	2.20.2. align
	2.20.3. assign
	2.20.4. break
	2.20.5. build
	2.20.6. call icm script
	2.20.7. center
	2.20.8. clear
	2.20.9. color family of commands
	2.20.10. compare: setting conformation comparison parameters for the montecarlo command
	2.20.11. compress
	2.20.12. connect
	2.20.13. continue
	2.20.14. convert
	2.20.15. copy
	2.20.16. crypt
	2.20.17. delete ICM shell objects
	2.20.18. display
	2.20.19. elseif
	2.20.20. endfor
	2.20.21. endif
	2.20.22. endmacro
	2.20.23. edit
	2.20.24. endwhile
	2.20.25. exit
	2.20.26. find
	2.20.27. fix
	2.20.28. for
	2.20.29. fork
	2.20.30. fprintf
	2.20.31. goto
	2.20.32. group
	2.20.33. gui
	2.20.34. help
	2.20.35. history
	2.20.36. if
	2.20.37. keep
	2.20.38. link internal variables of molecular object
	2.20.39. link residues to sequences and alignments
	2.20.40. list
	2.20.41. list available sequence databases
	2.20.42. load
	2.20.43. ICM-shell macros
	2.20.44. make
	2.20.45. minimize
	2.20.46. menu
	2.20.47. modify
	2.20.48. montecarlo
	2.20.49. move
	2.20.50. pause
	2.20.51. plot
	2.20.52. plot area: show matrix values with color
	2.20.53. print
	2.20.54. printf
	2.20.55. print image
	2.20.56. quit
	2.20.57. randomize
	2.20.58. read
	2.20.59. rename
	2.20.60. rename object
	2.20.61. return
	2.20.62. rotate
	2.20.63. set family of commands
	2.20.64. show
	2.20.65. sort
	2.20.66. split
	2.20.67. sprintf
	2.20.68. store
	2.20.69. ssearch
	2.20.70. strip
	2.20.71. superimpose
	2.20.72. then
	2.20.73. transform
	2.20.74. translate
	2.20.75. undisplay
	2.20.76. unfix
	2.20.77. unix
	2.20.78. wait
	2.20.79. web
	2.20.80. web table: shows an icm table with a web browser
	2.20.81. while
	2.20.82. write

	2.21. Functions
	2.21.1. Abs
	2.21.2. Acc
	2.21.3. Acos
	2.21.4. Acosh
	2.21.5. Align
	2.21.6. Angle
	2.21.7. Area
	2.21.8. Area contact matrix
	2.21.9. Asin
	2.21.10. Asinh
	2.21.11. Ask
	2.21.12. Atan
	2.21.13. Atan2
	2.21.14. Atanh
	2.21.15. Atom
	2.21.16. Augment
	2.21.17. Axis
	2.21.18. Bfactor
	2.21.19. Boltzmann
	2.21.20. Box
	2.21.21. Bracket
	2.21.22. Cad
	2.21.23. Ceil
	2.21.24. Cell
	2.21.25. Charge
	2.21.26. Cluster
	2.21.27. Color
	2.21.28. Consensus
	2.21.29. Corr
	2.21.30. Cos
	2.21.31. Cosh
	2.21.32. Count
	2.21.33. Deletion
	2.21.34. Det
	2.21.35. Disgeo
	2.21.36. Distance
	2.21.37. Eigen
	2.21.38. Energy
	2.21.39. Error
	2.21.40. Exist
	2.21.41. Existenv
	2.21.42. Extension
	2.21.43. Exp
	2.21.44. Field
	2.21.45. User field from a selection
	2.21.46. File
	2.21.47. Find
	2.21.48. Floor
	2.21.49. Getenv
	2.21.50. Gradient
	2.21.51. Grob
	2.21.52. Histogram
	2.21.53. Iarray
	2.21.54. Iarray(stack): numbers of visits for all stack conformations
	2.21.55. IcmSequence
	2.21.56. Index
	2.21.57. Indexx
	2.21.58. Insertion
	2.21.59. Integer
	2.21.60. Integral
	2.21.61. Interrupt
	2.21.62. Label
	2.21.63. Length
	2.21.64. LinearFit
	2.21.65. Link
	2.21.66. Log
	2.21.67. Map
	2.21.68. Mass
	2.21.69. Matrix
	2.21.70. Max
	2.21.71. MaxHKL
	2.21.72. Mean
	2.21.73. Min
	2.21.74. Money
	2.21.75. Mod
	2.21.76. Mol
	2.21.77. Name
	2.21.78. Namex
	2.21.79. Next
	2.21.80. Covalent neighbors of an atom
	2.21.81. Nof
	2.21.82. Norm
	2.21.83. Obj
	2.21.84. Occupancy
	2.21.85. Path
	2.21.86. Pattern
	2.21.87. Pi
	2.21.88. Potential
	2.21.89. Power
	2.21.90. Probability
	2.21.91. Profile
	2.21.92. Putenv
	2.21.93. Radius
	2.21.94. Random
	2.21.95. Rarray
	2.21.96. Real function
	2.21.97. Remainder function.
	2.21.98. Replace
	2.21.99. Res
	2.21.100. Res(ali ..): from sequence positions in subalignment to residue selection
	2.21.101. Resolution
	2.21.102. Rfactor
	2.21.103. Rfree
	2.21.104. Rmsd
	2.21.105. Rot
	2.21.106. Sarray
	2.21.107. Score
	2.21.108. Select
	2.21.109. Sequence
	2.21.110. reverse complement dna sequence function
	2.21.111. Sign
	2.21.112. Sin
	2.21.113. Sinh
	2.21.114. Site
	2.21.115. Smiles
	2.21.116. Smooth
	2.21.117. Sql
	2.21.118. Sqrt
	2.21.119. Sphere
	2.21.120. Split
	2.21.121. Srmsd
	2.21.122. String
	2.21.123. Chemical formula
	2.21.124. Sstructure
	2.21.125. Sum
	2.21.126. Symgroup
	2.21.127. Table
	2.21.128. Converting alignment into a table
	2.21.129. Extracting parameters of stack conformations
	2.21.130. Tan
	2.21.131. Tanh
	2.21.132. Tensor
	2.21.133. Temperature
	2.21.134. Time
	2.21.135. Tolower
	2.21.136. Torsion
	2.21.137. Toupper
	2.21.138. Tr123
	2.21.139. Tr321
	2.21.140. Trace
	2.21.141. Trans
	2.21.142. Transpose
	2.21.143. Trim
	2.21.144. Turn
	2.21.145. Type
	2.21.146. Unix
	2.21.147. Value
	2.21.148. Vector
	2.21.149. Version
	2.21.150. Volume
	2.21.151. View
	2.21.152. Warning : the ICM warning message
	2.21.153. Xyz : atom coordinates and surface points

	2.22. Macros
	2.22.1. buildpep: Building peptides from a sequence
	2.22.2. calcBindingEnergy: estimates electrostatic, hydrophobic and entropic binding terms
	2.22.3. calcDihedral4atoms: calculate a torsion angle defined by four atoms
	2.22.4. calcDihedralAngle: calculate an angle between two planes in a molecule
	2.22.5. calcEnsembleAver: Boltzmann average the energies of the stack conformations
	2.22.6. calcMaps: calculate five energy maps and write them to files
	2.22.7. calcPepHelicity: calculate average helicity of a peptide from movie frames
	2.22.8. calcProtUnfoldingEnergy: rough estimate of solvation energy change upon unfolding
	2.22.9. calcRmsd: calculate three types of Rmsd between protein conformations
	2.22.10. calcSeqContent
	2.22.11. icmCavityFinder: analyze and display cavities
	2.22.12. dsCellBox: displays crystallographic unit cell
	2.22.13. dsCell: cell and crystallographic neighbors
	2.22.14. dsCharge: one of many ways to show charge residues
	2.22.15. dsChem : chemical style display
	2.22.16. dsConsensus: 3D display of conserved residues
	2.22.17. dsCustom: extended display and property-coloring
	2.22.18. dsCustomFull macro for molecular display
	2.22.19. dsDistance: display distances between two selections
	2.22.20. dsPropertySkin: display molecular surfaces colored by properties essential for binding
	2.22.21. dsEnergyStrain: analyzing energy strain in proteins
	2.22.22. dsEnergyStrain1
	2.22.23. icmPmfProfile
	2.22.24. dsPrositePdb
	2.22.25. dsRebel: surface electrostatic potential
	2.22.26. dsSeqPdbOutput : visualize the sequence similarity search results
	2.22.27. dsSkinLabel
	2.22.28. dsSkinPocket and dsSkinPocketIcm
	2.22.29. dsStackConf
	2.22.30. dsVarLabels
	2.22.31. ds3D
	2.22.32. dsWorm
	2.22.33. dsXyz : display
	2.22.34. findFuncMin
	2.22.35. findFuncZero
	2.22.36. nice
	2.22.37. cool
	2.22.38. homodel
	2.22.39. makeIndexChemDb
	2.22.40. makeIndexSwiss
	2.22.41. makePdbFromStereo: restore 3D coordinates from a stereo picture
	2.22.42. mkUniqPdbSequences
	2.22.43. plot2DSeq
	2.22.44. plotSeqDotMatrix
	2.22.45. plotSeqDotMatrix2
	2.22.46. plotBestEnergy
	2.22.47. plotOldEnergy
	2.22.48. plotFlexibility
	2.22.49. plotCluster
	2.22.50. plotMatrix
	2.22.51. plotRama
	2.22.52. plotRose
	2.22.53. plotSeqProperty
	2.22.54. predictSeq
	2.22.55. prepSwiss
	2.22.56. printFast
	2.22.57. printMatrix
	2.22.58. printPostScript
	2.22.59. printTorsions
	2.22.60. refineModel: globally optimize side-chains and anneal the backbone
	2.22.61. regul
	2.22.62. rdBlastOutput
	2.22.63. rdSeqTab
	2.22.64. readPdbList
	2.22.65. remarkObj
	2.22.66. searchPatternDb
	2.22.67. searchPatternPdb
	2.22.68. searchObjSegment
	2.22.69. searchSeqDb
	2.22.70. searchSeqPdb
	2.22.71. searchSeqPdb
	2.22.72. searchSeqSwiss
	2.22.73. setResLabel
	2.22.74. sortSeq
	2.22.75. undsCharge
	2.22.76. makeSimpleModel
	2.22.77. makeSimpleDockObj
	2.22.78. searchSeqProsite

	2.23. Files
	2.23.1. _macro. A collection of ICM macros.
	2.23.2. _startup. ICM startup file
	2.23.3. _startCheck script
	2.23.4. foldbank.db
	2.23.5. Bank of protein folds (foldbank.seg)
	2.23.6. Atom codes (icm.cod)
	2.23.7. Bond angle bending and improper torsion deformation parameters (icm.bbt)
	2.23.8. Bond stretching parameters (icm.bst)
	2.23.9. Conformational stack (*.cnf)
	2.23.10. Distance restraint types (icm.cnt or *.cnt)
	2.23.11. Distance restraints (*.cn)
	2.23.12. Graphics objects (*.gro)
	2.23.13. ICM HTML help file (icm.htm)
	2.23.14. Hydrogen bonding types (icm.hbt)
	2.23.15. Hydration parameters (icm.hdt)
	2.23.16. Configuration file (icm.cfg)
	2.23.17. Colors (icm.clr)
	2.23.18. Electron density map (*.map)
	2.23.19. MC simulation movie (*.mov)
	2.23.20. ICM-object (*.ob)
	2.23.21. Residue library (icm.res or *.res)
	2.23.22. Object Variables (*.var)
	2.23.23. Multidimensional variable restraint types (icm.rst or *.rst)
	2.23.24. Multidimensional variable restraints (*.rs)
	2.23.25. A sample *.col file
	2.23.26. A sample *.tab file
	2.23.27. Torsion parameters (icm.tot)
	2.23.28. Van der Waals parameters (icm.vwt)
	2.23.29. Protein databank file (or *.ent)
	2.23.30. Sequence (*.seq *.pir *.gcg *.msf *)
	2.23.31. ICM-sequence file (*.se)
	2.23.32. ICM-alignment file
	2.23.33. ICM all-file: a file with multiple icm objects.
	2.23.34. Residue comparison table (icm.cmp or *.cmp)
	2.23.35. Protein profiles (*.prf)
	2.23.36. Integer array (*.iar)
	2.23.37. String array (*.sar)
	2.23.38. Matrix (*.mat)
	2.23.39. Numerical data (real arrays) (*.rar)

	3. User's guide
	3.1. ICM-shell
	3.1.1. How to get help
	3.1.2. Customization
	3.1.3. How to write a nice demo with menus to impress the boss
	3.1.4. How to boost learning process while reading the ICM manual
	3.1.5. How to get the list of the command words

	3.2. ICM graphics
	3.2.1. How to learn the ICM molecular graphics in 30 seconds
	3.2.2. How to make a nice high-resolution image
	3.2.3. How to rotate one molecule around its own center of mass
	3.2.4. How to annotate a molecular image in the graphics window
	3.2.5. How to save and print the generated image
	3.2.6. How to change the color of the graphics window background
	3.2.7. How to return a molecule to the center of the graphics window
	3.2.8. How to color atoms according to their B-factors
	3.2.9. How to color residues according to their hydrophobicities
	3.2.10. How to color residues according to their accessibilities
	3.2.11. How to color atoms according to their charges

	3.3. Structure analysis
	3.3.1. How to optimally superimpose two 3D structures
	3.3.2. How to optimally superimpose without the residue alignment
	3.3.3. How to make a Ramachandran plot
	3.3.4. How to display hydrogen bonds
	3.3.5. How to identify atoms or residues at the molecular interface
	3.3.6. How to identify torsions at the molecular interface
	3.3.7. How to calculate packing density
	3.3.8. How to perform a principal component analysis
	3.3.9. How to calculate a dihedral angle
	3.3.10. How to print a table of the torsion angles
	3.3.11. How to build a hydrophobicity profile
	3.3.12. How to display and characterize protein cavities

	3.4. Sequence, searches and alignments
	3.4.1. How to search all Prosite patterns in your sequence
	3.4.2. How to find a fragment in the PDB database (obsolete)
	3.4.3. How to identify binding pockets
	3.4.4. How to find a similar fold or topological motif in the PDB database
	3.4.5. How to generate a non-redundant list of PDB sequences
	3.4.6. How to merge several pdb files
	3.4.7. How to compile a database of protein secondary structures and their folds
	3.4.8. How to search headers of the PDB entries

	3.5. Energetics and electrostatics
	3.5.1. How to plot the distance dependence of a van der Waals interaction
	3.5.2. How to calculate the electrostatic free energy by the REBEL-method
	3.5.3. How to evaluate the pK shift
	3.5.4. How to evaluate the binding energy
	3.5.5. How to calculate an ensemble average
	3.5.6. How to evaluate helicity of a peptide from the BPMC simulation
	3.5.7. How to merge and compress several conformational stacks

	3.6. Manipulations with molecules
	3.6.1. How to build new object from a sequence
	3.6.2. How to quickly convert a pdb file into an ICM-object
	3.6.3. How to prepare a PDB structure for energy calculations (regularization)
	3.6.4. How to create a new molecule or a residue for the ICM residue library
	3.6.5. How to modify an ICM-object
	3.6.6. How to merge two ICM-objects
	3.6.7. How to make a hybrid model from several pdb files
	3.6.8. How to generate a series of intermediates between the two given structures
	3.6.9. How to reconstruct a structure from a published stereo picture

	3.7. Animation
	3.7.1. How to rotate and zoom in a script
	3.7.2. How to make a molecular movie from a Monte Carlo trajectory

	3.8. Transformations and symmetry
	3.8.1. Main concepts and functions
	3.8.2. How to generate symmetry related molecules
	3.8.3. How to find and display rotation/screw transformation axis
	3.8.4. How to combine several transformations
	3.8.5. How to build a helix from the two contacting monomers

	3.9. Maps and factors
	3.9.1. How to manipulate with structure factors
	3.9.2. How to calculate phases of reflections given a 3D model and a cell
	3.9.3. How to automatically place a fragment into density

	3.10. How to plot
	3.10.1. How to make a simple plot y=F(x)
	3.10.2. How to plot a histogram
	3.10.3. How to make a 3D-surface plot of a 2D-function
	3.10.4. How to create a new graphics object of a specific shape
	3.10.5. Flexible peptide docking

	3.11. How-to: Docking and Virtual Ligand Screening
	3.11.1. Docking and virtual ligand screening. Overview.
	3.11.2. How-to: Ligand docking simulations.
	3.11.3. How-to: Virtual Ligand Screening

	3.12. Example scripts
	3.12.1. How to predict 3D structure of a peptide from its sequence
	3.12.2. How to perform local flexible docking of two protein molecules
	3.12.3. How to perform an explicit flexible docking of two simplified protein molecules
	3.12.4. How to build a model by homology

	4. References
	4.1. General literature references
	4.2. The main description of the ICM method
	4.3. ICM algorithms
	4.4. ICM applications
	4.5. Credits

	5. Glossary
	5.1. A
	add
	alignment
	all
	alpha helix
	amber
	append
	atom
	axis

	5.2. B
	base
	ball
	beta
	boundary element
	BPMC

	5.3. C
	cavity
	charge
	coil
	column
	current map
	current object
	current table
	command
	comp_matrix
	conf
	cpk

	5.4. D
	database
	Depth-cueing, or fog
	distance
	distance geometry
	disulfide bond
	drestraint
	drestraint type

	5.5. E-H
	ecepp
	fasta

	5.6. S
	site
	grob
	hbond- hydrogen bonds
	svariablei, or ICM-shell variable
	integer
	label
	logical
	macro
	map
	matrix
	MIMEL
	mmff .
	mol
	mol2
	more
	movie
	mute
	only
	pattern
	png
	pdb or Protein Data Bank
	peptide bond
	profile
	prosite
	REBEL
	real
	regularization
	residue
	rgb
	ribbon
	script
	sequence
	segment
	(ICM)-shell
	skin
	smiles
	sln
	stack
	stick
	string
	structure factor (factor)
	surface area

	5.7. T
	table
	Pairwise table expressions:
	table subsets:
	tether
	transformation vector

	5.8. U-Z
	unique
	virtual atoms and variables
	volume
	vrestraint
	vrestraint type
	wire
	xstick
	ZEGA

	 Index

