Internal Coordinate Mechanics and ICM

Modeling Docking, Ligand and Target Screens Cheminformatics Graphical and Scripting Environment Big Structural Data

Ruben Abagyan

University of California, San Diego

Skaggs School of Pharmacy & Pharm. Sciences Molsoft, LLC ruben@ucsd.edu

Square-Root Sampling

Ab initio folding of peptides with the Optimal Bias Monte **Carlo Minimization Procedure**

Abagyan, Totrov J. Comp. Physics, 1999 Optimal Sampling: *discrete states*

THEOREM. The optimal random guessing strategy minimizing the average number of guesses is to guess with relative frequencies f_1 and f_2 so that

 $\frac{f_1}{f_2} = \sqrt{\frac{s_1}{s_2}}.$

2, let us set the derivative of (*Proof.* Let us calculate the average number of guesses $N_{guesses}$ until the correct answer is given, provided that previous guesses are forgotten and thus each guess is independent. If in our random guessing strategy the probability of a correct guess in a single trial is f, and the successful result can be achieved through the first correct guess $(p_1 = f)$, the first incorrect guess and the second correct guess $(p_2 = (1 - f)f)$, the first two incorrect guesses and the correct guess $(p_3 = (1 - f)^2 f)$, etc., the average number of guesses reads

$$S_1/f_1^2 - S_2/f_2^2 = 0,$$

 $\langle N_{\text{guesses}} \rangle = S_1/f_1 + S_2/f_2.$

ampling function

lications, Kluwer

IS

napter in

 $\int_{-1}^{n} f_{j}^{-1}(\mathbf{x}_{i}^{0}) d\mathbf{x}_{i}^{0} ,$

a 1 c2

 $S_1/f_1^2 = S_2/f_2^2$,

$$N_{\text{guesses}} = p_1 + 2p_2 + 3p_3 + \cdots$$

= $f + 2(1-f)f + 3(1-f)^2 f + \cdots + n(1-f)^{n-1} + \cdots = 1/f, \qquad f_1/f_2 = (S_1/S_2)^{1/2}.$

order for the above equation to hold for any arbitrary function δf_i , we have

$$f_j(\mathbf{x}) = \frac{1}{c'} \sqrt{S_j(\mathbf{x})},$$

where c' is the normalization constant equal to $\int \sqrt{S_j(\mathbf{x})} d\mathbf{x}$.

Fast Conformation Sampler and Optimizer in Internal Coordinates

- A minimal subset of internal variables
- Collective moves
- Optimal Squareroot sampling
- Stochastic global optimizer with history feedback

Abagyan R., Totrov M. 1994, ICM *JCC*, BPMC *JMB*, 1997 Ligand Docking, *Proteins*. Neves et al., 2011: Top scoring pose: 91% <2A cognate docking for 165 tasks, 71% <1A Bottegoni G et al. ..multiple receptor conformations for VLS. *PLoS One*, 2011, Activity Cliffs 2015

D3R Grand Docking Challenge: 2017

Receipt ID

Docking: 7 Types of Pocket Flexibility

- Explicit Side Chains in LigEdit and _dockScan
- 4D Docking / Ensemble Docking
- SCARE (SCan Alanines & Refine)
- NMA or ICM Ligand-guided pocket variations
- Full ICM simulations with custom defined space and restraints
- Hybrid protocols

 Bottegoni et al. 2008 "SCARE.." JCAMD
 Bottegoni et al. 2009 "4D docking: a fast and accurate account of discrete receptor flexibility ..", JMC
 Husby, Bottegoni, Kufareva, Abagyan, Cavalli. Structure-based
 predictions of activity cliffs. J Chem Inf Model. 2015

Giovanni

Ligand Guided Model Building

ALIBERO Extension of _dockScan

Bisson, Cheltsov et al. 2006, PNAS

Katritch et al. 2008, 2011, ++ GPCR agonist binding revealed by modeling.., Rueda et al. ALiBERO: Evolving a team of complementary pocket conformations rather than a single leader (2012) J Chem Inf Mod

Prospective Prediction of Agonist-Bound Pocket and Agonist Binding by ICM LGM Model 2007-09, X-ray 2011

 β_2 AR agonists comparison 4 years later

- Reynolds, Katritch, Abagyan, Identifying conformational changes of the b2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators, JCAMD, 2009
- Katritch, Reynolds, Cherezov, Hanson, Roth, Yeager, Abagyan. Analysis of full and partial agonists binding to beta(2)-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes J Mol Recognit. 2009 Apr 7;22(4):307-318
- Katritch V, Abagyan. GPCR agonist binding revealed by modeling and crystallography, *Trends PharmacolSci*, 2011 Sep 6
- Warne, et al., Schertler G, Tate C, The structural basis for agonist and partial agonist action on a β₁ adrenergic receptor, *Nature*, 2011.

100% identical contacts for ligand core Rmsd_{LIG_CORE}=0.5 Å, RMSD_{pocket} = 0.9Å

CHEMICAL INFORMATION AND MODELING

pubs.acs.org/jcim

FOCUS — Development of a Global Communication and Modeling Platform for Applied and Computational Medicinal Chemists

Nikolaus Stiefl,^{*,†} Peter Gedeck,[‡] Donovan Chin,[§] Peter Hunt,^{||} Mika Lindvall,[⊥] Katrin Spiegel,^{||} Clayton Springer,[§] Scott Biller,[§] Christoph Buenemann,[#] Takanori Kanazawa,^{∇} Mitsunori Kato,^{§, ∇} Richard Lewis,[†] Eric Martin,[⊥] Valery Polyakov,[⊥] Ruben Tommasi,[§] John van Drie,[§] Brian Vash,[§] Lewis Whitehead,[§] Yongjin Xu,[⊥] Ruben Abagyan,^O Eugene Raush,^O and Max Totrov^O

UNOVARTIS

Stiefl et al. JCIM, 2015

Scarab

Three in One

- Workstation GUI Client (eg ICM-pro, Focus, Scarab)
- ICM based backend units (models, screens, homology)
- Mobile or Web dissemination

MolSoft Webinar: Ligand Design using ICM 3D Interactive Ligand... 1,695 views · 2 years ago

iMolview 3,743 views · 4 years ago

MolSoft Webinar: Ligand Based Lead Discovery using Atomic... 488 views · 2 years ago

Webinar: Structure Based Lead Discovery using ICM Virtual... 1,213 views · 2 years ago

1,695 views · 2 years ago

MolSoft Webinar: Ligand Design iMolview using ICM 3D Interactive Ligan... 3,743 views • 4 years ago

ICM-Browser & ActiveICM 698 views · 4 years ago

Ligand Editor

Computational Fragment Screen:

Examples of high-confidence fragment poses versus real ligands

Phenol fragments in PDB 1QKM (ER)

Covalent Inhibitors: screening & design

Protease with a covalent inhibitor screened by ICM

From Pocket Analysis to 3D Models Cys-proteases from parasitic worms

Kevin Widmer, Basel, Masterarbeit, 2016 Collaboration with Conor Caffrey, UCSD

Boundary Element (REBEL) electrostatics

Bennet at al. An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. *Nature Comm*, 2016

Totrov, Abagyan. Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide. *Biopolymers*. 2001;60(2):124-33

ICM pocket Finder

Jianghong An, Maxim Totrov, R. Abagyan. (2005) Pocketome: Comprehensive Identification& Classification of Ligand Binding Envelopes, Mol. Cell Proteomics

- Color Pocket by Residue SC
- Occlusion Shading

IN THEORY THERE IS NO DIFFERENCE BETWEEN THEORY AND PRACTICE. IN PRACTICE THERE IS.

VOGI BERRIT

Docking to the Pocketome

Molecular & Cellular ~3000 ensembles Proteomics

Volume 4, Number 6, June 200.

The pocketome

An, Totrov, Abagyan, 2005

Phosphotyrosine Proteomics of IFNa Signaling

Proteomic Analysis of Human Adult Stem Cell Adipogenesis

Purification of Ubiquitin Conjugates and Rpn10 Substrates

Identification and Classification of Ligand Envelopes

PROVALT: Protein Validation Technology

Antibody Array Normalization

MudPIT Analysis of 14-3-3 σ

Rice Basal Region Proteome

Phosphopeptide Methylation and Detection by MALDI Q-TOF MS

A Yeast/Bacteria Two-hybrid System

Metalloprotein Assay

Improving Protein Identification Using Complementary Pairs

ASBIND Published by the America Society for Biochemistry and Molecular Biology ISSN: 1535-9476

Kufareva I, et al. Pocketome: an encyclopedia of binding sites in 4D. Nucleic Acids Res. 2012

Substantial Multi-target Pharmacology

Targets of Drugs are under-Discovered and the binding is under-Quantified

Chembl Database

chembl Bosutinib \/ Bosutinib_targets

• Example: Acitivites of **Bosutinib** above the trough drug levels + a margin to achive > 75%inhibition

• pDc+0.5

	1		2		3		4	
	uniprot id	ABL1 HUMAN	uniprot id	M4K5 HUMAN	uniprot id	YES HUMAN	uniprot id	ABL2 HUMAN
0	fullname pAct	Tyrosine-protein kinase ABL1 10.54	fullname pAct	Mitogen-activated protein kin 8.5.2	fullname pAct	Tyrosine-protein kinase Yes	fullname pAct	Abelson tyrosine-protein kina 9.3
4	uniprot_id	LCK_HUMAN	uniprot_id	ERBB3_HUMAN	uniprot_id	SRC_HUMAN	uniprot_id	FGR_HUMAN
	fullname	Tyrosine-protein kinase Lck	fullname	Receptor tyrosine-protein kin	fullname	Proto-oncogene tyrosine-pro	fullname	Tyrosine-protein kinase Fgr
	pAct	9.23	pAct	9.11	pAct	9	pAct	8.96
8	uniprot_id fullname pAct	8 96	uniprot_id fullname pAct	GAK_HUMAN Cyclin-G-associated kinase	uniprot_id fullname pAct	FRK_HUMAN Tyrosine-protein kinase FRK	uniprot_id fullname pAct	FYN_HUMAN Tyrosine-protein kinase Fyn 8 74
12	uniprot_id	STK35_HUMAN	uniprot_id	BTK_HUMAN	uniprot_id	ACK1_HUMAN	uniprot_id	M4K2_HUMAN
	fullname	Serine/threonine-protein kina:	fullname	Tyrosine-protein kinase BTK	fullname	Activated CDC42 kinase 1	fullname	Mitogen-activated protein kir
	pAct	8.7	pAct	8.6	pAct	8.57	pAct	8.51
16	uniprot_id fullname pAct	MINK1_HUMAN Misshapen-like kinase 1 8 49	uniprot_id fullname pAct	HCK_HUMAN Tyrosine-protein kinase HCK 8 49	uniprot_id fullname pAct	BLK_HUMAN Tyrosine-protein kinase Blk 8 48	uniprot_id fullname pAct	STK24_HUMAN Serine/threonine-protein kina 8 41
20	uniprot_id	LYN_HUMAN	uniprot_id	SLK_HUMAN	uniprot_id	M4K3_HUMAN	uniprot_id	EPHB4_HUMAN
	fullname	Tyrosine-protein kinase Lyn	fullname	STE20-like serine/threonine-p	fullname	Mitogen-activated protein kin	fullname	Ephrin type-B receptor 4
	pAct	8 38	pAct	8 33	pAct	8.29	pAct	8 26
24	uniprot_id fullname pAct	EPHA3_HUMAN Ephrin type-A receptor 3 8 24	uniprot_id fullname pAct	STK10_HUMAN Serine/threonine-protein kina: 815	uniprot_id fullname pAct	BLK_MOUSE Tyrosine-protein kinase Blk 8 1 4	uniprot_id fullname pAct	BMX_HUMAN Cytoplasmic tyrosine-protein
28	uniprot_id	MP2K5_HUMAN	uniprot_id	M4K4_HUMAN	uniprot_id	EPHB2_HUMAN	uniprot_id	EPHA8_HUMAN
	fullname	Dual specificity mitogen-activ	fullname	Mitogen-activated protein kin	fullname	Ephrin Type-B receptor 2	fullname	Ephrin Type-A receptor 8
	pAct	8 09	pAct	8 09	pAct	8.08	pAct	8.05
32	uniprot_id	MP2K2_HUMAN	uniprot_id	M4K1_HUMAN	uniprot_id	M3K19_HUMAN	uniprot_id	EGFR_HUMAN
	fullname	Dual specificity mitogen-activ	fullname	Mitogen-activated protein kin	fullname	Mitogen-activated protein kin	fullname	Epidermal growth factor rece
	pAct	8	pAct	7.82	pAct	7.8	pAct	7.74
36	uniprot_id	EPHA2_HUMAN	uniprot_id	EPHA4_HUMAN	uniprot_id	MP2K1_HUMAN	uniprot_id	NTRK1_HUMAN
	fullname	Ephrin type-A receptor 2	fullname	Ephrin type-A receptor 4	fullname	Dual specificity mitogen-activ	fullname	High affinity nerve growth fac
	pAct	7.74	pAct	7.74	pAct	7.72	pAct	7.66
40	uniprot_id	ERBB4_HUMAN	uniprot_id	EPHA5_HUMAN	uniprot_id	NTRK2_HUMAN	uniprot_id	SIK2_HUMAN
	fullname	Receptor tyrosine-protein kin	fullname	Ephrin type-A receptor 5	fullname	BDNF/NT-3 growth factors rec	fullname	Serine/threonine-protein kina:
	pAct	7.59	pAct	7.57	pAct	7.57	pAct	7.54
44	uniprot_id	M3K2_HUMAN	uniprot_id	SIK1_HUMAN	uniprot_id	TNIK_HUMAN	uniprot_id	CSK_HUMAN
	fullname	Mitogen-activated protein kin	fullname	Serine/threonine-protein kina:	fullname	TRAF2 and NCK-interacting pr	fullname	Tyrosine-protein kinase CSK
	pAct	7.52	pAct	7.52	pAct	7.51	pAct	7.49
48	uniprot_id	EPHB1_HUMAN	uniprot_id	MST4_HUMAN STK26_HUMAN	uniprot_id	STK33_HUMAN	uniprot_id	TXK_HUMAN
	fullname	Ephrin type-B receptor 1	fullname	Serine/threonine-protein kina:	fullname	Serine/threonine-protein kina:	fullname	Tyrosine-protein kinase TXK
	pAct	7.48	pAct	7.43	pAct	7.43	pAct	7.4
52	uniprot_id	IKKE HEIMAN	uniprot_id	UFO_HUMAN	uniprot_id	KSYK_HUMAN	uniprot_id	M3K3_HUMAN
	fullname	Inhilitor of nuclear factor kap	fullname	Tyrosine-protein kinase recep	fullname	Tyrosine-protein kinase SYK	fullname	Mitogen-activated protein kin
	pAct	7.28	pAct	7.20	pAct	7.28	pAct	7.27
56	uniprot_id	TYRO3_HUMAN	umprot_id	SIK3_HUMAN	uniprot_id	KIT_HUMAN	uniprot_id	MLTK_HUMAN
	fullname	Tyrosine-protein kinase recep	fulname	Serine/threonine-protein kina:	fullname	Mast/stem cell growth factor	fullname	Mitogen-activated protein kin
	pAct	7.21	pAct	7.19	pAct	7.14	pAct	7.1
60	uniprot_id	DMPK_HUMAN	uniprot_id	KCC1D_HUMAN	uniprot_id	WEE2_HUMAN	uniprot_id	SRMS_HUMAN
	fullname	Myotonin-protein kinase	fuliname	Calcium/calmodulin-depender	fullname	Wee1-like protein kinase 2	fullname	Tyrosine-protein kinase Srms
	pAct	7.04	pAct	7.04	pAct	7.03	pAct	7
64	uniprot_id	MSKT_HUMAN	uniprot_id	MIK4 HUMAN	uniprot_id	KC1E_HUMAN	uniprot_id	MERTK_HUMAN
	fullname	Mitogen activated protem kin	fullname	Mitocer Factivated protein kin	fullname	Casein kinase I isoform epsilo	fullname	Tyrosine-protein kinase Mer
	pAct	7	pAct	6.96	pAct	6.96	pAct	6.96
68	uniprot_id fullname pAct	DDR1_HUMAN Epithelial discoidin domain-co 6.92	uniprot_id fullname pAct	CHK2_HUMAN Serne/threonine-protein kina: 6.9	uniprot_id fullname pAct	HIPK4_HUMAN Homeodomain-interacting pro	uniprot_id fullname pAct	FAK2_HUMAN Protein-tyrosine kinase 2-bet 6.87
72	uniprot_id	DDR2_HUMAN	uniprot_id	NPM HUMAN	uniprot_id	TM3K_HUMAN	uniprot_id	KCC2G_HUMAN
	fullname	Discoidin domain-containing r	fullname	Nucleophosmin	fullpame	Serine/threonine-protein kina:	fullname	Calcium/calmodulin-depender
	pAct	6.85	pAct	6.82	pact	<mark>6.77</mark>	pAct	6.74
76	uniprot_id	STK4_HUMAN	uniprot_id	PGFRB_HUMAN	uniprot_id	EPHB3_HUMAN	uniprot_id	NUAK2_HUMAN
	fullname	Serine/threonine-protein kina:	fullname	Platelet-derived growth facto	fulname	Ephrin type-B receptor 3	fullname	NUAK family SNF1-like kinase
	pAct	6.72	pAct	6.7	pAct	6.68	pAct	6.66
80	uniprot_id fullname pAct	KC1D_HUMAN Casein kinase I isoform delta 6.62	uniprot id fullname pAct	TBK1_HUMAN Serine/threonine-protein King 6	uniprot_id fullname pAct	E2AK4_HUMAN eIE-2-anpha kinase GCN2_ECC 6.57	uniprot_id fullname pAct	KC1A HUMAN Casein kinase Lisoform alpha
84	uniprot_id	TEC_HUMAN	uniprot_id	CLK3_HUMAN	uniprot_id	FES_HUMAN	uniprot_id	PHKG1_HUMAN
	fullname	Tyrosine-protein kinase Tec	fullname	Dual specificity protein kinase	fullname	Tyrosine-protein kinase Fes/Fj	fullname	Phosphorylase b kinase gamr
	pAct	6.55	pAct	6.52	pAct	6.48	pAct	6.47
88	uniprot_id	TAOK3_HUMAN	uniprot_id	MAST1_HUMAN	uniprot_id	BMP2K_HUMAN	uniprot_id	PMYT1_HUMAN
	fullname	Serine/threonine-protein kina:	fullname	Microtubule-associated serin	fullname	BMP-2-inducible protein kinas	fullname	Membrane-associated tyrosir
	pAct	6.47	pAct	6.46	pAct	6.46	pAct	6.40
92	uniprot_id	FER_HUMAN	uniprot_id	IRAK4_HUMAN	uniprot_id	ROCK2_HUMAN	uniprot_id	STK3_HUMAN
	fullname	Tyrosine-protein kinase Fer	fullname	Interleukin-1 receptor-associa	fullname	Rho-associated protein kinas	fullname	Serine/threonine-protein kina:
	pAct	6.44	pAct	6.44	pAct	6.44	pAct	6.43
96	uniprot_id	DUSTY_HUMAN	uniprot_id	CSF1R_HUMAN	uniprot_id	ULK2_HUMAN	uniprot_id	ULK3_HUMAN
	fullname	Dual serine/threonine and tyre	fullname	Macrophage colony-stimulatir	fullname	Serine/threonine-protein kina:	fullname	Serine/threonine-protein kina:
	pAct	6.42	pAct	6.42	pAct	6.35	pAct	6.34
100	uniprot_id	M3K13_HUMAN	uniprot_id	MYLK_HUMAN	uniprot_id	LRRK2_HUMAN	uniprot_id	WEE1_HUMAN
	fullname	Mitogen-activated protein kin	fullname	Myosin light chain kinase, smo	fullname	Leucine-rich repeat serine/thr	fullname	Wee1-like protein kinase
	pAct	6.32	pAct	6.31	pAct	6.3	pAct	6.29

Multi-target pharmacology: friend of foe? Discovery of *Useful* Additional Activities of Existing Drugs

MTP opportunities

- Better drugs for a specific target
- Additional targets for specific drugs
- Targets for a drug with unknown mechanism of action

Dysregulated Hedgehog Pathway. Smoothened Receptor

Cyclopamine: teratogen from Corn Lily. Hh-pathway: embryonic development, differentiation, cancer

Converting Pocket Ensembles with Co-crystallized Ligands into Docking/Binding Models

From Score to pKd or ΔG ?

- Target specific Score shifts
- Re-trained docking Score
- Full pKd training on docked poses

2008, Kufareva et al., *JMC*, Profiling Kinases 2010, Park et al. *JCAMD*, 17 Nuclear Receptors 2014, Chen et al., *FMC*, 37 Pocket/Ligand Ensembles 2016, Lam et al., (MolScreen), >3000 Models

- Screening for a real multi-target profile of drugs
- Repurposing drugs or reviving abandoned candidates
- Predicting targets of hits from phenotypic assays
- Predicting adverse effects of drugs and environmental chemicals, additives and metabolites

Pocket Selection: Rueda, et al. 2012, Alibero, *JCIM* Bottegoni G, Rocchia W, Rueda M, Abagyan R, Cavalli A. **Systematic exploitation of multiple receptor conformations for virtual ligand screening.** *PLoS One.* 2011

Pocketome-derived **Target Screen**: Docking-Model Types and Outputs

DPC: Docking to Pocket, (343)

- Multi-conformational, 4D
- Template assisted, DP
- Selection, single cluster
- Pose + Class plus Activity (pIC50)

DFZ: Docking to Ligand (504) Fields, Z-Score (normalized docking Score)

KCC: 2D Random Forest: (1139)

DFA: Docking to Ligand Fields+Act training (1035)

- Pocket driven or APF-Superposition
- *Multiple* Clusters
- Pose + Activity (pP, pIC50)

~3000 MolScreen Models clustered

T_test AllTarget

	model	NAME	TMPL CL	NOF LIG	AUC	ClassAUC	pKdAUC	Q2	R2pkd	RMSE	<u>^</u>	K /Header /Filter /K Tools / E Tree
59	dfaESB2	Estrogen receptor beta	3	1459	93.98	93.89	ND	0.60	0.58	0.6		1. 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.
i0	dpcFSR2	Estrogen receptor beta	0	1459	88.96	ND	95.68	0.49	ND	0.7	= /	ppcsak1, 1820
51	kccESB2	Estrogen receptor beta	49	1454	94.25	ND	96.19	0.55	ND	0.7		4kccESR1,1902
52	dfaMDR1	Multidrug resistance protein 1	6	1032	94.69	93.99	ND	0.60	0.68	ND	Ph	dice582,1459
3	kccMDR1	Multidrug resistance protein 1	51	1274	91.52	ND	94.66	0.55	ND	0.6		kccESR2,1454
54	dfaBACE1	Beta-secretase 1	2	2669	98.06	94.95	ND	0.64	0.58	0.7	Б	dfaMDR1,1032
55	kccBACE1	Beta-secretase 1	99	2669	98.19	ND	99.31	0.72	ND	0.7		kccMDR1,1274
i6	dfaCATD	Cathepsin D	6	733	96.16	97.52	ND	0.67	0.70	0.5		dfaBACE1,2669
7	kccCATD	Cathepsin D	28	1274	98.26	ND	98.47	0.52	ND	0.7		dfacato, 733
8	dfaRENI	Renin	4	739	95.48	97.10	ND	0.72	0.74	0.7		kccCATD, 1274
9	dpcRENI	Renin	0	739	80.26	ND	98.38	0.67	ND	0.8	H	dfaREN1,739
0	kccRENI	Renin	38	2127	98.99	ND	99.49	0.68	ND	0.7		dpcREN1,739
1	dfaCCR5	C-C chemokine receptor type 5	1	1648	98.58	96.22	ND	0.67	0.57	0.6	- 22	KccRENI, 2127
2	kccCCR5	C-C chemokine receptor type 5	39	1648	98.28	ND	98.80	0.75	ND	0.6		keeCC95 1548
3	dfaMC4R	Melanocortin receptor 4	1	2045	98.32	95.99	ND	0.75	0.71	ND		1faMC48, 2045
4	kccMC4R	Melanocortin receptor 4	24	2203	99.07	ND	99.26	0.64	ND	0.7		kccMC4R, 2203
5	dfaNK1R	Substance-P receptor	3	1969	98.64	98.11	ND	0.70	0.66	ND		dfaNK1R,1969
6	kccNK1R	Substance-P receptor	78	2254	99.02	ND	99.47	0.70	ND	0.7		kccNK1R, 2254
7	kccCCR2	C-C chemokine receptor type 2	28	1250	99.31	ND	99.24	0.65	ND	0.6		KeeccR2,1250
8	dfaOPRD	Delta-type opioid receptor	3	3726	94.57	94.27	ND	0.64	0.00	0.8		kccOPRD, 4697
,	kccOPRD	Delta-type opioid receptor	71	4697	96.23	ND	97.77	0.69	ND	0.8		dfa0PRM, 4709
)	dfaOPRM	Mu-type opioid receptor	5	4709	93.25	92.02	ND	0.67	0.00	0.8		kecOPRM, 5816
	kccOPRM	Mu-type opioid receptor	104	5816	96.36	ND	97.03	0.70	ND	0.7		dfaOPRK, 4133
2	dfaOPRK	Kappa-type opioid receptor	3	4133	93.52	87.95	ND	0.63	0.00	0.8		KCCOVRS, 4599
3	kccOPRK	Kappa-type opioid receptor	98	4599	93.37	ND	96.30	0.70	ND	0.8		dr.dz A10, 4333 dr.dz A10, 4333
4	dfaFA10	Coagulation factor X	4	4333	97.99	95.20	ND	0.70	0.00	0.7		kccFA10,4335
5	dpcFA10	Coagulation factor X	0	4297	93.35	ND	97.68	0.65	ND	0.8		dfaTHRB,4674
5	kccFA10	Coagulation factor X	103	4335	97.97	ND	98.91	0.75	ND	0.7		dpcTHRB, 4674
7	dfaTHRB	Prothrombin	2	4674	94.59	89.15	ND	0.59	0.00	0.9		KCCTHRE, 5235
8	dpcTHRB	Prothrombin	0	4674	88.23	ND	95.71	0.61	ND	0.9		doctavi, 1445
9	kccTHRB	Prothrombin	131	5235	92.87	ND	96.08	0.72	ND	0.8		kccTRY1, 1593
0	dfaTRY1	Cationic trypsin	2	1445	98.52	97.58	ND	0.60	0.60	0.7		dfaADRB1,1228
L	dpcTRY1	Cationic trypsin	0	1445	95.28	ND	97.82	0.59	ND	0.7		RecADRB1,1352
2	kccTRY1	Trypsin-1	77	1593	97.33	ND	98.36	0.68	ND	0.6		dfaADRB2,1866
3	dfaADRB1	Beta-1 adrenergic receptor	4	1228	95.44	94.42	ND	0.61	0.62	ND		kccanss2, 1866
4	kccADRB1	Beta-1 adrenergic receptor	47	1352	97.81	ND	97.41	0.55	ND	0.8		dfaADRB3,1128
5	dfaADRB2	Beta-2 adrenergic receptor	3	1866	89.89	88.87	ND	0.61	0.66	0.8		kccADRB3,1193
6	dpcADRB2	Beta-2 adrenergic receptor	0	1866	84.77	ND	92.98	0.60	ND	0.9		kccCASR, 426
7	kccADRB2	Beta-2 adrenergic receptor	73	1866	92.17	ND	94.09	0.71	ND	0.8		dfaDHI1,1757
в	dfaADRB3	Beta-3 adrenergic receptor	2	1128	98.70	98.37	ND	0.67	0.66	ND		-KCCURII, 1737
9	kccADRB3	Beta-3 adrenergic receptor	36	1193	99.23	ND	99.60	0.57	ND	0.7		dpcHYES, 1186
00	kccCASR	Extracellular calcium-sensing receptor	16	426	99.13	ND	98.26	0.55	ND	0.7		kccHYES, 1186
01	dfaDHI1	Corticosteroid 11-beta-dehydrogenase	5	1757	91.46	87.89	ND	0.67	0.69	0.6		kccNPY5R, 1119
)2	kccDHI1	Corticosteroid 11-beta-dehydrogenase	76	1757	94.50	ND	97.40	0.59	ND	0.7		kccTRPV1, 1987
)3	dfaHYES	Bifunctional epoxide hydrolase 2	3	1186	97.89	98.31	ND	0.54	0.67	0.7		-kccP2RX7,1325
04	dpcHYES	Bifunctional epoxide hydrolase 2	0	1186	87.03	ND	98.12	0.50	ND	0.8		arachel, 4627 keeCNR1, 4675
05	kccHYES	Bifunctional epoxide hydrolase 2	50	1186	97.56	ND	98.49	0.56	ND	0.8		dfaCNR2, 3624
06	kccNPY5R	Neuropeptide Y receptor type 5	60	1119	98.89	ND	98.86	0.45	ND	0.8		kccCNR2, 3856
07	kccTRPV1	Transient receptor potential cation channel	66	1987	98.35	ND	98.56	0.63	ND	0.7		kccPTAFR, 1101
80	kccP2RX7	P2X purinoceptor 7	34	1325	99.25	ND	99.58	0.54	ND	0.5		dfaPARP1,1321
_											9	dpcPARP1,1321

🔞 🐻 🖕 🗖 🖳 🍪 🖓 a 🐘 table: 1967 rows, 23 columns (29 selected records); cluster tree: 421 clusters, size range(1-326)

Individual models: performance and training details

Load Panel -> Check Model Performance:

Best Docking Pose to go with c-pKd

- dfa, dpc, dfz models are based on docking
- pKd prediction based on random forest training if 3D methods fail or are not accurate enough

Discovering MOA with the Pocketome Parasitic flatworms and **Praziquantel**

- Schistosomiasis: 200-400M
 - Some develop CNS symptoms
- *Hydatid* disease (Echinococcus)
- Cysticercosis: brain/muscle by eggs and larvae of the pork tapeworm
- Praziquantel against tapeworms and flukes (schisto: single dose)
- PZQ is extremely well tolerated.
 But .. The MOA is unknown and resistance is imminent

Collaboration with Pauline Cupid, Brian Roth Charles Cunningham, Jonathan Marchant Nature Comm. (submitted)

Praziquantel target screen

Docking PZQ-R/S to 343 4D pockets

Target	Code	pPvalue	Mol_pKd	pKd_Error	Drug
5-hydroxytryptamine receptor 2B	5HT2B	1.99	6.99	1.44	(<i>R</i>)-PZQ
5-hydroxytryptamine receptor 2B	5HT2B	1.91	6.89	1.44	(<i>S</i>)-PZQ
Muscarinic acetylcholine receptor M2	ACM2	1.48	6.33	1.24	(<i>R</i>)-PZQ
Muscarinic acetylcholine receptor M3	ACM3	1.18	5.88	1.20	(<i>R</i>)-PZQ
Kappa-type opioid receptor	OPRK	1.13	5.81	1.28	(<i>S</i>)-PZQ
D(3) dopamine receptor	DRD3	1.12	5.80	1.28	(<i>R</i>)-PZQ
Muscarinic acetylcholine receptor M3	ACM3	0.81	5.26	1.20	(<i>S</i>)-PZQ
Kappa-type opioid receptor	OPRK	0.79	5.22	1.28	(<i>R</i>)-PZQ
Delta-type opioid receptor	OPRD	0.78	5.20	1.23	(<i>S</i>)-PZQ
Muscarinic acetylcholine receptor M2	ACM2	0.76	5.16	1.24	(<i>S</i>)-PZQ
Adenosine receptor A2a	AA2AR	0.45	4.25	1.26	(<i>R</i>)-PZQ
Adenosine receptor A2a	AA2AR	0.48	3.54	1.26	(<i>S</i>)-PZQ
Delta-type opioid receptor	OPRD	0.39	3.44	1.23	(<i>R</i>)-PZQ
Beta-2 adrenergic receptor	ADRB2	0.82	2.41	1.27	(<i>R</i>)-PZQ
Beta-2 adrenergic receptor	ADRB2	0.23	ND	ND	(<i>S</i>)-PZQ
D(3) dopamine receptor	DRD3	0.05	ND	ND	(<i>S</i>)-PZQ
Corticotropin-releasing factor receptor 1	CRFR1	0.55	ND	ND	(<i>S</i>)-PZQ
Corticotropin-releasing factor receptor 1	CRFR1	0.68	ND	ND	(<i>R</i>)-PZQ

Figure 1

Muscarinic acetylcholine receptor M2

(S)-PZQ

0.76

5.16

Predicting a human target of the schistosomal drug Praziquantel

Collaboration with Pauline Cupid, Brian Roth Charles Cunningham, Jonathan Marchant *Nature Comm*. (submitted)

Ab Initio Prediction of Peptide-MHC Binding Geometry for Diverse Class I MHC Allotypes (4D docking) Bordner, Abagyan, *Proteins*, 2006

Docking flexible phosphorylated peptide to a repector (pYLRVA to V-SRC SH2)

Peptide docking

MHC 1 peptide cross-docking: multiple pocket conformations

HLA-A *0201 peptide binding pocket

Grids from 2 alternative conformations
Full BB & SC Sampling until convergence
N- and C- terminal Hbonds as d.restraints
Atomic refinement

Bordner AJ, Abagyan R

Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. *Proteins*, 2006 May 15, 63, 512-26

Better ICM Force Field: ICMFF

- First ideas : ICFF Seva Katrich et al. 2003
- Current QM-based ICMFF:
 - Softer flexibility model, 3-param VW, ϵ =2, .
 - better combination rules, torsion profiles, .:

Arnautova, Abagyan, Totrov. RNA; 2015 (glycoproteins) and 2011 (loops, peptides). All-Atom Internal Coordinate Mechanics(ICM) Force Field for Hexopyranoses and Glycoproteins. J Chem Theory Comput. 2015

ICM Scripts:

- _loopmodel
- _dockScan
 - _mutant*
 - _protDesign

Difficult: 12-residue peptide docking

Performance: 1.5 hours on 1 CPU

	pdb	ad1	ad2	vina1	vina2	sur1	sur2	g1	g2	g3	g4	icm1	icm30
	3 1b9j	0.8	0.5	0.9	0.4	0.2	0.3	0.3	0.2	0.3	0.4	0.3	0.2
2	3 2oy2	0.5	0.4	1.1	0.8	1.3	5.5	0.5	0.5	0.4	0.4	1.2	1.2
3	3 3gq1	0.9	1.4	1.3	0.9	0.5	0.3	0.8	0.4	0.6	0.6	0.8	0.8
4	3 3bs4	3.3	0.5	0.6	0.4	0.4	0.4	0.7	0.3	0.4	0.4	0.3	0.3
5	3 2oxv	1.3	0.8	1.1	1.1	2.5	5.3	0.7	1.0	0.7	2.2	1.6	1.6
6	3 2b6n	7.6	7.7	0.5	5.2	7.5	7.8	2.3	2.7	2.2	1.3	4.4	1.7
7	4 1tw6	1.0	0.8	0.7	1.0	0.7	0.7	0.6	0.4	0.4	0.4	0.6	0.3
8	4 3vqg	2.6	2.8	0.3	0.6	0.4	0.3	0.6	5.8	0.8	0.5	0.8	1.0
9	4 1uop	1.1	0.6	2.9	0.4	0.4	2.6	0.7	3.7	4.3	0.4	0.9	0.7
10	4 4c2c	0.9	0.8	0.5	0.6	0.5	0.6	0.6	0.8	0.5	0.4	0.8	0.8
11	4 4j44	0.9	0.7	0.4	0.3	0.8	0.7	0.3	0.4	0.3	0.4	1.2	1.2
12	5 2hpl	1.3	2.3	2.1	1.9	1.1	0.8	2.8	4.5	2.5	4.8	0.9	0.8
13	5 2v3s	3.6	3.7	1.0	0.9	7.5	7.7	1.4	1.3	1.5	0.7	3.0	0.9
14	5 3nfk	2.8	3.3	4.8	1.2	0.3	0.3	1.0	2.7	3.3	1.8	0.5	0.4
15	5 1nvr	4.1	3.9	2.7	1.1	2.7	2.4	4.5	6.2	6.2	4.2	1.0	1.0
16	5 <u>4v3i</u>	4.8	5.0	5.2	5.2	3.4	2.8	2.0	1.6	1.2	2.0	5.3	5.2
17	5 3t6r	4.8	2.4	4.0	4.5	4.1	2.7	2.1	0.6	1.7	0.7	0.8	0.5
18	6 1svz	3.4	5.1	3.7	0.7	2.3	2.3	6.2	3.5	4.3	2.9	1.2	1.2
19	6 3d1e	1.3	6.1	3.3	4.0	1.7	1.8	4.6	1.4	0.4	3.1	1.9	1.5
20	6 3idg	4.9	4.5	3.5	2.3	1.2	5.0	4.8	5.8	3.8	4.9	3.0	2.7
21	6 Jiny	5.0	6.2	0.6	0.9	6./	11.0	0.6	0.7	0.6	1.2	0.7	0.8
22	6 4nnr	5.7	5.4	0.9	0.8	0.7	0.9	2.3	1.5	0.9	1.4	2.8	1.1
25	7 2mm	5.1	0.0	7.8	0.0	0.3	1.5	3.4	2.9	1.0	2.0	0.4	0.0
24	7 2047	7.0	6.0	2./	1.2	0.7	0.5	7.7 E A	4.0	2.9	1.5	0.8	0.9
25	7 3447	4.5	0.0	3.5 1 5	0.6	1.6	3.2 2.2	2.4	4.5	5.1	2.4	1.0	0.4
20	7 Jahr	7.9	4.7	2.1	1.2	0.6	1.0	5.5	3.5	8.6	1.8	11	0.4
27	7 3nia	9.2	25	12	1.2	0.0	0.4	32	26	12	1.0	0.6	0.5
29	8 1elw	5.2	32	3.8	26	2.0	2.5	35	34	30	1.7	2.1	2.6
30	8 3ch8	7.9	6.3	5.2	0.5	1.5	4.2	6.3	8.5	7.7	3.9	3.3	0.4
31	8 4wlb	6.0	5.3	5.2	5.2	5.1	4.7	3.5	5.2	3.7	4.0	3.6	4.1
32	8 1ou8	6.0	4.1	5.3	4.5	1.3	1.4	3.6	3.6	4.9	3.6	2.0	0.6
33	8 1n7f	4.6	6.3	8.5	11.7	9.1	8.9	6.0	7.5	6.1	8.1	0.9	1.0
34	9 3obc	5.9	10.0	7.4	5.5	1.8	2.1	2.9	2.2	3.0	1.4	2.2	1.8
35	9 4btb	1.9	4.7	2.4	2.2	8.6	8.5	4.3	6.8	3.4	5.9	1.8	1.6
36	9 2w0z	6.3	6.8	5.1	3.8	1.3	4.1	3.2	1.4	3.0	3.3	11.1	1.9
37	9 4n7h	3.8	5.0	4.8	4.7	3.4	4.5	3.8	5.3	6.8	2.2	3.5	1.7
38	9 2qab	3.8	4.3	4.0	4.0	4.6	4.5	3.6	4.1	3.7	4.6	3.8	4.3
39	10 1h6v	11.9	13.1	5.6	3.2	0.6	1.3	13.8	16.4	13.2	1.5	1.6	1.5
40	10 3brl	8.1	7.8	6.0	4.4	3.2	2.4	3.4	4.0	3.6	2.5	3.8	0.8
41	10 1ntv	5.9	3.8	5.4	3.7	15.1	13.4	2.9	5.7	4.1	4.3	1.0	0.4
42	10 4ds1	6.7	5.5	5.9	2.8	2.2	1.6	3.5	4.6	2.8	2.3	1.2	0.5
43	10 2o02	3.7	5.0	4.3	4.2	4.6	3.8	4.6	3.6	4.2	3.7	1.4	4.7
44	11 1n12	11.9	11.4	10.5	9.6	0.5	1.3	8.9	11.7	9.3	2.3	1.6	0.5
45	11 2xfx	7.4	8.0	4.7	2.0	6.4	1.3	4.3	6.1	4.7	4.5	1.7	0.9
46	11 3bfw	7.9	10.0	6.1	5.8	0.3	0.3	6.0	5.8	4.8	3.5	0.3	0.3
47	11 4eik	7.9	5.3	2.2	1.5	4.0	2.5	3.6	3.2	3.9	3.5	3.7	0.9
48	11 3ds1	5.0	5.0	4.5	4.5	11.5	10.6	4.2	6.2	5.4	6.7	4.1	1.2
49	12 4j8s	4.9	5.1	4.7	8.4	5.7	13.2	4.4	5.5	4.1	8.7	9.2	6.7
50	12 2w10	8.5	5.8	2.1	4.6	3.5	3.7	7.3	2.3	3.5	5.6	4.0	2.7
51	12 3jzo	5.7	5.8	5.2	5.1	5.8	5.9	6.4	4.9	5.1	5.2	6.5	7.4
52	12 4dgy	5.7	5.6	7.4	1.1	7.7	7.7	8.9	7.9	5.0	5.8	2.8	5.6
53	12 2b9h	6.1	5.2	6.0	5.5	12.7	10.0	3.4	4.2	3.8	3.8	3.4	4.0

Peptide docking benchmark performance #correct out of 53

- AutoDock: 12 /53
- Vina: 28 /53
- Surflex: 29 /53
- GOLD: 28 /53
- ICM: 42 /53

LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance Alexander S Hauser and Björn Windshügel J. Chem. Inf. Model., 2016, 56 (1), pp 188–200

Ilatovskiy, Abagyan, 2017 (in preparation)

Peptide Docking example: 12-aminoacid peptide 2w10

Chemokine

Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 2015

Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Zheng et al. *Nature* 2016 Structural basis of ligand interactions with atypical chemokine receptor 3. Gustavsson et al. *Nat. Commun.* 2017

Hybrid modeling & docking protocols

- Stochastic optimization of a system in internal coordinates (ICM)
- Explicit Flexibility of tails, loops and sice chains, plus Masking
- Integrated *ambiguous* experimental restraints

Kufareva *et al.*, Stoichiometry and geometry of the CXCR4 complex with CXCL12: Molecular modeling and experimental validation. *PNAS* **2014** Kufareva, Handel, Abagyan, Experiment-guided molecular modeling of protein-protein complexes involving GPCRs, *Meth Mol Biol* **2015**

ACKR3-Nterm and CxCL12

Structural basis of ligand interaction with atypical chemokine receptor 3. Gustavsson et al.,

Nature Comm, **2017** (collaboration with Handel Lab)

Homology Modeling

- Single mutations (geometry, stability, ppi, ligand binding)
- Search for template(s)
- Structural alignments/edits
- Including Ligand
- Loops & Ends
- Refinement

1D=20% pP=8.4		#
cypsch	1	MWTILLSTINITLATALMLSFIIIYLLYIQNSTKLPPGPTSWPLIGYTSCLGT-DAFRKIQDLNKIYGDIVSFQVLGKTIIILYNYDL
1nr6 a	1	GKLPPGPTPFPIIGNILOIDAKDISKSLTKESECYGPVFTVYLGMKPTVVLHGYEA
Inr6 a	-	
in o u		
		#.EA.##GR#.##GI#K.#+.F#.#.N#
cypsch	88	IHEA-ANGNRSKVGRYTMTVNDLLAENSGISNYDTQKALEMRKAFVRLVHNNIKTTEEHEGNKLQPFISQNIINAQINKLIRQLRIRQ
1nr6 a	57	VKEALVDLGEEFAGRGSVPILEKVSKGLGIA-FSNAKTWKEMRRFSLMTLRNFGMGKRSIEDRIQEEARCLVEELRKTN
1nr6 a		
		P# # ## C ## #T# #TF # # D # I I # II F## # ##+ I # -#
cynsch	175	
1pr6 p	125	
into a	155	
inre a		
		I#+##.N#######.L.#T####.AGT_TTS.TL.#.#.#L#+#P
cypsch	255	IYKYKTVRQLIDNNVGEMHNSDSLLGQLINDLKLNLTKNDISRLSFEFMAAGTDTTSLTLTWACDYLARAPP
1nr6 a	214	IKNFIMEKVKEHOKLLDVNNPRDFIDCFLIKMEQENNLEFTLESLVIAVSDLFGAGTETTSTTLRYSLLLLLKHPEVAARVQEEIERV
1nr6 a		
		, # # #T T D## ##D I DU#// #; #; NV#TDK #T I \/# N # # C
synach	227	
cypsch	327	
інгь а	302	IGRHRSPCMQDRSRMPYIDAVIHEIQRFIDLLPINLPHAVIRDVRFRNYFIPRGIDIIISULBVCHDEKAFPNPKVFDPGHFLDESGN
lnr6 a		
		#SD.##PFS#G.R.C#G#A.#.##LT.I.Q.F.#Q.#I.#G#P#P###F##
cypsch	397	IOESDKPIPFSLGSRSCPGARIANLLIEOILTAINOEFLIONITOSPFETISPGNOESLTPFGITRTPHKSMYIFVTKLNGNRRTSI
1nr6 a	390	FKKSDYEMPESAGKRMCVGEGLARMELELELTSTLONEKLOSLVEPKDLDTTAVVNGEVSVPPSYOLCETPTH
lnr6 a		
1		

Recruitment at ops site

ICM modeling and bioinformatics:

- Alignments of several hundreds sequences for RfaH and NusG
- Calculating Profiles/Logos,
 Sequence Entropy, Conservation
- Building 3D models of RfaH
- Calculating ΔΔG of mutations for conserved yet different sites
- Prioritizing experimental mutations

Bioinformatics & Modeling

Da Shi, Dmitri Svetlov, Ruben Abagyan, and Irina Artsimovitch Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor Nucleic Acid Research, 2017 (in press)

Conclusions

- Small drugs have **extensive multi-targetpharmacology**, it must and used in matching. We need to use the known and discover the missing.
- The Pocketome (~3000) pocket ensembles and superimposed ligand can be used for Target
 Screening via docking combined with machine learning.
- **Complex modeling challenges** can be guided by Internal Coordinate simulations and fuzzy experimental restraints.
- Recent progress in predictive peptide docking and scoring enables complex applications.
- Drug-patient data helps with targets discovery

Acknowledgments

UC San Diego

UCSD Lab

Irina Kufareva, scientist SKAGGS SCHOOL OF PHARMACY Andrey Ilatovsky, postdoc Chris Edwards, SDSC, computer admin Alumni

Giovanni Bottegoni, Marco Neves, Manuel Rueda, Fiona McRobb, Yu Chen Chen

Students and Visitors

Da Shi, *chem. grad student* **Kirti Kandhwal**, grad student, drug repurposing Tony Ngo, grad student, Patricia Oto, undegrad

Novartis. The FOCUS team: N.Stiefl, P.Gedeck, D.Chin, et al.

The MOA-profiling collaboration: Donovan Chin, Christine Hajdin, Eric Martin, Jose Duca

Molsoft LLC

Maxim Totrov, Eugene Raush Elena Arnautova, Polo Lam, Arman Sahakian, **Andrew Orry**

UCSD lab Funding NIGMS R01 on modeling & docking (active) **U01 on Chemokine Receptors** (completed)

UCSD Collaborations

Clark Chen lab, UCSD Cancer Center Anjan Debnath, Larissa Podust, Jair L.de S.Neto, Conor Caffrey, Jim McKerrow, CDIPD **Tracy Handel lab**, *U01*, *chemokine receptors*

Active Outside UCSD GPCR structures and modulators

Nicola Smith, Bob Graham, Melbourne, AU Ray Stevens lab, Seva Katritch USC, U54 Mark Yeager, UVa Joel Linden's LJIAI, Adenosine Receptors Pat Sexton, Art Christopoulos, Katie Leach Larry Miller lab, Mayo, Arizona, A,B-GPCRs Multi-target pharmacology Charles Cunningham, UNM, Bryan Roth, UNC, Jonathan Marchant Structure Based Drug Discovery K.Y. Wong and PolyU team: FtsZ, glycosyltransferase, TNFa, b-lactamase, RfaH and NusG Dmitry Svetlov, Irina Artsimovich 4D docking and activity cliffs