Jul 1 2004
Contents
 
Introduction
Reference Guide
User's guide
 ICM-shell
 ICM graphics
 Structure analysis
 Sequence, searches and alignments
 Energetics and electrostatics
 Manipulations with molecules
 Animation
 Transformations and symmetry
 Maps and factors
 How to plot
 How-to: Docking and Virtual Ligand Screening
 Example scripts
  How to predict 3D structure of a peptide from its sequence
  How to perform local flexible docking of two protein molecules
  How to perform an explicit flexible docking of two simplified protein molecules
  How to build a model by homology
References
Glossary
 
Index
Prev
3.12 Example scripts
Next

[ fp | protdockgrid | dps | hm ]

3.12.1 How to predict 3D structure of a peptide from its sequence

[Top]
In the following script you are going to search for the lowest energy conformation using the Biased Probability Monte Carlo procedure to generate new conformations and full-atom energy plus solvation electrostatics, surface and entropy contributions. Start 3 or more independent simulations and let them run to convergence. Two features are indicative of convergence: the plot of the best energy achieved should be flat for sufficiently long (store the output in f1.ou and run the following macro:
 
 plotBestEnergy "f1" 100. "append display" 
); and the lowest energy conformation in different simulations are close, e.g.:
 
# peptide "pep.se" ; runs: "f1" and "f2" 
  build "pep" 
  display 
  read conf "f1" 0 
  show stack 
  read conf "f2" 0 
  show stack 
Watching movies f1.mov and f2.mov may also be useful. (See also How to evaluate helicity of a peptide from the BPMC simulation and How to calculate an ensemble average). Now, the script:
 
                     # Example folding script. Use as directed. 
 read libraries 
 build "pep16"       # your peptide sequence is in pep16.se file. 
 rename a_*. "f2"    # specifies current name.  
                     # Several runs (f2,f3, etc.) are recommended 
 nvar = Nof( v_//* ) # number of variables 
 
 nProc=4             # if you are using parallel version.  
 
 mncallsMC    = nvar*50000  # maximal number of energy evaluations 
 mncalls      = 170+nvar*3  # maximal n_of minimization calls after 
                            # each random change 
 temperature  = 600   # optimal temperature for the simulation 
 tolGrad      = 0.01  # exit minimization when gradient is < 0.01 
 mcBell       = 1.0   # the default width of the MC probability distributions 
 mnconf       = 40    # maximal n_of low-energy conformations saved  
                      # in the stack (f2.cnf file) 
 mnvisits     = 25    # if stuck for >= 25 times, push it out 
 mnreject     = 10     
 mnhighEnergy = 30     
 l_bpmc       = yes   # use biased probability  
 electroMethod = "MIMEL" 
 surfaceMethod = "constant tension" 
 set terms "vw,14,hb,el,to,sf,en" 
                      # ECEPP/2 energy + solvation + entropy (see icm.hdt file) 
 
 fix v_//?vt*         # exclude irrelevant virtual variables specifying  
                      # absolute molecular position 
 set vrestraint a_/*  # load preferred backbone and side-chain angle zones 
                      # for the  biased probability MC 
 randomize v_//!omg 180.0  # create random starting conformation 
 vicinity = 15.0       
 compare v_//phi,psi  # use these variables to compare structure 
 montecarlo movie     # run it and record a movie.  
                      # watch the movie later by:  
                      # read movie "f2"; display ribbon 
                      # display movie "f2" 4. 8. 
                      # analyze the best conf. in the stack by: 
                      # build "pep16"; read stack; show stack all 
                      # load conf 1 
 quit 


3.12.2 How to perform local flexible docking of two protein molecules

[Top]
using the grid potentials
This is a so called "local docking procedure" which docks all orientations of the protein ligand to a certain orientation of the protein receptor. The "global docking procedure" is somewhat different.
You may follow the menu items in Docking.Protein-protein or run the docking scripts directly. To illustrate the principal commands and functions we will also consider a series of shell commands to perform a docking procedure. We will use the following steps from the shell to dock the proteins chymotrypsin (5cha) and APPI (1aap). The real structure of the complex is known (1ca0), which can help us to test the validity of the method. This procedure has been recently tested in a dataset of 24 known protein-protein complexes ( Fernández-Recio,Totrov,Abagyan, 2002)
The procedure includes the following steps:
  1. Creating two ICM objects for both proteins with the convertObject macro
  2. Specify project parameters in a special table
  3. Orient molecules, choose the docking box and make potentials.
  4. Dock the protein ligand into the potentials.
  5. Refine the solutions.


3.12.3 How to perform an explicit flexible docking of two simplified protein molecules

[Top]
This procedure is relatively old and was used previously to explicitly dock two proteins starting from simplified objects. The best solutions are refined in all-atom representation. Currently we prefer docking into grid (see above).
  1. Create ICM-objects of the two proteins you want to dock.
  2. Use macro makeSimpleDockObj to create two simplified objects.
  3. Combine two simplified objects into one and prepare it for docking simulation using _makeComplex script. During the execution you will be prompted for orientation of the first molecule, which should face the second one with the expected epitope.
  4. Run the docking simulation using _dock2mol script. To insure the completeness of the search, run 3-4 simulations in parallel and compare the resulting stacks, the top 5-7 conformations should be the same except for 1-2. Combine the stacks using "read stack append" command with subsequent filtering by
     
     vicinity = 4. 
     compare static a_2//ca 
     compress stack 
    
  5. Prepare .var files with optimized surface sidechain conformations for individual proteins by running _surfSideChainOpt script.
  6. Run _makeFullAtom script to create full atom models from the simplified conformations accumulated in the stack.
  7. Run _refineComplex script on each of the full atom models
  8. Complex with the best energy after the optimization is (hopefully) the answer.


3.12.4 How to build a model by homology

[Top]
Have an alignment and a pdb file with the template handy, say "sx.ali" "x.brk". If you have a homology module key you can use the build model command and refine the model with the refineModel macro. The build model command builds a complete model and searches for matching loops in all pdb files. You can run the build model command from the GUI interface ( menu Homology ) alignSS is a good macro to make a sequence-structure alignment. It incorporates solvent accessibility and secondary structure into the alignment procedure. Alternatively, allow the build model command to perform the alignment on the fly.
In the absence of the Homology module, use the following macros/scripts:
  • homodel macro: fast interactive model building.
  • _homFast for fast model building (substitute nonidentical side-chains, assign the most likely rotamer).
  • _hom for more rigorous model building for one polypeptide chain: side-chains are optimally placed loops are automatically recognized and simulated.
  • _homMult the same as the above script, but for a multichain protein molecule, e.g. an immunoglobulin molecule. Requires a set of separate files for each alignment.


Prev
vlsht
Home
Up
Next
icmshell

Copyright© 1989-2004, Molsoft,LLC - All Rights Reserved.
This document contains proprietary and confidential information of Molsoft, LLC.
The content of this document may not be disclosed to third parties, copied or duplicated in any form,
in whole or in part, without the prior written permission from Molsoft, LLC.