From Internal Coordinate Mechanics to ICM

Modeling Docking Cheminformatics Graphical and Scripting Environment Big Structural Data

Internal Coordinate Mechanics

- ICM (φ,α,b)
 - Full set of Internal Variables: ICM (ϕ, α, b)
 - ICM stochastic optimizer (1992-99)
 - Any subset of molecules, svariables
 - Collective variables
 - Square root (biased) sampling
 - Restraints and grids to modify the energy function

Mazur, Abagyan (1989) "General Equations for multiple branched polymers of motion in internal coordinates", *JBSD*..

Abagyan, Totrov, Kuznetsov (1994) "ICM - a new method for protein modeling and docking" J. Comp. Chem. 15, 488-50

Abagyan, and Totrov, (1994). "Biased Probability Monte Carlo searches and Electrostatics" J. Mol. Biol.

Totrov M, Abagyan R (1994) **Detailed ab initio prediction of lysozymeantibody complex with 1.6 A accuracy**. *Nat Struct Biol*, 1994

ICM Ligand Docking

Grids

with second derivatives

Totrov, Abagyan (1997) Flexible Ligand Docking. Proteins

Tools: Protein and Peptide Docking

New: Protein-Protein FFT Docking

Zhou, Abagyan, Folding & Des 1998. How and why pTyrcontaining peptides bind to the SH2 and PTB domains. Bordner AJ, Abagyan R. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins. 2006 May 15;63(3):512-26

APF : Atom Property Fields

Tools: _chemAlign and _chemSuper (screen)

Totrov M. Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR *Chem Biol Drug Des.* 2008

Independent APF Validation

Giganti *et al* **Comparative Evaluation of 3D Virtual Ligand Screening Methods: Impact of the Molecular Alignment on Enrichment** JCIM (2010), *Pasteur Inst., Paris*

ICM, Surflex-dock/Surflex-sim, FlexX/FlexS, OMEGA-FRED/OMEGA-ROCS

Table 3. Molecular Alignment of the DUD-own Active Compounds^a

Chemical Superposition

		ADA (39)	CDK2 (72)	DHFR (410)	ER (39)	FXA (146)	HIVRT (43)	NA (49)	P38 (454)	THR (72)	TK (22)	TRP (49)	mean (1100)
Surflex-sim	2	12.82	12.5	44.39	56.41	4.11	18.6	18.37	9.69	4.17	68.18	40.82	23.15
	1	35.9	51.39	53.66	43.59	33.56	72.09	75.51	69.6	93.06	31.82	59.18	59.07
	0	51.28	36.11	1.95	0	62.33	9.3	6.12	20.7	2.78	0	0	17.78
ROCS	2	12.82	43.06	74.15	41.03	14.38	30.23	79.59	9.47	2.78	86.36	8.16	35.63
	1	20.51	36.11	14.39	56.41	28.77	34.88	14.29	41.19	69.44	9.09	81.63	32.83
	0	66.67	20.83	11.46	2.56	56.85	34.88	6.12	49.34	27.78	4.55	10.2	31.54
FlexS	2	15.38	25	56.1	48.72	35.62	16.28	36.73	14.98	30.56	81.82	18.37	33.48
	1	20.51	19.44	11.71	43.59	13.7	46.51	57.14	74.01	5.56	13.64	2.04	35.77
	0	64.1	55.56	32.2	7.69	50.68	37.21	6.12	11.01	63.89	4.55	79.59	30.75
ICMsim	2	46.15	12.5	86.83	51.28	70.55	18.6	75.51	20.04	88.89	90.91	69.39	54.48
	1	23.08	68.06	11.95	46.15	16.44	46.51	14.29	68.28	9.72	9.09	28.57	36.49
	0	30.77	19.44	1.22	2.56	13.01	34.88	10.2	11.67	1.39	0	2.04	9.03

Table 4. Early (1%) and Late (10%) Enrichments for the DUD-own Active Compounds^a

enrichment	Surflex-sim		ROCS		FlexS		ICMsim		DOCK	
all actives	1.00%	10.00%	1.00%	10.00%	1.00%	10.00%	1.00%	10.00%	1.00%	10.00%
ADA	5.13	23.08	7.69	33.33	15.38	30.77	10.26	28.21	15	40
CDK2	2.78	8.33	22.22	38.89	5.56	11.11	9.72	30.56	10	25
DHFR	4.88	25.61	19.02	61.95	8.05	27.8	20.24	80.73	25	60
ER	10.26	82.05	10.26	89.74	15.38	71.79	17.95	76.92	10	20
FXA	1.37	2.74	4.11	4.11	5.48	19.86	11.64	46.58	5	35
HIVRT	9.3	18.6	20.93	25.58	27.91	58.14	18.6	39.53	5	25
NA	16.33	55.1	34.69	89.8	20.41	69.39	16.33	73.47	10	60
P38	9.03	21.15	8.81	15.42	12.56	26.21	11.23	17.84	2	25
thrombin	1.39	15.28	0.75	15.28	2.78	12.5	2.78	76.39	5	35
TK	22.73	50	22.73	50	9.09	54.55	22.73	63.64	0	25
trypsin	0	59.18	4.08	34.69	18.37	18.37	10.2	95.92	0	30
mean	7.56	32.83	14.12	41.71	12.82	36.41	13.79	57.25	7.91	34.55
st. dev.	6.99	24.91	10.48	28.79	7.57	22.72	5.85	25.77	7.35	13.87
median	5.13	23.08	10.26	34.69	12.56	27.8	11.64	63.64	5	30

Docking/ Screening Enrichment

50 Shades of Pocket Flexibility

- Explicit Side Chains in LigEdit and _dockScan
- 4D Docking for fast Ensemble Docking
- SCARE (SCan Alanines & Refine)
- NMA or ICM-Generated backbone variations
- Full ICM simulations with custom defined space and restraints

Bottegoni et al. 2008 "SCARE.." JCAMD Bottegoni et al. 2009 "4D docking: a fast and accurate account of discrete receptor flexibility ..", JMC

Ligand Guided Model Building

ALIBERO Extension of _dockScan

Bisson, Cheltsov et al. 2006, PNAS

Katritch et al. 2008, 2011, ++ GPCR agonist binding revealed by modeling.., Rueda et al. ALiBERO: Evolving a team of complementary pocket conformations rather than a single leader (2012) J Chem Inf Mod

CHEMICAL INFORMATION AND MODELING

pubs.acs.org/jcim

FOCUS — Development of a Global Communication and Modeling Platform for Applied and Computational Medicinal Chemists

Nikolaus Stiefl,^{*,†} Peter Gedeck,[‡] Donovan Chin,[§] Peter Hunt,^{||} Mika Lindvall,[⊥] Katrin Spiegel,^{||} Clayton Springer,[§] Scott Biller,[§] Christoph Buenemann,[#] Takanori Kanazawa,^{∇} Mitsunori Kato,^{§, ∇} Richard Lewis,[†] Eric Martin,[⊥] Valery Polyakov,[⊥] Ruben Tommasi,[§] John van Drie,[§] Brian Vash,[§] Lewis Whitehead,[§] Yongjin Xu,[⊥] Ruben Abagyan,^O Eugene Raush,^O and Max Totrov^O

UNOVARTIS

Stiefl et al. JCIM, 2015

Scarab

Three in One

- Workstation GUI Client (eg ICM-pro, Focus, Scarab)
- ICM based backend units (models, screens, homology)
- Mobile or Web dissemination

MolSoft Webinar: Ligand Design using ICM 3D Interactive Ligand... 1,695 views · 2 years ago

iMolview 3,743 views · 4 years ago

MolSoft Webinar: Ligand Based Lead Discovery using Atomic... 488 views · 2 years ago

Webinar: Structure Based Lead Discovery using ICM Virtual... 1,213 views · 2 years ago

1,695 views · 2 years ago

MolSoft Webinar: Ligand Design iMolview using ICM 3D Interactive Ligan... 3,743 views • 4 years ago

ICM-Browser & ActiveICM 698 views · 4 years ago

Ligand Editor

Computational Fragment Screen:

Examples of high-confidence fragment poses versus real ligands

Phenol fragments in PDB 1QKM (ER)

New ICM Force Field: ICMFF

- First ideas : ICFF Seva Katrich et al. 2003
- Current QM-based ICMFF:
 - Softer flexibility model, better VW, ε =2, _____mutant* accurate torsion profiles, ...

- loopmodel
- dockScan
- - protDesign

Arnautova, Abagyan, Totrov. RNA; 2015 (glycoproteins) and 2011 (loops, peptides). All-Atom Internal Coordinate Mechanics(ICM) Force Field for Hexopyranoses and Glycoproteins. J Chem Theory Comput. 2015

First morning after Sweden changed from driving on the left side to driving on the right, 1967 (themetapicture.com)

Switching
 to the new
 force field
 needs to
 be done
 very
 carefully

Change is difficult

Expanding from Xtal to Models

- 25% protein coverage
- 10% amino acid coverage
- 3% GPCR coverage

Modeling

- Ab initio
- Homology
- Loops and Tails
 Docking
- Small molecules
- Peptides
- Proteins

Custom modeling protocols

Application to chemokine receptors

Kufareva et al. (2015) *Experiment-guided molecular modeling of protein-protein complexes involving GPCRs*, Meth Mol Biol, Wiley, 1335, 295-311, chapter Qin, ..., Handel (2015) Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine, *Science*.

Three drugs identified as SMO modulators

Table 1				
Drug	IC50 (nM)			
Vismodegib	25			
Cyclopamine	153			
Nilotinib	140			
Imatinib	1402			
Mebendazole	287			

MolScreen: The Five Model Types 2000 Models

- Docking Models
 - .dfa docking and multicluster pKd/pIC50 prediction
 - -.dfz APF docking and Z-scoring
 - .dpc 4D Pocket docking and Classification + pKd
- QSAR models
 - .kcc
- Property models : Caco2, T1/2, hERG, LD50, PAINS, PAMPA, PgPinh, PgPsubstrate

-.mpc

Molsoft: Polo Lam, Eugene Raush, Max Totrov On going collaboration with Novartis Group: *Christine Hajdin, Donovan Chin, Eric Martin*

Activity Models: ADRs, Target Screen, Properties

	ADR	Category	Disease	Function	Drug Mechanism
+ 1601 (1 of 2)	Biliary colic	Family A G protein-coupled receptor	Analgesics	Inhibits neurotransmitter release by reducing	Mu opioid receptor agonist: 4
+ 1603 (1 of 4)	Biliary colic	Family A G protein-coupled receptor	Alcohol dependence	Inhibits neurotransmitter release by reducing	Kappa opioid receptor agonis
+ 1603 (1 of 4) + 1607 (1 of 3)	Biliary colic	Family A G protein-coupled receptor	Analgesics	Inhibits neurotransmitter release by reducing	Opioid receptors: mu/kappa/
1610	Biliary colic	Membrane receptor	Neuropsychiatric disorders	initiality include and initial release by reducing	Sigma non-opioid intracellular
+ 1611 (1 of 2)	Bradycardia	Family A G protein-coupled receptor	Heart failure	Alpha-2 adrenergic receptors mediate the	Adrenergic receptor alpha-2
+ 1613 (1 of 2)	Bradycardia	Family A G protein-coupled receptor	Neuropsychiatric disorders	Alpha-2 adrenergic receptors mediate the	Marenergie receptor alpha 2
+ 1615 (1 of 2)	Bradycardia	Family A G protein-coupled receptor	Heart failure	Alpha-2 adrenergic receptors mediate the	Adrenergic receptor alpha ac
+ 1617 (1 of 2)	Bradycardia	Hydrolase	Alzheimer's disease		Cholinesterase activator: Pral
1619	Cardiac arrest	Voltage-gated ion channel	Analgesics	Mediates the voltage-dependent sodium ion	Sodium channel protein type
+ 1620 (1 of 2)	Decreased appetite	Kinase	Breast cancer	Receptor for eaf, but also for other members of the	Epidermal growth factor rece
+ 1622 (1 of 4)	Diarrhoea	Family A G protein-coupled receptor	Peripheral Vascular Disease		Prostaglandin E2 receptor EP
+ 1626 (1 of 6)	Diarrhoea	Phosphodiesterase	Chronic lymphocytic leukemia		cAMP-specific 3'.5'-cyclic pho
+ 1632 (1 of 4)	Diarrhoea	Hydrolase	Alzheimer's disease	Rapidly hydrolyzes choline released into the	Acetylcholinesterase activato
+ 1636 (1 of 2)	Dizziness	Family A G protein-coupled receptor	Cardiovascular disease, unspecified	Receptor for angiotensin II. Mediates its action by	Type-1 angiotensin II recepto
1638	Dry mouth	Family A G protein-coupled receptor	Anxiety disorder, unspecified	This is one of the several different receptors for 5-	5-hydroxytryptamine recepto
1639	Dry mouth	Electrochemical transporter	Parkinson's disease	Amine transporter, terminating the action of	Dopamine transporter inhibito
+ 1640 (1 of 3)	Dry mouth	Oxidoreductase	Depression	Catalyzes the oxidative deamination of biogenic and	
1643	Dyskinesia	Family A G protein-coupled receptor	Migraine	This is one of the several different receptors for 5-	5-hydroxytryptamine recepto
+ 1644 (1 of 4)	Dyspepsia	Nuclear receptor	Not Available		Peroxisome proliferator-activ
+ 1648 (1 of 4)	Dyspepsia	Phosphodiesterase	Asthma	Regulates the levels of camp in the cell	rerexiserine premerator deale
+ 1652 (1 of 2)	Dyspepsia	Phosphodiesterase	Colorectal cancer	Hydrolyzes both cyclic amp (camp) and cyclic gmp	cGMP-dependent 3'.5'-cyclic
+ 1654 (1 of 2)	Dyspepsia	Phosphodiesterase	Bronchial asthma	Hydrolyzes both cyclic amp (camp) and cyclic gmp	Phosphodiesterase 3A inhibit
1656	Fiaculation disorder	Family A G protein-coupled receptor	Neurologic and psychiatric diseases	This is one of the several different receptors for 5-	5-hydroxytryptamine recepto
- 1657 (2)	Electrocardiogram OT	Voltage-gated ion channel	Cardiac arrhythmias	Pore-forming (alpha) subunit of voltage-gated	HEBG blocker: Amiodarone, [
1658	Electrocardiogram QT	Voltage-gated ion channel	Cardiac arrhythmias	Pore-forming (alpha) subunit of voltage-gated	HEBG blocker: Amiodarone, [
+ 1659 (1 of 2)	Electrolyte imbalance	Ivase		rore rorning (alpha, subancor ronage gatea	Carbonic anhydrase 13 inhibit
1661	Extrapyramidal disorder	Voltage-gated ion channel	Analgesics		Voltage-dependent T-type ca
+ 1662 (1 of 4)	Flushing	Family A G protein-coupled receptor	Cancer, unspecific	Receptor for gonadotropin releasing hormone	Gonadotropin-releasing horm
+ 1666 (1 of 2)	Flushing	Voltage-gated ion channel	Analgesics	Voltage-sensitive calcium channels (vscc) mediate	Voltage-gated N-type calcium
+ 1668 (1 of 2)	Gastrointestinal disorder	Enzyme	Analgesics	Catalyzes the nadph-dependent reduction of a wide	Aldose reductase inhibitor: S
1670	Gestational hypertension	Family A G protein-coupled receptor	Anxiety disorder, unspecified	This is one of the several different receptors for 5-	5-hydroxytryptamine recepto
1671	Gynaecomastia	Oxidoreductase	Alopecia, unspecified	Converts testosterone into 5-alpha-	3-oxo-5-alpha-steroid 4-deh
1672	Haemolytic anaemia	Lvase	· · · · · · · · · · · · · · · · · · ·		Carbonic anhydrase 3 inhibite
+ 1673 (1 of 4)	Hepatitis	Nuclear receptor	Anxiety disorder, unspecified	Orphan receptor: Its natural ligand is probably	,
+ 1677 (1 of 2)	Hyperhidrosis	Family A G protein-coupled receptor	Analgesics	Receptor for the neuropeptide nocipeptin/orphanin	Kappa-type opioid receptor a
1679	Hypokalaemia	Electrochemical transporter	Crohn's disease, unspecified	Plays a critical role in the sodium-dependent	Ileal sodium/bile acid cotrans
1680	Mania	Oxidoreductase	Major depressive disorder	Catalyzes the oxidative deamination of biogenic and	Amine oxidase [flavin-contain
+ 1681 (1 of 6)	Mvalgia	Nuclear receptor	Hyperglycemia	Receptor that bind peroxisome proliferators such as	Peroxisome proliferator-activ
1687	Pain	Cvtochrome P450	Breast cancer	Catalyzes the formation of aromatic c18 estrogens	Aromatase inducer: Chlorohe
+ 1688 (1 of 2)	Palpitations	Family A G protein-coupled receptor	Asthma	Receptor for adenosine. The activity of this receptor	Adenosine A2b receptor anta
1690	Purine metabolism disorder	Hydrolase	Atrial fibrillation and flutter	This is the catalytic component of the active	
+ 1691 (1 of 2)	Respiratory depression	Ligand-gated ion channel	Convulsions	The glycine receptor is a neurotransmitter-gated ion	Glycine receptor subunit alph -
4	······································			guest for	• • • • • • • • • • • • • • • • • • •

MolScreen

Individual model's detail

Load Panel -> Check Model Performance:

Predicted Pose (docking type)

• Live results for the dfa, dpc, dfz models.

Endocrine Disruption: Testing TiPED

The Tiered Protocol for Endocrine Disruption (TiPED)

Two activities confirmed!

~500 nM activities for a single stereoisomer

Service by Bryan Roth Center, UNC

Three drugs identified as SMO modulators

Kirti Kandhwal

Table 1					
Drug	IC50 (nM)				
Vismodegib	25				
Cyclopamine	153				
Nilotinib	140				
Imatinib	1402				
Mebendazole	287				

